]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/mips/kernel/smp.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-zesty-kernel.git] / arch / mips / kernel / smp.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15 *
16 * Copyright (C) 2000, 2001 Kanoj Sarcar
17 * Copyright (C) 2000, 2001 Ralf Baechle
18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20 */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 #include <linux/irqdomain.h>
37 #include <linux/of.h>
38 #include <linux/of_irq.h>
39
40 #include <linux/atomic.h>
41 #include <asm/cpu.h>
42 #include <asm/processor.h>
43 #include <asm/idle.h>
44 #include <asm/r4k-timer.h>
45 #include <asm/mips-cpc.h>
46 #include <asm/mmu_context.h>
47 #include <asm/time.h>
48 #include <asm/setup.h>
49 #include <asm/maar.h>
50
51 cpumask_t cpu_callin_map; /* Bitmask of started secondaries */
52
53 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
54 EXPORT_SYMBOL(__cpu_number_map);
55
56 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
57 EXPORT_SYMBOL(__cpu_logical_map);
58
59 /* Number of TCs (or siblings in Intel speak) per CPU core */
60 int smp_num_siblings = 1;
61 EXPORT_SYMBOL(smp_num_siblings);
62
63 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
64 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
65 EXPORT_SYMBOL(cpu_sibling_map);
66
67 /* representing the core map of multi-core chips of each logical CPU */
68 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
69 EXPORT_SYMBOL(cpu_core_map);
70
71 /*
72 * A logcal cpu mask containing only one VPE per core to
73 * reduce the number of IPIs on large MT systems.
74 */
75 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
76 EXPORT_SYMBOL(cpu_foreign_map);
77
78 /* representing cpus for which sibling maps can be computed */
79 static cpumask_t cpu_sibling_setup_map;
80
81 /* representing cpus for which core maps can be computed */
82 static cpumask_t cpu_core_setup_map;
83
84 cpumask_t cpu_coherent_mask;
85
86 #ifdef CONFIG_GENERIC_IRQ_IPI
87 static struct irq_desc *call_desc;
88 static struct irq_desc *sched_desc;
89 #endif
90
91 static inline void set_cpu_sibling_map(int cpu)
92 {
93 int i;
94
95 cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
96
97 if (smp_num_siblings > 1) {
98 for_each_cpu(i, &cpu_sibling_setup_map) {
99 if (cpu_data[cpu].package == cpu_data[i].package &&
100 cpu_data[cpu].core == cpu_data[i].core) {
101 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103 }
104 }
105 } else
106 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107 }
108
109 static inline void set_cpu_core_map(int cpu)
110 {
111 int i;
112
113 cpumask_set_cpu(cpu, &cpu_core_setup_map);
114
115 for_each_cpu(i, &cpu_core_setup_map) {
116 if (cpu_data[cpu].package == cpu_data[i].package) {
117 cpumask_set_cpu(i, &cpu_core_map[cpu]);
118 cpumask_set_cpu(cpu, &cpu_core_map[i]);
119 }
120 }
121 }
122
123 /*
124 * Calculate a new cpu_foreign_map mask whenever a
125 * new cpu appears or disappears.
126 */
127 void calculate_cpu_foreign_map(void)
128 {
129 int i, k, core_present;
130 cpumask_t temp_foreign_map;
131
132 /* Re-calculate the mask */
133 cpumask_clear(&temp_foreign_map);
134 for_each_online_cpu(i) {
135 core_present = 0;
136 for_each_cpu(k, &temp_foreign_map)
137 if (cpu_data[i].package == cpu_data[k].package &&
138 cpu_data[i].core == cpu_data[k].core)
139 core_present = 1;
140 if (!core_present)
141 cpumask_set_cpu(i, &temp_foreign_map);
142 }
143
144 for_each_online_cpu(i)
145 cpumask_andnot(&cpu_foreign_map[i],
146 &temp_foreign_map, &cpu_sibling_map[i]);
147 }
148
149 struct plat_smp_ops *mp_ops;
150 EXPORT_SYMBOL(mp_ops);
151
152 void register_smp_ops(struct plat_smp_ops *ops)
153 {
154 if (mp_ops)
155 printk(KERN_WARNING "Overriding previously set SMP ops\n");
156
157 mp_ops = ops;
158 }
159
160 #ifdef CONFIG_GENERIC_IRQ_IPI
161 void mips_smp_send_ipi_single(int cpu, unsigned int action)
162 {
163 mips_smp_send_ipi_mask(cpumask_of(cpu), action);
164 }
165
166 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
167 {
168 unsigned long flags;
169 unsigned int core;
170 int cpu;
171
172 local_irq_save(flags);
173
174 switch (action) {
175 case SMP_CALL_FUNCTION:
176 __ipi_send_mask(call_desc, mask);
177 break;
178
179 case SMP_RESCHEDULE_YOURSELF:
180 __ipi_send_mask(sched_desc, mask);
181 break;
182
183 default:
184 BUG();
185 }
186
187 if (mips_cpc_present()) {
188 for_each_cpu(cpu, mask) {
189 core = cpu_data[cpu].core;
190
191 if (core == current_cpu_data.core)
192 continue;
193
194 while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
195 mips_cpc_lock_other(core);
196 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
197 mips_cpc_unlock_other();
198 }
199 }
200 }
201
202 local_irq_restore(flags);
203 }
204
205
206 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
207 {
208 scheduler_ipi();
209
210 return IRQ_HANDLED;
211 }
212
213 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
214 {
215 generic_smp_call_function_interrupt();
216
217 return IRQ_HANDLED;
218 }
219
220 static struct irqaction irq_resched = {
221 .handler = ipi_resched_interrupt,
222 .flags = IRQF_PERCPU,
223 .name = "IPI resched"
224 };
225
226 static struct irqaction irq_call = {
227 .handler = ipi_call_interrupt,
228 .flags = IRQF_PERCPU,
229 .name = "IPI call"
230 };
231
232 static __init void smp_ipi_init_one(unsigned int virq,
233 struct irqaction *action)
234 {
235 int ret;
236
237 irq_set_handler(virq, handle_percpu_irq);
238 ret = setup_irq(virq, action);
239 BUG_ON(ret);
240 }
241
242 static int __init mips_smp_ipi_init(void)
243 {
244 unsigned int call_virq, sched_virq;
245 struct irq_domain *ipidomain;
246 struct device_node *node;
247
248 node = of_irq_find_parent(of_root);
249 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
250
251 /*
252 * Some platforms have half DT setup. So if we found irq node but
253 * didn't find an ipidomain, try to search for one that is not in the
254 * DT.
255 */
256 if (node && !ipidomain)
257 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
258
259 /*
260 * There are systems which only use IPI domains some of the time,
261 * depending upon configuration we don't know until runtime. An
262 * example is Malta where we may compile in support for GIC & the
263 * MT ASE, but run on a system which has multiple VPEs in a single
264 * core and doesn't include a GIC. Until all IPI implementations
265 * have been converted to use IPI domains the best we can do here
266 * is to return & hope some other code sets up the IPIs.
267 */
268 if (!ipidomain)
269 return 0;
270
271 call_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
272 BUG_ON(!call_virq);
273
274 sched_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
275 BUG_ON(!sched_virq);
276
277 if (irq_domain_is_ipi_per_cpu(ipidomain)) {
278 int cpu;
279
280 for_each_cpu(cpu, cpu_possible_mask) {
281 smp_ipi_init_one(call_virq + cpu, &irq_call);
282 smp_ipi_init_one(sched_virq + cpu, &irq_resched);
283 }
284 } else {
285 smp_ipi_init_one(call_virq, &irq_call);
286 smp_ipi_init_one(sched_virq, &irq_resched);
287 }
288
289 call_desc = irq_to_desc(call_virq);
290 sched_desc = irq_to_desc(sched_virq);
291
292 return 0;
293 }
294 early_initcall(mips_smp_ipi_init);
295 #endif
296
297 /*
298 * First C code run on the secondary CPUs after being started up by
299 * the master.
300 */
301 asmlinkage void start_secondary(void)
302 {
303 unsigned int cpu;
304
305 cpu_probe();
306 per_cpu_trap_init(false);
307 mips_clockevent_init();
308 mp_ops->init_secondary();
309 cpu_report();
310 maar_init();
311
312 /*
313 * XXX parity protection should be folded in here when it's converted
314 * to an option instead of something based on .cputype
315 */
316
317 calibrate_delay();
318 preempt_disable();
319 cpu = smp_processor_id();
320 cpu_data[cpu].udelay_val = loops_per_jiffy;
321
322 cpumask_set_cpu(cpu, &cpu_coherent_mask);
323 notify_cpu_starting(cpu);
324
325 cpumask_set_cpu(cpu, &cpu_callin_map);
326 synchronise_count_slave(cpu);
327
328 set_cpu_online(cpu, true);
329
330 set_cpu_sibling_map(cpu);
331 set_cpu_core_map(cpu);
332
333 calculate_cpu_foreign_map();
334
335 /*
336 * irq will be enabled in ->smp_finish(), enabling it too early
337 * is dangerous.
338 */
339 WARN_ON_ONCE(!irqs_disabled());
340 mp_ops->smp_finish();
341
342 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
343 }
344
345 static void stop_this_cpu(void *dummy)
346 {
347 /*
348 * Remove this CPU:
349 */
350
351 set_cpu_online(smp_processor_id(), false);
352 calculate_cpu_foreign_map();
353 local_irq_disable();
354 while (1);
355 }
356
357 void smp_send_stop(void)
358 {
359 smp_call_function(stop_this_cpu, NULL, 0);
360 }
361
362 void __init smp_cpus_done(unsigned int max_cpus)
363 {
364 }
365
366 /* called from main before smp_init() */
367 void __init smp_prepare_cpus(unsigned int max_cpus)
368 {
369 init_new_context(current, &init_mm);
370 current_thread_info()->cpu = 0;
371 mp_ops->prepare_cpus(max_cpus);
372 set_cpu_sibling_map(0);
373 set_cpu_core_map(0);
374 calculate_cpu_foreign_map();
375 #ifndef CONFIG_HOTPLUG_CPU
376 init_cpu_present(cpu_possible_mask);
377 #endif
378 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
379 }
380
381 /* preload SMP state for boot cpu */
382 void smp_prepare_boot_cpu(void)
383 {
384 set_cpu_possible(0, true);
385 set_cpu_online(0, true);
386 cpumask_set_cpu(0, &cpu_callin_map);
387 }
388
389 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
390 {
391 mp_ops->boot_secondary(cpu, tidle);
392
393 /*
394 * Trust is futile. We should really have timeouts ...
395 */
396 while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
397 udelay(100);
398 schedule();
399 }
400
401 synchronise_count_master(cpu);
402 return 0;
403 }
404
405 /* Not really SMP stuff ... */
406 int setup_profiling_timer(unsigned int multiplier)
407 {
408 return 0;
409 }
410
411 static void flush_tlb_all_ipi(void *info)
412 {
413 local_flush_tlb_all();
414 }
415
416 void flush_tlb_all(void)
417 {
418 on_each_cpu(flush_tlb_all_ipi, NULL, 1);
419 }
420
421 static void flush_tlb_mm_ipi(void *mm)
422 {
423 local_flush_tlb_mm((struct mm_struct *)mm);
424 }
425
426 /*
427 * Special Variant of smp_call_function for use by TLB functions:
428 *
429 * o No return value
430 * o collapses to normal function call on UP kernels
431 * o collapses to normal function call on systems with a single shared
432 * primary cache.
433 */
434 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
435 {
436 smp_call_function(func, info, 1);
437 }
438
439 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
440 {
441 preempt_disable();
442
443 smp_on_other_tlbs(func, info);
444 func(info);
445
446 preempt_enable();
447 }
448
449 /*
450 * The following tlb flush calls are invoked when old translations are
451 * being torn down, or pte attributes are changing. For single threaded
452 * address spaces, a new context is obtained on the current cpu, and tlb
453 * context on other cpus are invalidated to force a new context allocation
454 * at switch_mm time, should the mm ever be used on other cpus. For
455 * multithreaded address spaces, intercpu interrupts have to be sent.
456 * Another case where intercpu interrupts are required is when the target
457 * mm might be active on another cpu (eg debuggers doing the flushes on
458 * behalf of debugees, kswapd stealing pages from another process etc).
459 * Kanoj 07/00.
460 */
461
462 void flush_tlb_mm(struct mm_struct *mm)
463 {
464 preempt_disable();
465
466 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
467 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
468 } else {
469 unsigned int cpu;
470
471 for_each_online_cpu(cpu) {
472 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
473 cpu_context(cpu, mm) = 0;
474 }
475 }
476 local_flush_tlb_mm(mm);
477
478 preempt_enable();
479 }
480
481 struct flush_tlb_data {
482 struct vm_area_struct *vma;
483 unsigned long addr1;
484 unsigned long addr2;
485 };
486
487 static void flush_tlb_range_ipi(void *info)
488 {
489 struct flush_tlb_data *fd = info;
490
491 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
492 }
493
494 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
495 {
496 struct mm_struct *mm = vma->vm_mm;
497
498 preempt_disable();
499 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
500 struct flush_tlb_data fd = {
501 .vma = vma,
502 .addr1 = start,
503 .addr2 = end,
504 };
505
506 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
507 } else {
508 unsigned int cpu;
509 int exec = vma->vm_flags & VM_EXEC;
510
511 for_each_online_cpu(cpu) {
512 /*
513 * flush_cache_range() will only fully flush icache if
514 * the VMA is executable, otherwise we must invalidate
515 * ASID without it appearing to has_valid_asid() as if
516 * mm has been completely unused by that CPU.
517 */
518 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
519 cpu_context(cpu, mm) = !exec;
520 }
521 }
522 local_flush_tlb_range(vma, start, end);
523 preempt_enable();
524 }
525
526 static void flush_tlb_kernel_range_ipi(void *info)
527 {
528 struct flush_tlb_data *fd = info;
529
530 local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
531 }
532
533 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
534 {
535 struct flush_tlb_data fd = {
536 .addr1 = start,
537 .addr2 = end,
538 };
539
540 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
541 }
542
543 static void flush_tlb_page_ipi(void *info)
544 {
545 struct flush_tlb_data *fd = info;
546
547 local_flush_tlb_page(fd->vma, fd->addr1);
548 }
549
550 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
551 {
552 preempt_disable();
553 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
554 struct flush_tlb_data fd = {
555 .vma = vma,
556 .addr1 = page,
557 };
558
559 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
560 } else {
561 unsigned int cpu;
562
563 for_each_online_cpu(cpu) {
564 /*
565 * flush_cache_page() only does partial flushes, so
566 * invalidate ASID without it appearing to
567 * has_valid_asid() as if mm has been completely unused
568 * by that CPU.
569 */
570 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
571 cpu_context(cpu, vma->vm_mm) = 1;
572 }
573 }
574 local_flush_tlb_page(vma, page);
575 preempt_enable();
576 }
577
578 static void flush_tlb_one_ipi(void *info)
579 {
580 unsigned long vaddr = (unsigned long) info;
581
582 local_flush_tlb_one(vaddr);
583 }
584
585 void flush_tlb_one(unsigned long vaddr)
586 {
587 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
588 }
589
590 EXPORT_SYMBOL(flush_tlb_page);
591 EXPORT_SYMBOL(flush_tlb_one);
592
593 #if defined(CONFIG_KEXEC)
594 void (*dump_ipi_function_ptr)(void *) = NULL;
595 void dump_send_ipi(void (*dump_ipi_callback)(void *))
596 {
597 int i;
598 int cpu = smp_processor_id();
599
600 dump_ipi_function_ptr = dump_ipi_callback;
601 smp_mb();
602 for_each_online_cpu(i)
603 if (i != cpu)
604 mp_ops->send_ipi_single(i, SMP_DUMP);
605
606 }
607 EXPORT_SYMBOL(dump_send_ipi);
608 #endif
609
610 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
611
612 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
613 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
614
615 void tick_broadcast(const struct cpumask *mask)
616 {
617 atomic_t *count;
618 struct call_single_data *csd;
619 int cpu;
620
621 for_each_cpu(cpu, mask) {
622 count = &per_cpu(tick_broadcast_count, cpu);
623 csd = &per_cpu(tick_broadcast_csd, cpu);
624
625 if (atomic_inc_return(count) == 1)
626 smp_call_function_single_async(cpu, csd);
627 }
628 }
629
630 static void tick_broadcast_callee(void *info)
631 {
632 int cpu = smp_processor_id();
633 tick_receive_broadcast();
634 atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
635 }
636
637 static int __init tick_broadcast_init(void)
638 {
639 struct call_single_data *csd;
640 int cpu;
641
642 for (cpu = 0; cpu < NR_CPUS; cpu++) {
643 csd = &per_cpu(tick_broadcast_csd, cpu);
644 csd->func = tick_broadcast_callee;
645 }
646
647 return 0;
648 }
649 early_initcall(tick_broadcast_init);
650
651 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */