]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/kernel/smp-cps.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / arch / mips / kernel / smp-cps.c
1 /*
2 * Copyright (C) 2013 Imagination Technologies
3 * Author: Paul Burton <paul.burton@imgtec.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 */
10
11 #include <linux/delay.h>
12 #include <linux/io.h>
13 #include <linux/irqchip/mips-gic.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/slab.h>
17 #include <linux/smp.h>
18 #include <linux/types.h>
19
20 #include <asm/bcache.h>
21 #include <asm/mips-cm.h>
22 #include <asm/mips-cpc.h>
23 #include <asm/mips_mt.h>
24 #include <asm/mipsregs.h>
25 #include <asm/pm-cps.h>
26 #include <asm/r4kcache.h>
27 #include <asm/smp-cps.h>
28 #include <asm/time.h>
29 #include <asm/uasm.h>
30
31 static bool threads_disabled;
32 static DECLARE_BITMAP(core_power, NR_CPUS);
33
34 struct core_boot_config *mips_cps_core_bootcfg;
35
36 static int __init setup_nothreads(char *s)
37 {
38 threads_disabled = true;
39 return 0;
40 }
41 early_param("nothreads", setup_nothreads);
42
43 static unsigned core_vpe_count(unsigned core)
44 {
45 unsigned cfg;
46
47 if (threads_disabled)
48 return 1;
49
50 if ((!IS_ENABLED(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
51 && (!IS_ENABLED(CONFIG_CPU_MIPSR6) || !cpu_has_vp))
52 return 1;
53
54 mips_cm_lock_other(core, 0);
55 cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
56 mips_cm_unlock_other();
57 return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
58 }
59
60 static void __init cps_smp_setup(void)
61 {
62 unsigned int ncores, nvpes, core_vpes;
63 unsigned long core_entry;
64 int c, v;
65
66 /* Detect & record VPE topology */
67 ncores = mips_cm_numcores();
68 pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
69 for (c = nvpes = 0; c < ncores; c++) {
70 core_vpes = core_vpe_count(c);
71 pr_cont("%c%u", c ? ',' : '{', core_vpes);
72
73 /* Use the number of VPEs in core 0 for smp_num_siblings */
74 if (!c)
75 smp_num_siblings = core_vpes;
76
77 for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
78 cpu_data[nvpes + v].core = c;
79 #if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_CPU_MIPSR6)
80 cpu_data[nvpes + v].vpe_id = v;
81 #endif
82 }
83
84 nvpes += core_vpes;
85 }
86 pr_cont("} total %u\n", nvpes);
87
88 /* Indicate present CPUs (CPU being synonymous with VPE) */
89 for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
90 set_cpu_possible(v, true);
91 set_cpu_present(v, true);
92 __cpu_number_map[v] = v;
93 __cpu_logical_map[v] = v;
94 }
95
96 /* Set a coherent default CCA (CWB) */
97 change_c0_config(CONF_CM_CMASK, 0x5);
98
99 /* Core 0 is powered up (we're running on it) */
100 bitmap_set(core_power, 0, 1);
101
102 /* Initialise core 0 */
103 mips_cps_core_init();
104
105 /* Make core 0 coherent with everything */
106 write_gcr_cl_coherence(0xff);
107
108 if (mips_cm_revision() >= CM_REV_CM3) {
109 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
110 write_gcr_bev_base(core_entry);
111 }
112
113 #ifdef CONFIG_MIPS_MT_FPAFF
114 /* If we have an FPU, enroll ourselves in the FPU-full mask */
115 if (cpu_has_fpu)
116 cpumask_set_cpu(0, &mt_fpu_cpumask);
117 #endif /* CONFIG_MIPS_MT_FPAFF */
118 }
119
120 static void __init cps_prepare_cpus(unsigned int max_cpus)
121 {
122 unsigned ncores, core_vpes, c, cca;
123 bool cca_unsuitable;
124 u32 *entry_code;
125
126 mips_mt_set_cpuoptions();
127
128 /* Detect whether the CCA is unsuited to multi-core SMP */
129 cca = read_c0_config() & CONF_CM_CMASK;
130 switch (cca) {
131 case 0x4: /* CWBE */
132 case 0x5: /* CWB */
133 /* The CCA is coherent, multi-core is fine */
134 cca_unsuitable = false;
135 break;
136
137 default:
138 /* CCA is not coherent, multi-core is not usable */
139 cca_unsuitable = true;
140 }
141
142 /* Warn the user if the CCA prevents multi-core */
143 ncores = mips_cm_numcores();
144 if (cca_unsuitable && ncores > 1) {
145 pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
146 cca);
147
148 for_each_present_cpu(c) {
149 if (cpu_data[c].core)
150 set_cpu_present(c, false);
151 }
152 }
153
154 /*
155 * Patch the start of mips_cps_core_entry to provide:
156 *
157 * s0 = kseg0 CCA
158 */
159 entry_code = (u32 *)&mips_cps_core_entry;
160 uasm_i_addiu(&entry_code, 16, 0, cca);
161 blast_dcache_range((unsigned long)&mips_cps_core_entry,
162 (unsigned long)entry_code);
163 bc_wback_inv((unsigned long)&mips_cps_core_entry,
164 (void *)entry_code - (void *)&mips_cps_core_entry);
165 __sync();
166
167 /* Allocate core boot configuration structs */
168 mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
169 GFP_KERNEL);
170 if (!mips_cps_core_bootcfg) {
171 pr_err("Failed to allocate boot config for %u cores\n", ncores);
172 goto err_out;
173 }
174
175 /* Allocate VPE boot configuration structs */
176 for (c = 0; c < ncores; c++) {
177 core_vpes = core_vpe_count(c);
178 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
179 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
180 GFP_KERNEL);
181 if (!mips_cps_core_bootcfg[c].vpe_config) {
182 pr_err("Failed to allocate %u VPE boot configs\n",
183 core_vpes);
184 goto err_out;
185 }
186 }
187
188 /* Mark this CPU as booted */
189 atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
190 1 << cpu_vpe_id(&current_cpu_data));
191
192 return;
193 err_out:
194 /* Clean up allocations */
195 if (mips_cps_core_bootcfg) {
196 for (c = 0; c < ncores; c++)
197 kfree(mips_cps_core_bootcfg[c].vpe_config);
198 kfree(mips_cps_core_bootcfg);
199 mips_cps_core_bootcfg = NULL;
200 }
201
202 /* Effectively disable SMP by declaring CPUs not present */
203 for_each_possible_cpu(c) {
204 if (c == 0)
205 continue;
206 set_cpu_present(c, false);
207 }
208 }
209
210 static void boot_core(unsigned int core, unsigned int vpe_id)
211 {
212 u32 access, stat, seq_state;
213 unsigned timeout;
214
215 /* Select the appropriate core */
216 mips_cm_lock_other(core, 0);
217
218 /* Set its reset vector */
219 write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
220
221 /* Ensure its coherency is disabled */
222 write_gcr_co_coherence(0);
223
224 /* Start it with the legacy memory map and exception base */
225 write_gcr_co_reset_ext_base(CM_GCR_RESET_EXT_BASE_UEB);
226
227 /* Ensure the core can access the GCRs */
228 access = read_gcr_access();
229 access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
230 write_gcr_access(access);
231
232 if (mips_cpc_present()) {
233 /* Reset the core */
234 mips_cpc_lock_other(core);
235
236 if (mips_cm_revision() >= CM_REV_CM3) {
237 /* Run only the requested VP following the reset */
238 write_cpc_co_vp_stop(0xf);
239 write_cpc_co_vp_run(1 << vpe_id);
240
241 /*
242 * Ensure that the VP_RUN register is written before the
243 * core leaves reset.
244 */
245 wmb();
246 }
247
248 write_cpc_co_cmd(CPC_Cx_CMD_RESET);
249
250 timeout = 100;
251 while (true) {
252 stat = read_cpc_co_stat_conf();
253 seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK;
254
255 /* U6 == coherent execution, ie. the core is up */
256 if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
257 break;
258
259 /* Delay a little while before we start warning */
260 if (timeout) {
261 timeout--;
262 mdelay(10);
263 continue;
264 }
265
266 pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
267 core, stat);
268 mdelay(1000);
269 }
270
271 mips_cpc_unlock_other();
272 } else {
273 /* Take the core out of reset */
274 write_gcr_co_reset_release(0);
275 }
276
277 mips_cm_unlock_other();
278
279 /* The core is now powered up */
280 bitmap_set(core_power, core, 1);
281 }
282
283 static void remote_vpe_boot(void *dummy)
284 {
285 unsigned core = current_cpu_data.core;
286 struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
287
288 mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
289 }
290
291 static void cps_boot_secondary(int cpu, struct task_struct *idle)
292 {
293 unsigned core = cpu_data[cpu].core;
294 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
295 struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
296 struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
297 unsigned long core_entry;
298 unsigned int remote;
299 int err;
300
301 vpe_cfg->pc = (unsigned long)&smp_bootstrap;
302 vpe_cfg->sp = __KSTK_TOS(idle);
303 vpe_cfg->gp = (unsigned long)task_thread_info(idle);
304
305 atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
306
307 preempt_disable();
308
309 if (!test_bit(core, core_power)) {
310 /* Boot a VPE on a powered down core */
311 boot_core(core, vpe_id);
312 goto out;
313 }
314
315 if (cpu_has_vp) {
316 mips_cm_lock_other(core, vpe_id);
317 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
318 write_gcr_co_reset_base(core_entry);
319 mips_cm_unlock_other();
320 }
321
322 if (core != current_cpu_data.core) {
323 /* Boot a VPE on another powered up core */
324 for (remote = 0; remote < NR_CPUS; remote++) {
325 if (cpu_data[remote].core != core)
326 continue;
327 if (cpu_online(remote))
328 break;
329 }
330 if (remote >= NR_CPUS) {
331 pr_crit("No online CPU in core %u to start CPU%d\n",
332 core, cpu);
333 goto out;
334 }
335
336 err = smp_call_function_single(remote, remote_vpe_boot,
337 NULL, 1);
338 if (err)
339 panic("Failed to call remote CPU\n");
340 goto out;
341 }
342
343 BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
344
345 /* Boot a VPE on this core */
346 mips_cps_boot_vpes(core_cfg, vpe_id);
347 out:
348 preempt_enable();
349 }
350
351 static void cps_init_secondary(void)
352 {
353 /* Disable MT - we only want to run 1 TC per VPE */
354 if (cpu_has_mipsmt)
355 dmt();
356
357 if (mips_cm_revision() >= CM_REV_CM3) {
358 unsigned ident = gic_read_local_vp_id();
359
360 /*
361 * Ensure that our calculation of the VP ID matches up with
362 * what the GIC reports, otherwise we'll have configured
363 * interrupts incorrectly.
364 */
365 BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
366 }
367
368 if (cpu_has_veic)
369 clear_c0_status(ST0_IM);
370 else
371 change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
372 STATUSF_IP4 | STATUSF_IP5 |
373 STATUSF_IP6 | STATUSF_IP7);
374 }
375
376 static void cps_smp_finish(void)
377 {
378 write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
379
380 #ifdef CONFIG_MIPS_MT_FPAFF
381 /* If we have an FPU, enroll ourselves in the FPU-full mask */
382 if (cpu_has_fpu)
383 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
384 #endif /* CONFIG_MIPS_MT_FPAFF */
385
386 local_irq_enable();
387 }
388
389 #ifdef CONFIG_HOTPLUG_CPU
390
391 static int cps_cpu_disable(void)
392 {
393 unsigned cpu = smp_processor_id();
394 struct core_boot_config *core_cfg;
395
396 if (!cpu)
397 return -EBUSY;
398
399 if (!cps_pm_support_state(CPS_PM_POWER_GATED))
400 return -EINVAL;
401
402 core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
403 atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
404 smp_mb__after_atomic();
405 set_cpu_online(cpu, false);
406 calculate_cpu_foreign_map();
407
408 return 0;
409 }
410
411 static DECLARE_COMPLETION(cpu_death_chosen);
412 static unsigned cpu_death_sibling;
413 static enum {
414 CPU_DEATH_HALT,
415 CPU_DEATH_POWER,
416 } cpu_death;
417
418 void play_dead(void)
419 {
420 unsigned int cpu, core, vpe_id;
421
422 local_irq_disable();
423 idle_task_exit();
424 cpu = smp_processor_id();
425 cpu_death = CPU_DEATH_POWER;
426
427 pr_debug("CPU%d going offline\n", cpu);
428
429 if (cpu_has_mipsmt || cpu_has_vp) {
430 core = cpu_data[cpu].core;
431
432 /* Look for another online VPE within the core */
433 for_each_online_cpu(cpu_death_sibling) {
434 if (cpu_data[cpu_death_sibling].core != core)
435 continue;
436
437 /*
438 * There is an online VPE within the core. Just halt
439 * this TC and leave the core alone.
440 */
441 cpu_death = CPU_DEATH_HALT;
442 break;
443 }
444 }
445
446 /* This CPU has chosen its way out */
447 complete(&cpu_death_chosen);
448
449 if (cpu_death == CPU_DEATH_HALT) {
450 vpe_id = cpu_vpe_id(&cpu_data[cpu]);
451
452 pr_debug("Halting core %d VP%d\n", core, vpe_id);
453 if (cpu_has_mipsmt) {
454 /* Halt this TC */
455 write_c0_tchalt(TCHALT_H);
456 instruction_hazard();
457 } else if (cpu_has_vp) {
458 write_cpc_cl_vp_stop(1 << vpe_id);
459
460 /* Ensure that the VP_STOP register is written */
461 wmb();
462 }
463 } else {
464 pr_debug("Gating power to core %d\n", core);
465 /* Power down the core */
466 cps_pm_enter_state(CPS_PM_POWER_GATED);
467 }
468
469 /* This should never be reached */
470 panic("Failed to offline CPU %u", cpu);
471 }
472
473 static void wait_for_sibling_halt(void *ptr_cpu)
474 {
475 unsigned cpu = (unsigned long)ptr_cpu;
476 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
477 unsigned halted;
478 unsigned long flags;
479
480 do {
481 local_irq_save(flags);
482 settc(vpe_id);
483 halted = read_tc_c0_tchalt();
484 local_irq_restore(flags);
485 } while (!(halted & TCHALT_H));
486 }
487
488 static void cps_cpu_die(unsigned int cpu)
489 {
490 unsigned core = cpu_data[cpu].core;
491 unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
492 unsigned stat;
493 int err;
494
495 /* Wait for the cpu to choose its way out */
496 if (!wait_for_completion_timeout(&cpu_death_chosen,
497 msecs_to_jiffies(5000))) {
498 pr_err("CPU%u: didn't offline\n", cpu);
499 return;
500 }
501
502 /*
503 * Now wait for the CPU to actually offline. Without doing this that
504 * offlining may race with one or more of:
505 *
506 * - Onlining the CPU again.
507 * - Powering down the core if another VPE within it is offlined.
508 * - A sibling VPE entering a non-coherent state.
509 *
510 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
511 * with which we could race, so do nothing.
512 */
513 if (cpu_death == CPU_DEATH_POWER) {
514 /*
515 * Wait for the core to enter a powered down or clock gated
516 * state, the latter happening when a JTAG probe is connected
517 * in which case the CPC will refuse to power down the core.
518 */
519 do {
520 mips_cm_lock_other(core, 0);
521 mips_cpc_lock_other(core);
522 stat = read_cpc_co_stat_conf();
523 stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
524 mips_cpc_unlock_other();
525 mips_cm_unlock_other();
526 } while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
527 stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
528 stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
529
530 /* Indicate the core is powered off */
531 bitmap_clear(core_power, core, 1);
532 } else if (cpu_has_mipsmt) {
533 /*
534 * Have a CPU with access to the offlined CPUs registers wait
535 * for its TC to halt.
536 */
537 err = smp_call_function_single(cpu_death_sibling,
538 wait_for_sibling_halt,
539 (void *)(unsigned long)cpu, 1);
540 if (err)
541 panic("Failed to call remote sibling CPU\n");
542 } else if (cpu_has_vp) {
543 do {
544 mips_cm_lock_other(core, vpe_id);
545 stat = read_cpc_co_vp_running();
546 mips_cm_unlock_other();
547 } while (stat & (1 << vpe_id));
548 }
549 }
550
551 #endif /* CONFIG_HOTPLUG_CPU */
552
553 static struct plat_smp_ops cps_smp_ops = {
554 .smp_setup = cps_smp_setup,
555 .prepare_cpus = cps_prepare_cpus,
556 .boot_secondary = cps_boot_secondary,
557 .init_secondary = cps_init_secondary,
558 .smp_finish = cps_smp_finish,
559 .send_ipi_single = mips_smp_send_ipi_single,
560 .send_ipi_mask = mips_smp_send_ipi_mask,
561 #ifdef CONFIG_HOTPLUG_CPU
562 .cpu_disable = cps_cpu_disable,
563 .cpu_die = cps_cpu_die,
564 #endif
565 };
566
567 bool mips_cps_smp_in_use(void)
568 {
569 extern struct plat_smp_ops *mp_ops;
570 return mp_ops == &cps_smp_ops;
571 }
572
573 int register_cps_smp_ops(void)
574 {
575 if (!mips_cm_present()) {
576 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
577 return -ENODEV;
578 }
579
580 /* check we have a GIC - we need one for IPIs */
581 if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
582 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
583 return -ENODEV;
584 }
585
586 register_smp_ops(&cps_smp_ops);
587 return 0;
588 }