]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/kernel/smp-cps.c
7e011f95bb8e14785d447bf49bb1b8141cf0bc08
[mirror_ubuntu-artful-kernel.git] / arch / mips / kernel / smp-cps.c
1 /*
2 * Copyright (C) 2013 Imagination Technologies
3 * Author: Paul Burton <paul.burton@imgtec.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 */
10
11 #include <linux/io.h>
12 #include <linux/irqchip/mips-gic.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/smp.h>
16 #include <linux/types.h>
17
18 #include <asm/bcache.h>
19 #include <asm/mips-cm.h>
20 #include <asm/mips-cpc.h>
21 #include <asm/mips_mt.h>
22 #include <asm/mipsregs.h>
23 #include <asm/pm-cps.h>
24 #include <asm/r4kcache.h>
25 #include <asm/smp-cps.h>
26 #include <asm/time.h>
27 #include <asm/uasm.h>
28
29 static DECLARE_BITMAP(core_power, NR_CPUS);
30
31 struct core_boot_config *mips_cps_core_bootcfg;
32
33 static unsigned core_vpe_count(unsigned core)
34 {
35 unsigned cfg;
36
37 if (!config_enabled(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
38 return 1;
39
40 write_gcr_cl_other(core << CM_GCR_Cx_OTHER_CORENUM_SHF);
41 cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
42 return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
43 }
44
45 static void __init cps_smp_setup(void)
46 {
47 unsigned int ncores, nvpes, core_vpes;
48 int c, v;
49
50 /* Detect & record VPE topology */
51 ncores = mips_cm_numcores();
52 pr_info("VPE topology ");
53 for (c = nvpes = 0; c < ncores; c++) {
54 core_vpes = core_vpe_count(c);
55 pr_cont("%c%u", c ? ',' : '{', core_vpes);
56
57 /* Use the number of VPEs in core 0 for smp_num_siblings */
58 if (!c)
59 smp_num_siblings = core_vpes;
60
61 for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
62 cpu_data[nvpes + v].core = c;
63 #ifdef CONFIG_MIPS_MT_SMP
64 cpu_data[nvpes + v].vpe_id = v;
65 #endif
66 }
67
68 nvpes += core_vpes;
69 }
70 pr_cont("} total %u\n", nvpes);
71
72 /* Indicate present CPUs (CPU being synonymous with VPE) */
73 for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
74 set_cpu_possible(v, true);
75 set_cpu_present(v, true);
76 __cpu_number_map[v] = v;
77 __cpu_logical_map[v] = v;
78 }
79
80 /* Set a coherent default CCA (CWB) */
81 change_c0_config(CONF_CM_CMASK, 0x5);
82
83 /* Core 0 is powered up (we're running on it) */
84 bitmap_set(core_power, 0, 1);
85
86 /* Initialise core 0 */
87 mips_cps_core_init();
88
89 /* Make core 0 coherent with everything */
90 write_gcr_cl_coherence(0xff);
91
92 #ifdef CONFIG_MIPS_MT_FPAFF
93 /* If we have an FPU, enroll ourselves in the FPU-full mask */
94 if (cpu_has_fpu)
95 cpu_set(0, mt_fpu_cpumask);
96 #endif /* CONFIG_MIPS_MT_FPAFF */
97 }
98
99 static void __init cps_prepare_cpus(unsigned int max_cpus)
100 {
101 unsigned ncores, core_vpes, c, cca;
102 bool cca_unsuitable;
103 u32 *entry_code;
104
105 mips_mt_set_cpuoptions();
106
107 /* Detect whether the CCA is unsuited to multi-core SMP */
108 cca = read_c0_config() & CONF_CM_CMASK;
109 switch (cca) {
110 case 0x4: /* CWBE */
111 case 0x5: /* CWB */
112 /* The CCA is coherent, multi-core is fine */
113 cca_unsuitable = false;
114 break;
115
116 default:
117 /* CCA is not coherent, multi-core is not usable */
118 cca_unsuitable = true;
119 }
120
121 /* Warn the user if the CCA prevents multi-core */
122 ncores = mips_cm_numcores();
123 if (cca_unsuitable && ncores > 1) {
124 pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
125 cca);
126
127 for_each_present_cpu(c) {
128 if (cpu_data[c].core)
129 set_cpu_present(c, false);
130 }
131 }
132
133 /*
134 * Patch the start of mips_cps_core_entry to provide:
135 *
136 * v0 = CM base address
137 * s0 = kseg0 CCA
138 */
139 entry_code = (u32 *)&mips_cps_core_entry;
140 UASM_i_LA(&entry_code, 3, (long)mips_cm_base);
141 uasm_i_addiu(&entry_code, 16, 0, cca);
142 blast_dcache_range((unsigned long)&mips_cps_core_entry,
143 (unsigned long)entry_code);
144 bc_wback_inv((unsigned long)&mips_cps_core_entry,
145 (void *)entry_code - (void *)&mips_cps_core_entry);
146 __sync();
147
148 /* Allocate core boot configuration structs */
149 mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
150 GFP_KERNEL);
151 if (!mips_cps_core_bootcfg) {
152 pr_err("Failed to allocate boot config for %u cores\n", ncores);
153 goto err_out;
154 }
155
156 /* Allocate VPE boot configuration structs */
157 for (c = 0; c < ncores; c++) {
158 core_vpes = core_vpe_count(c);
159 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
160 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
161 GFP_KERNEL);
162 if (!mips_cps_core_bootcfg[c].vpe_config) {
163 pr_err("Failed to allocate %u VPE boot configs\n",
164 core_vpes);
165 goto err_out;
166 }
167 }
168
169 /* Mark this CPU as booted */
170 atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
171 1 << cpu_vpe_id(&current_cpu_data));
172
173 return;
174 err_out:
175 /* Clean up allocations */
176 if (mips_cps_core_bootcfg) {
177 for (c = 0; c < ncores; c++)
178 kfree(mips_cps_core_bootcfg[c].vpe_config);
179 kfree(mips_cps_core_bootcfg);
180 mips_cps_core_bootcfg = NULL;
181 }
182
183 /* Effectively disable SMP by declaring CPUs not present */
184 for_each_possible_cpu(c) {
185 if (c == 0)
186 continue;
187 set_cpu_present(c, false);
188 }
189 }
190
191 static void boot_core(unsigned core)
192 {
193 u32 access;
194
195 /* Select the appropriate core */
196 write_gcr_cl_other(core << CM_GCR_Cx_OTHER_CORENUM_SHF);
197
198 /* Set its reset vector */
199 write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
200
201 /* Ensure its coherency is disabled */
202 write_gcr_co_coherence(0);
203
204 /* Ensure the core can access the GCRs */
205 access = read_gcr_access();
206 access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
207 write_gcr_access(access);
208
209 if (mips_cpc_present()) {
210 /* Reset the core */
211 mips_cpc_lock_other(core);
212 write_cpc_co_cmd(CPC_Cx_CMD_RESET);
213 mips_cpc_unlock_other();
214 } else {
215 /* Take the core out of reset */
216 write_gcr_co_reset_release(0);
217 }
218
219 /* The core is now powered up */
220 bitmap_set(core_power, core, 1);
221 }
222
223 static void remote_vpe_boot(void *dummy)
224 {
225 mips_cps_boot_vpes();
226 }
227
228 static void cps_boot_secondary(int cpu, struct task_struct *idle)
229 {
230 unsigned core = cpu_data[cpu].core;
231 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
232 struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
233 struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
234 unsigned int remote;
235 int err;
236
237 vpe_cfg->pc = (unsigned long)&smp_bootstrap;
238 vpe_cfg->sp = __KSTK_TOS(idle);
239 vpe_cfg->gp = (unsigned long)task_thread_info(idle);
240
241 atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
242
243 preempt_disable();
244
245 if (!test_bit(core, core_power)) {
246 /* Boot a VPE on a powered down core */
247 boot_core(core);
248 goto out;
249 }
250
251 if (core != current_cpu_data.core) {
252 /* Boot a VPE on another powered up core */
253 for (remote = 0; remote < NR_CPUS; remote++) {
254 if (cpu_data[remote].core != core)
255 continue;
256 if (cpu_online(remote))
257 break;
258 }
259 BUG_ON(remote >= NR_CPUS);
260
261 err = smp_call_function_single(remote, remote_vpe_boot,
262 NULL, 1);
263 if (err)
264 panic("Failed to call remote CPU\n");
265 goto out;
266 }
267
268 BUG_ON(!cpu_has_mipsmt);
269
270 /* Boot a VPE on this core */
271 mips_cps_boot_vpes();
272 out:
273 preempt_enable();
274 }
275
276 static void cps_init_secondary(void)
277 {
278 /* Disable MT - we only want to run 1 TC per VPE */
279 if (cpu_has_mipsmt)
280 dmt();
281
282 change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | STATUSF_IP4 |
283 STATUSF_IP5 | STATUSF_IP6 | STATUSF_IP7);
284 }
285
286 static void cps_smp_finish(void)
287 {
288 write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
289
290 #ifdef CONFIG_MIPS_MT_FPAFF
291 /* If we have an FPU, enroll ourselves in the FPU-full mask */
292 if (cpu_has_fpu)
293 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
294 #endif /* CONFIG_MIPS_MT_FPAFF */
295
296 local_irq_enable();
297 }
298
299 #ifdef CONFIG_HOTPLUG_CPU
300
301 static int cps_cpu_disable(void)
302 {
303 unsigned cpu = smp_processor_id();
304 struct core_boot_config *core_cfg;
305
306 if (!cpu)
307 return -EBUSY;
308
309 if (!cps_pm_support_state(CPS_PM_POWER_GATED))
310 return -EINVAL;
311
312 core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
313 atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
314 smp_mb__after_atomic();
315 set_cpu_online(cpu, false);
316 cpumask_clear_cpu(cpu, &cpu_callin_map);
317
318 return 0;
319 }
320
321 static DECLARE_COMPLETION(cpu_death_chosen);
322 static unsigned cpu_death_sibling;
323 static enum {
324 CPU_DEATH_HALT,
325 CPU_DEATH_POWER,
326 } cpu_death;
327
328 void play_dead(void)
329 {
330 unsigned cpu, core;
331
332 local_irq_disable();
333 idle_task_exit();
334 cpu = smp_processor_id();
335 cpu_death = CPU_DEATH_POWER;
336
337 if (cpu_has_mipsmt) {
338 core = cpu_data[cpu].core;
339
340 /* Look for another online VPE within the core */
341 for_each_online_cpu(cpu_death_sibling) {
342 if (cpu_data[cpu_death_sibling].core != core)
343 continue;
344
345 /*
346 * There is an online VPE within the core. Just halt
347 * this TC and leave the core alone.
348 */
349 cpu_death = CPU_DEATH_HALT;
350 break;
351 }
352 }
353
354 /* This CPU has chosen its way out */
355 complete(&cpu_death_chosen);
356
357 if (cpu_death == CPU_DEATH_HALT) {
358 /* Halt this TC */
359 write_c0_tchalt(TCHALT_H);
360 instruction_hazard();
361 } else {
362 /* Power down the core */
363 cps_pm_enter_state(CPS_PM_POWER_GATED);
364 }
365
366 /* This should never be reached */
367 panic("Failed to offline CPU %u", cpu);
368 }
369
370 static void wait_for_sibling_halt(void *ptr_cpu)
371 {
372 unsigned cpu = (unsigned)ptr_cpu;
373 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
374 unsigned halted;
375 unsigned long flags;
376
377 do {
378 local_irq_save(flags);
379 settc(vpe_id);
380 halted = read_tc_c0_tchalt();
381 local_irq_restore(flags);
382 } while (!(halted & TCHALT_H));
383 }
384
385 static void cps_cpu_die(unsigned int cpu)
386 {
387 unsigned core = cpu_data[cpu].core;
388 unsigned stat;
389 int err;
390
391 /* Wait for the cpu to choose its way out */
392 if (!wait_for_completion_timeout(&cpu_death_chosen,
393 msecs_to_jiffies(5000))) {
394 pr_err("CPU%u: didn't offline\n", cpu);
395 return;
396 }
397
398 /*
399 * Now wait for the CPU to actually offline. Without doing this that
400 * offlining may race with one or more of:
401 *
402 * - Onlining the CPU again.
403 * - Powering down the core if another VPE within it is offlined.
404 * - A sibling VPE entering a non-coherent state.
405 *
406 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
407 * with which we could race, so do nothing.
408 */
409 if (cpu_death == CPU_DEATH_POWER) {
410 /*
411 * Wait for the core to enter a powered down or clock gated
412 * state, the latter happening when a JTAG probe is connected
413 * in which case the CPC will refuse to power down the core.
414 */
415 do {
416 mips_cpc_lock_other(core);
417 stat = read_cpc_co_stat_conf();
418 stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
419 mips_cpc_unlock_other();
420 } while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
421 stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
422 stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
423
424 /* Indicate the core is powered off */
425 bitmap_clear(core_power, core, 1);
426 } else if (cpu_has_mipsmt) {
427 /*
428 * Have a CPU with access to the offlined CPUs registers wait
429 * for its TC to halt.
430 */
431 err = smp_call_function_single(cpu_death_sibling,
432 wait_for_sibling_halt,
433 (void *)cpu, 1);
434 if (err)
435 panic("Failed to call remote sibling CPU\n");
436 }
437 }
438
439 #endif /* CONFIG_HOTPLUG_CPU */
440
441 static struct plat_smp_ops cps_smp_ops = {
442 .smp_setup = cps_smp_setup,
443 .prepare_cpus = cps_prepare_cpus,
444 .boot_secondary = cps_boot_secondary,
445 .init_secondary = cps_init_secondary,
446 .smp_finish = cps_smp_finish,
447 .send_ipi_single = gic_send_ipi_single,
448 .send_ipi_mask = gic_send_ipi_mask,
449 #ifdef CONFIG_HOTPLUG_CPU
450 .cpu_disable = cps_cpu_disable,
451 .cpu_die = cps_cpu_die,
452 #endif
453 };
454
455 bool mips_cps_smp_in_use(void)
456 {
457 extern struct plat_smp_ops *mp_ops;
458 return mp_ops == &cps_smp_ops;
459 }
460
461 int register_cps_smp_ops(void)
462 {
463 if (!mips_cm_present()) {
464 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
465 return -ENODEV;
466 }
467
468 /* check we have a GIC - we need one for IPIs */
469 if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
470 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
471 return -ENODEV;
472 }
473
474 register_smp_ops(&cps_smp_ops);
475 return 0;
476 }