]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/mips/kernel/smp.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/ide-2.6
[mirror_ubuntu-zesty-kernel.git] / arch / mips / kernel / smp.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15 *
16 * Copyright (C) 2000, 2001 Kanoj Sarcar
17 * Copyright (C) 2000, 2001 Ralf Baechle
18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20 */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35
36 #include <asm/atomic.h>
37 #include <asm/cpu.h>
38 #include <asm/processor.h>
39 #include <asm/r4k-timer.h>
40 #include <asm/system.h>
41 #include <asm/mmu_context.h>
42 #include <asm/time.h>
43
44 #ifdef CONFIG_MIPS_MT_SMTC
45 #include <asm/mipsmtregs.h>
46 #endif /* CONFIG_MIPS_MT_SMTC */
47
48 volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */
49 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
50 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
51
52 extern void cpu_idle(void);
53
54 /* Number of TCs (or siblings in Intel speak) per CPU core */
55 int smp_num_siblings = 1;
56 EXPORT_SYMBOL(smp_num_siblings);
57
58 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
59 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
60 EXPORT_SYMBOL(cpu_sibling_map);
61
62 /* representing cpus for which sibling maps can be computed */
63 static cpumask_t cpu_sibling_setup_map;
64
65 static inline void set_cpu_sibling_map(int cpu)
66 {
67 int i;
68
69 cpu_set(cpu, cpu_sibling_setup_map);
70
71 if (smp_num_siblings > 1) {
72 for_each_cpu_mask(i, cpu_sibling_setup_map) {
73 if (cpu_data[cpu].core == cpu_data[i].core) {
74 cpu_set(i, cpu_sibling_map[cpu]);
75 cpu_set(cpu, cpu_sibling_map[i]);
76 }
77 }
78 } else
79 cpu_set(cpu, cpu_sibling_map[cpu]);
80 }
81
82 struct plat_smp_ops *mp_ops;
83
84 __cpuinit void register_smp_ops(struct plat_smp_ops *ops)
85 {
86 if (mp_ops)
87 printk(KERN_WARNING "Overriding previously set SMP ops\n");
88
89 mp_ops = ops;
90 }
91
92 /*
93 * First C code run on the secondary CPUs after being started up by
94 * the master.
95 */
96 asmlinkage __cpuinit void start_secondary(void)
97 {
98 unsigned int cpu;
99
100 #ifdef CONFIG_MIPS_MT_SMTC
101 /* Only do cpu_probe for first TC of CPU */
102 if ((read_c0_tcbind() & TCBIND_CURTC) == 0)
103 #endif /* CONFIG_MIPS_MT_SMTC */
104 cpu_probe();
105 cpu_report();
106 per_cpu_trap_init();
107 mips_clockevent_init();
108 mp_ops->init_secondary();
109
110 /*
111 * XXX parity protection should be folded in here when it's converted
112 * to an option instead of something based on .cputype
113 */
114
115 calibrate_delay();
116 preempt_disable();
117 cpu = smp_processor_id();
118 cpu_data[cpu].udelay_val = loops_per_jiffy;
119
120 notify_cpu_starting(cpu);
121
122 mp_ops->smp_finish();
123 set_cpu_sibling_map(cpu);
124
125 cpu_set(cpu, cpu_callin_map);
126
127 synchronise_count_slave();
128
129 cpu_idle();
130 }
131
132 void arch_send_call_function_ipi(cpumask_t mask)
133 {
134 mp_ops->send_ipi_mask(mask, SMP_CALL_FUNCTION);
135 }
136
137 /*
138 * We reuse the same vector for the single IPI
139 */
140 void arch_send_call_function_single_ipi(int cpu)
141 {
142 mp_ops->send_ipi_mask(cpumask_of_cpu(cpu), SMP_CALL_FUNCTION);
143 }
144
145 /*
146 * Call into both interrupt handlers, as we share the IPI for them
147 */
148 void smp_call_function_interrupt(void)
149 {
150 irq_enter();
151 generic_smp_call_function_single_interrupt();
152 generic_smp_call_function_interrupt();
153 irq_exit();
154 }
155
156 static void stop_this_cpu(void *dummy)
157 {
158 /*
159 * Remove this CPU:
160 */
161 cpu_clear(smp_processor_id(), cpu_online_map);
162 for (;;) {
163 if (cpu_wait)
164 (*cpu_wait)(); /* Wait if available. */
165 }
166 }
167
168 void smp_send_stop(void)
169 {
170 smp_call_function(stop_this_cpu, NULL, 0);
171 }
172
173 void __init smp_cpus_done(unsigned int max_cpus)
174 {
175 mp_ops->cpus_done();
176 synchronise_count_master();
177 }
178
179 /* called from main before smp_init() */
180 void __init smp_prepare_cpus(unsigned int max_cpus)
181 {
182 init_new_context(current, &init_mm);
183 current_thread_info()->cpu = 0;
184 mp_ops->prepare_cpus(max_cpus);
185 set_cpu_sibling_map(0);
186 #ifndef CONFIG_HOTPLUG_CPU
187 cpu_present_map = cpu_possible_map;
188 #endif
189 }
190
191 /* preload SMP state for boot cpu */
192 void __devinit smp_prepare_boot_cpu(void)
193 {
194 cpu_set(0, cpu_possible_map);
195 cpu_set(0, cpu_online_map);
196 cpu_set(0, cpu_callin_map);
197 }
198
199 /*
200 * Called once for each "cpu_possible(cpu)". Needs to spin up the cpu
201 * and keep control until "cpu_online(cpu)" is set. Note: cpu is
202 * physical, not logical.
203 */
204 static struct task_struct *cpu_idle_thread[NR_CPUS];
205
206 int __cpuinit __cpu_up(unsigned int cpu)
207 {
208 struct task_struct *idle;
209
210 /*
211 * Processor goes to start_secondary(), sets online flag
212 * The following code is purely to make sure
213 * Linux can schedule processes on this slave.
214 */
215 if (!cpu_idle_thread[cpu]) {
216 idle = fork_idle(cpu);
217 cpu_idle_thread[cpu] = idle;
218
219 if (IS_ERR(idle))
220 panic(KERN_ERR "Fork failed for CPU %d", cpu);
221 } else {
222 idle = cpu_idle_thread[cpu];
223 init_idle(idle, cpu);
224 }
225
226 mp_ops->boot_secondary(cpu, idle);
227
228 /*
229 * Trust is futile. We should really have timeouts ...
230 */
231 while (!cpu_isset(cpu, cpu_callin_map))
232 udelay(100);
233
234 cpu_set(cpu, cpu_online_map);
235
236 return 0;
237 }
238
239 /* Not really SMP stuff ... */
240 int setup_profiling_timer(unsigned int multiplier)
241 {
242 return 0;
243 }
244
245 static void flush_tlb_all_ipi(void *info)
246 {
247 local_flush_tlb_all();
248 }
249
250 void flush_tlb_all(void)
251 {
252 on_each_cpu(flush_tlb_all_ipi, NULL, 1);
253 }
254
255 static void flush_tlb_mm_ipi(void *mm)
256 {
257 local_flush_tlb_mm((struct mm_struct *)mm);
258 }
259
260 /*
261 * Special Variant of smp_call_function for use by TLB functions:
262 *
263 * o No return value
264 * o collapses to normal function call on UP kernels
265 * o collapses to normal function call on systems with a single shared
266 * primary cache.
267 * o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
268 */
269 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
270 {
271 #ifndef CONFIG_MIPS_MT_SMTC
272 smp_call_function(func, info, 1);
273 #endif
274 }
275
276 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
277 {
278 preempt_disable();
279
280 smp_on_other_tlbs(func, info);
281 func(info);
282
283 preempt_enable();
284 }
285
286 /*
287 * The following tlb flush calls are invoked when old translations are
288 * being torn down, or pte attributes are changing. For single threaded
289 * address spaces, a new context is obtained on the current cpu, and tlb
290 * context on other cpus are invalidated to force a new context allocation
291 * at switch_mm time, should the mm ever be used on other cpus. For
292 * multithreaded address spaces, intercpu interrupts have to be sent.
293 * Another case where intercpu interrupts are required is when the target
294 * mm might be active on another cpu (eg debuggers doing the flushes on
295 * behalf of debugees, kswapd stealing pages from another process etc).
296 * Kanoj 07/00.
297 */
298
299 void flush_tlb_mm(struct mm_struct *mm)
300 {
301 preempt_disable();
302
303 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
304 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
305 } else {
306 cpumask_t mask = cpu_online_map;
307 unsigned int cpu;
308
309 cpu_clear(smp_processor_id(), mask);
310 for_each_cpu_mask(cpu, mask)
311 if (cpu_context(cpu, mm))
312 cpu_context(cpu, mm) = 0;
313 }
314 local_flush_tlb_mm(mm);
315
316 preempt_enable();
317 }
318
319 struct flush_tlb_data {
320 struct vm_area_struct *vma;
321 unsigned long addr1;
322 unsigned long addr2;
323 };
324
325 static void flush_tlb_range_ipi(void *info)
326 {
327 struct flush_tlb_data *fd = info;
328
329 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
330 }
331
332 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
333 {
334 struct mm_struct *mm = vma->vm_mm;
335
336 preempt_disable();
337 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
338 struct flush_tlb_data fd = {
339 .vma = vma,
340 .addr1 = start,
341 .addr2 = end,
342 };
343
344 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
345 } else {
346 cpumask_t mask = cpu_online_map;
347 unsigned int cpu;
348
349 cpu_clear(smp_processor_id(), mask);
350 for_each_cpu_mask(cpu, mask)
351 if (cpu_context(cpu, mm))
352 cpu_context(cpu, mm) = 0;
353 }
354 local_flush_tlb_range(vma, start, end);
355 preempt_enable();
356 }
357
358 static void flush_tlb_kernel_range_ipi(void *info)
359 {
360 struct flush_tlb_data *fd = info;
361
362 local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
363 }
364
365 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
366 {
367 struct flush_tlb_data fd = {
368 .addr1 = start,
369 .addr2 = end,
370 };
371
372 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
373 }
374
375 static void flush_tlb_page_ipi(void *info)
376 {
377 struct flush_tlb_data *fd = info;
378
379 local_flush_tlb_page(fd->vma, fd->addr1);
380 }
381
382 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
383 {
384 preempt_disable();
385 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
386 struct flush_tlb_data fd = {
387 .vma = vma,
388 .addr1 = page,
389 };
390
391 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
392 } else {
393 cpumask_t mask = cpu_online_map;
394 unsigned int cpu;
395
396 cpu_clear(smp_processor_id(), mask);
397 for_each_cpu_mask(cpu, mask)
398 if (cpu_context(cpu, vma->vm_mm))
399 cpu_context(cpu, vma->vm_mm) = 0;
400 }
401 local_flush_tlb_page(vma, page);
402 preempt_enable();
403 }
404
405 static void flush_tlb_one_ipi(void *info)
406 {
407 unsigned long vaddr = (unsigned long) info;
408
409 local_flush_tlb_one(vaddr);
410 }
411
412 void flush_tlb_one(unsigned long vaddr)
413 {
414 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
415 }
416
417 EXPORT_SYMBOL(flush_tlb_page);
418 EXPORT_SYMBOL(flush_tlb_one);