]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/kernel/smp.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / arch / mips / kernel / smp.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15 *
16 * Copyright (C) 2000, 2001 Kanoj Sarcar
17 * Copyright (C) 2000, 2001 Ralf Baechle
18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20 */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/export.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched/mm.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 #include <linux/irqdomain.h>
37 #include <linux/of.h>
38 #include <linux/of_irq.h>
39
40 #include <linux/atomic.h>
41 #include <asm/cpu.h>
42 #include <asm/processor.h>
43 #include <asm/idle.h>
44 #include <asm/r4k-timer.h>
45 #include <asm/mips-cpc.h>
46 #include <asm/mmu_context.h>
47 #include <asm/time.h>
48 #include <asm/setup.h>
49 #include <asm/maar.h>
50
51 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
52 EXPORT_SYMBOL(__cpu_number_map);
53
54 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
55 EXPORT_SYMBOL(__cpu_logical_map);
56
57 /* Number of TCs (or siblings in Intel speak) per CPU core */
58 int smp_num_siblings = 1;
59 EXPORT_SYMBOL(smp_num_siblings);
60
61 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
62 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
63 EXPORT_SYMBOL(cpu_sibling_map);
64
65 /* representing the core map of multi-core chips of each logical CPU */
66 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
67 EXPORT_SYMBOL(cpu_core_map);
68
69 static DECLARE_COMPLETION(cpu_running);
70
71 /*
72 * A logcal cpu mask containing only one VPE per core to
73 * reduce the number of IPIs on large MT systems.
74 */
75 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
76 EXPORT_SYMBOL(cpu_foreign_map);
77
78 /* representing cpus for which sibling maps can be computed */
79 static cpumask_t cpu_sibling_setup_map;
80
81 /* representing cpus for which core maps can be computed */
82 static cpumask_t cpu_core_setup_map;
83
84 cpumask_t cpu_coherent_mask;
85
86 #ifdef CONFIG_GENERIC_IRQ_IPI
87 static struct irq_desc *call_desc;
88 static struct irq_desc *sched_desc;
89 #endif
90
91 static inline void set_cpu_sibling_map(int cpu)
92 {
93 int i;
94
95 cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
96
97 if (smp_num_siblings > 1) {
98 for_each_cpu(i, &cpu_sibling_setup_map) {
99 if (cpu_data[cpu].package == cpu_data[i].package &&
100 cpu_data[cpu].core == cpu_data[i].core) {
101 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103 }
104 }
105 } else
106 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107 }
108
109 static inline void set_cpu_core_map(int cpu)
110 {
111 int i;
112
113 cpumask_set_cpu(cpu, &cpu_core_setup_map);
114
115 for_each_cpu(i, &cpu_core_setup_map) {
116 if (cpu_data[cpu].package == cpu_data[i].package) {
117 cpumask_set_cpu(i, &cpu_core_map[cpu]);
118 cpumask_set_cpu(cpu, &cpu_core_map[i]);
119 }
120 }
121 }
122
123 /*
124 * Calculate a new cpu_foreign_map mask whenever a
125 * new cpu appears or disappears.
126 */
127 void calculate_cpu_foreign_map(void)
128 {
129 int i, k, core_present;
130 cpumask_t temp_foreign_map;
131
132 /* Re-calculate the mask */
133 cpumask_clear(&temp_foreign_map);
134 for_each_online_cpu(i) {
135 core_present = 0;
136 for_each_cpu(k, &temp_foreign_map)
137 if (cpu_data[i].package == cpu_data[k].package &&
138 cpu_data[i].core == cpu_data[k].core)
139 core_present = 1;
140 if (!core_present)
141 cpumask_set_cpu(i, &temp_foreign_map);
142 }
143
144 for_each_online_cpu(i)
145 cpumask_andnot(&cpu_foreign_map[i],
146 &temp_foreign_map, &cpu_sibling_map[i]);
147 }
148
149 struct plat_smp_ops *mp_ops;
150 EXPORT_SYMBOL(mp_ops);
151
152 void register_smp_ops(struct plat_smp_ops *ops)
153 {
154 if (mp_ops)
155 printk(KERN_WARNING "Overriding previously set SMP ops\n");
156
157 mp_ops = ops;
158 }
159
160 #ifdef CONFIG_GENERIC_IRQ_IPI
161 void mips_smp_send_ipi_single(int cpu, unsigned int action)
162 {
163 mips_smp_send_ipi_mask(cpumask_of(cpu), action);
164 }
165
166 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
167 {
168 unsigned long flags;
169 unsigned int core;
170 int cpu;
171
172 local_irq_save(flags);
173
174 switch (action) {
175 case SMP_CALL_FUNCTION:
176 __ipi_send_mask(call_desc, mask);
177 break;
178
179 case SMP_RESCHEDULE_YOURSELF:
180 __ipi_send_mask(sched_desc, mask);
181 break;
182
183 default:
184 BUG();
185 }
186
187 if (mips_cpc_present()) {
188 for_each_cpu(cpu, mask) {
189 core = cpu_data[cpu].core;
190
191 if (core == current_cpu_data.core)
192 continue;
193
194 while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
195 mips_cm_lock_other(core, 0);
196 mips_cpc_lock_other(core);
197 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
198 mips_cpc_unlock_other();
199 mips_cm_unlock_other();
200 }
201 }
202 }
203
204 local_irq_restore(flags);
205 }
206
207
208 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
209 {
210 scheduler_ipi();
211
212 return IRQ_HANDLED;
213 }
214
215 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
216 {
217 generic_smp_call_function_interrupt();
218
219 return IRQ_HANDLED;
220 }
221
222 static struct irqaction irq_resched = {
223 .handler = ipi_resched_interrupt,
224 .flags = IRQF_PERCPU,
225 .name = "IPI resched"
226 };
227
228 static struct irqaction irq_call = {
229 .handler = ipi_call_interrupt,
230 .flags = IRQF_PERCPU,
231 .name = "IPI call"
232 };
233
234 static void smp_ipi_init_one(unsigned int virq,
235 struct irqaction *action)
236 {
237 int ret;
238
239 irq_set_handler(virq, handle_percpu_irq);
240 ret = setup_irq(virq, action);
241 BUG_ON(ret);
242 }
243
244 static unsigned int call_virq, sched_virq;
245
246 int mips_smp_ipi_allocate(const struct cpumask *mask)
247 {
248 int virq;
249 struct irq_domain *ipidomain;
250 struct device_node *node;
251
252 node = of_irq_find_parent(of_root);
253 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
254
255 /*
256 * Some platforms have half DT setup. So if we found irq node but
257 * didn't find an ipidomain, try to search for one that is not in the
258 * DT.
259 */
260 if (node && !ipidomain)
261 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
262
263 /*
264 * There are systems which use IPI IRQ domains, but only have one
265 * registered when some runtime condition is met. For example a Malta
266 * kernel may include support for GIC & CPU interrupt controller IPI
267 * IRQ domains, but if run on a system with no GIC & no MT ASE then
268 * neither will be supported or registered.
269 *
270 * We only have a problem if we're actually using multiple CPUs so fail
271 * loudly if that is the case. Otherwise simply return, skipping IPI
272 * setup, if we're running with only a single CPU.
273 */
274 if (!ipidomain) {
275 BUG_ON(num_present_cpus() > 1);
276 return 0;
277 }
278
279 virq = irq_reserve_ipi(ipidomain, mask);
280 BUG_ON(!virq);
281 if (!call_virq)
282 call_virq = virq;
283
284 virq = irq_reserve_ipi(ipidomain, mask);
285 BUG_ON(!virq);
286 if (!sched_virq)
287 sched_virq = virq;
288
289 if (irq_domain_is_ipi_per_cpu(ipidomain)) {
290 int cpu;
291
292 for_each_cpu(cpu, mask) {
293 smp_ipi_init_one(call_virq + cpu, &irq_call);
294 smp_ipi_init_one(sched_virq + cpu, &irq_resched);
295 }
296 } else {
297 smp_ipi_init_one(call_virq, &irq_call);
298 smp_ipi_init_one(sched_virq, &irq_resched);
299 }
300
301 return 0;
302 }
303
304 int mips_smp_ipi_free(const struct cpumask *mask)
305 {
306 struct irq_domain *ipidomain;
307 struct device_node *node;
308
309 node = of_irq_find_parent(of_root);
310 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
311
312 /*
313 * Some platforms have half DT setup. So if we found irq node but
314 * didn't find an ipidomain, try to search for one that is not in the
315 * DT.
316 */
317 if (node && !ipidomain)
318 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
319
320 BUG_ON(!ipidomain);
321
322 if (irq_domain_is_ipi_per_cpu(ipidomain)) {
323 int cpu;
324
325 for_each_cpu(cpu, mask) {
326 remove_irq(call_virq + cpu, &irq_call);
327 remove_irq(sched_virq + cpu, &irq_resched);
328 }
329 }
330 irq_destroy_ipi(call_virq, mask);
331 irq_destroy_ipi(sched_virq, mask);
332 return 0;
333 }
334
335
336 static int __init mips_smp_ipi_init(void)
337 {
338 if (num_possible_cpus() == 1)
339 return 0;
340
341 mips_smp_ipi_allocate(cpu_possible_mask);
342
343 call_desc = irq_to_desc(call_virq);
344 sched_desc = irq_to_desc(sched_virq);
345
346 return 0;
347 }
348 early_initcall(mips_smp_ipi_init);
349 #endif
350
351 /*
352 * First C code run on the secondary CPUs after being started up by
353 * the master.
354 */
355 asmlinkage void start_secondary(void)
356 {
357 unsigned int cpu;
358
359 cpu_probe();
360 per_cpu_trap_init(false);
361 mips_clockevent_init();
362 mp_ops->init_secondary();
363 cpu_report();
364 maar_init();
365
366 /*
367 * XXX parity protection should be folded in here when it's converted
368 * to an option instead of something based on .cputype
369 */
370
371 calibrate_delay();
372 preempt_disable();
373 cpu = smp_processor_id();
374 cpu_data[cpu].udelay_val = loops_per_jiffy;
375
376 cpumask_set_cpu(cpu, &cpu_coherent_mask);
377 notify_cpu_starting(cpu);
378
379 complete(&cpu_running);
380 synchronise_count_slave(cpu);
381
382 set_cpu_online(cpu, true);
383
384 set_cpu_sibling_map(cpu);
385 set_cpu_core_map(cpu);
386
387 calculate_cpu_foreign_map();
388
389 /*
390 * irq will be enabled in ->smp_finish(), enabling it too early
391 * is dangerous.
392 */
393 WARN_ON_ONCE(!irqs_disabled());
394 mp_ops->smp_finish();
395
396 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
397 }
398
399 static void stop_this_cpu(void *dummy)
400 {
401 /*
402 * Remove this CPU:
403 */
404
405 set_cpu_online(smp_processor_id(), false);
406 calculate_cpu_foreign_map();
407 local_irq_disable();
408 while (1);
409 }
410
411 void smp_send_stop(void)
412 {
413 smp_call_function(stop_this_cpu, NULL, 0);
414 }
415
416 void __init smp_cpus_done(unsigned int max_cpus)
417 {
418 }
419
420 /* called from main before smp_init() */
421 void __init smp_prepare_cpus(unsigned int max_cpus)
422 {
423 init_new_context(current, &init_mm);
424 current_thread_info()->cpu = 0;
425 mp_ops->prepare_cpus(max_cpus);
426 set_cpu_sibling_map(0);
427 set_cpu_core_map(0);
428 calculate_cpu_foreign_map();
429 #ifndef CONFIG_HOTPLUG_CPU
430 init_cpu_present(cpu_possible_mask);
431 #endif
432 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
433 }
434
435 /* preload SMP state for boot cpu */
436 void smp_prepare_boot_cpu(void)
437 {
438 set_cpu_possible(0, true);
439 set_cpu_online(0, true);
440 }
441
442 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
443 {
444 mp_ops->boot_secondary(cpu, tidle);
445
446 /*
447 * We must check for timeout here, as the CPU will not be marked
448 * online until the counters are synchronised.
449 */
450 if (!wait_for_completion_timeout(&cpu_running,
451 msecs_to_jiffies(1000))) {
452 pr_crit("CPU%u: failed to start\n", cpu);
453 return -EIO;
454 }
455
456 synchronise_count_master(cpu);
457 return 0;
458 }
459
460 /* Not really SMP stuff ... */
461 int setup_profiling_timer(unsigned int multiplier)
462 {
463 return 0;
464 }
465
466 static void flush_tlb_all_ipi(void *info)
467 {
468 local_flush_tlb_all();
469 }
470
471 void flush_tlb_all(void)
472 {
473 on_each_cpu(flush_tlb_all_ipi, NULL, 1);
474 }
475
476 static void flush_tlb_mm_ipi(void *mm)
477 {
478 local_flush_tlb_mm((struct mm_struct *)mm);
479 }
480
481 /*
482 * Special Variant of smp_call_function for use by TLB functions:
483 *
484 * o No return value
485 * o collapses to normal function call on UP kernels
486 * o collapses to normal function call on systems with a single shared
487 * primary cache.
488 */
489 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
490 {
491 smp_call_function(func, info, 1);
492 }
493
494 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
495 {
496 preempt_disable();
497
498 smp_on_other_tlbs(func, info);
499 func(info);
500
501 preempt_enable();
502 }
503
504 /*
505 * The following tlb flush calls are invoked when old translations are
506 * being torn down, or pte attributes are changing. For single threaded
507 * address spaces, a new context is obtained on the current cpu, and tlb
508 * context on other cpus are invalidated to force a new context allocation
509 * at switch_mm time, should the mm ever be used on other cpus. For
510 * multithreaded address spaces, intercpu interrupts have to be sent.
511 * Another case where intercpu interrupts are required is when the target
512 * mm might be active on another cpu (eg debuggers doing the flushes on
513 * behalf of debugees, kswapd stealing pages from another process etc).
514 * Kanoj 07/00.
515 */
516
517 void flush_tlb_mm(struct mm_struct *mm)
518 {
519 preempt_disable();
520
521 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
522 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
523 } else {
524 unsigned int cpu;
525
526 for_each_online_cpu(cpu) {
527 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
528 cpu_context(cpu, mm) = 0;
529 }
530 }
531 local_flush_tlb_mm(mm);
532
533 preempt_enable();
534 }
535
536 struct flush_tlb_data {
537 struct vm_area_struct *vma;
538 unsigned long addr1;
539 unsigned long addr2;
540 };
541
542 static void flush_tlb_range_ipi(void *info)
543 {
544 struct flush_tlb_data *fd = info;
545
546 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
547 }
548
549 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
550 {
551 struct mm_struct *mm = vma->vm_mm;
552
553 preempt_disable();
554 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
555 struct flush_tlb_data fd = {
556 .vma = vma,
557 .addr1 = start,
558 .addr2 = end,
559 };
560
561 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
562 } else {
563 unsigned int cpu;
564 int exec = vma->vm_flags & VM_EXEC;
565
566 for_each_online_cpu(cpu) {
567 /*
568 * flush_cache_range() will only fully flush icache if
569 * the VMA is executable, otherwise we must invalidate
570 * ASID without it appearing to has_valid_asid() as if
571 * mm has been completely unused by that CPU.
572 */
573 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
574 cpu_context(cpu, mm) = !exec;
575 }
576 }
577 local_flush_tlb_range(vma, start, end);
578 preempt_enable();
579 }
580
581 static void flush_tlb_kernel_range_ipi(void *info)
582 {
583 struct flush_tlb_data *fd = info;
584
585 local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
586 }
587
588 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
589 {
590 struct flush_tlb_data fd = {
591 .addr1 = start,
592 .addr2 = end,
593 };
594
595 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
596 }
597
598 static void flush_tlb_page_ipi(void *info)
599 {
600 struct flush_tlb_data *fd = info;
601
602 local_flush_tlb_page(fd->vma, fd->addr1);
603 }
604
605 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
606 {
607 preempt_disable();
608 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
609 struct flush_tlb_data fd = {
610 .vma = vma,
611 .addr1 = page,
612 };
613
614 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
615 } else {
616 unsigned int cpu;
617
618 for_each_online_cpu(cpu) {
619 /*
620 * flush_cache_page() only does partial flushes, so
621 * invalidate ASID without it appearing to
622 * has_valid_asid() as if mm has been completely unused
623 * by that CPU.
624 */
625 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
626 cpu_context(cpu, vma->vm_mm) = 1;
627 }
628 }
629 local_flush_tlb_page(vma, page);
630 preempt_enable();
631 }
632
633 static void flush_tlb_one_ipi(void *info)
634 {
635 unsigned long vaddr = (unsigned long) info;
636
637 local_flush_tlb_one(vaddr);
638 }
639
640 void flush_tlb_one(unsigned long vaddr)
641 {
642 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
643 }
644
645 EXPORT_SYMBOL(flush_tlb_page);
646 EXPORT_SYMBOL(flush_tlb_one);
647
648 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
649
650 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
651 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
652
653 void tick_broadcast(const struct cpumask *mask)
654 {
655 atomic_t *count;
656 struct call_single_data *csd;
657 int cpu;
658
659 for_each_cpu(cpu, mask) {
660 count = &per_cpu(tick_broadcast_count, cpu);
661 csd = &per_cpu(tick_broadcast_csd, cpu);
662
663 if (atomic_inc_return(count) == 1)
664 smp_call_function_single_async(cpu, csd);
665 }
666 }
667
668 static void tick_broadcast_callee(void *info)
669 {
670 int cpu = smp_processor_id();
671 tick_receive_broadcast();
672 atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
673 }
674
675 static int __init tick_broadcast_init(void)
676 {
677 struct call_single_data *csd;
678 int cpu;
679
680 for (cpu = 0; cpu < NR_CPUS; cpu++) {
681 csd = &per_cpu(tick_broadcast_csd, cpu);
682 csd->func = tick_broadcast_callee;
683 }
684
685 return 0;
686 }
687 early_initcall(tick_broadcast_init);
688
689 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */