]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/mips/kernel/smp.c
Merge branch 'acpica' into release
[mirror_ubuntu-zesty-kernel.git] / arch / mips / kernel / smp.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15 *
16 * Copyright (C) 2000, 2001 Kanoj Sarcar
17 * Copyright (C) 2000, 2001 Ralf Baechle
18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20 */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35
36 #include <asm/atomic.h>
37 #include <asm/cpu.h>
38 #include <asm/processor.h>
39 #include <asm/r4k-timer.h>
40 #include <asm/system.h>
41 #include <asm/mmu_context.h>
42 #include <asm/time.h>
43
44 #ifdef CONFIG_MIPS_MT_SMTC
45 #include <asm/mipsmtregs.h>
46 #endif /* CONFIG_MIPS_MT_SMTC */
47
48 volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */
49 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
50 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
51
52 /* Number of TCs (or siblings in Intel speak) per CPU core */
53 int smp_num_siblings = 1;
54 EXPORT_SYMBOL(smp_num_siblings);
55
56 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
57 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
58 EXPORT_SYMBOL(cpu_sibling_map);
59
60 /* representing cpus for which sibling maps can be computed */
61 static cpumask_t cpu_sibling_setup_map;
62
63 static inline void set_cpu_sibling_map(int cpu)
64 {
65 int i;
66
67 cpu_set(cpu, cpu_sibling_setup_map);
68
69 if (smp_num_siblings > 1) {
70 for_each_cpu_mask(i, cpu_sibling_setup_map) {
71 if (cpu_data[cpu].core == cpu_data[i].core) {
72 cpu_set(i, cpu_sibling_map[cpu]);
73 cpu_set(cpu, cpu_sibling_map[i]);
74 }
75 }
76 } else
77 cpu_set(cpu, cpu_sibling_map[cpu]);
78 }
79
80 struct plat_smp_ops *mp_ops;
81
82 __cpuinit void register_smp_ops(struct plat_smp_ops *ops)
83 {
84 if (mp_ops)
85 printk(KERN_WARNING "Overriding previously set SMP ops\n");
86
87 mp_ops = ops;
88 }
89
90 /*
91 * First C code run on the secondary CPUs after being started up by
92 * the master.
93 */
94 asmlinkage __cpuinit void start_secondary(void)
95 {
96 unsigned int cpu;
97
98 #ifdef CONFIG_MIPS_MT_SMTC
99 /* Only do cpu_probe for first TC of CPU */
100 if ((read_c0_tcbind() & TCBIND_CURTC) == 0)
101 #endif /* CONFIG_MIPS_MT_SMTC */
102 cpu_probe();
103 cpu_report();
104 per_cpu_trap_init();
105 mips_clockevent_init();
106 mp_ops->init_secondary();
107
108 /*
109 * XXX parity protection should be folded in here when it's converted
110 * to an option instead of something based on .cputype
111 */
112
113 calibrate_delay();
114 preempt_disable();
115 cpu = smp_processor_id();
116 cpu_data[cpu].udelay_val = loops_per_jiffy;
117
118 notify_cpu_starting(cpu);
119
120 mp_ops->smp_finish();
121 set_cpu_sibling_map(cpu);
122
123 cpu_set(cpu, cpu_callin_map);
124
125 synchronise_count_slave();
126
127 cpu_idle();
128 }
129
130 /*
131 * Call into both interrupt handlers, as we share the IPI for them
132 */
133 void smp_call_function_interrupt(void)
134 {
135 irq_enter();
136 generic_smp_call_function_single_interrupt();
137 generic_smp_call_function_interrupt();
138 irq_exit();
139 }
140
141 static void stop_this_cpu(void *dummy)
142 {
143 /*
144 * Remove this CPU:
145 */
146 cpu_clear(smp_processor_id(), cpu_online_map);
147 for (;;) {
148 if (cpu_wait)
149 (*cpu_wait)(); /* Wait if available. */
150 }
151 }
152
153 void smp_send_stop(void)
154 {
155 smp_call_function(stop_this_cpu, NULL, 0);
156 }
157
158 void __init smp_cpus_done(unsigned int max_cpus)
159 {
160 mp_ops->cpus_done();
161 synchronise_count_master();
162 }
163
164 /* called from main before smp_init() */
165 void __init smp_prepare_cpus(unsigned int max_cpus)
166 {
167 init_new_context(current, &init_mm);
168 current_thread_info()->cpu = 0;
169 mp_ops->prepare_cpus(max_cpus);
170 set_cpu_sibling_map(0);
171 #ifndef CONFIG_HOTPLUG_CPU
172 init_cpu_present(&cpu_possible_map);
173 #endif
174 }
175
176 /* preload SMP state for boot cpu */
177 void __devinit smp_prepare_boot_cpu(void)
178 {
179 set_cpu_possible(0, true);
180 set_cpu_online(0, true);
181 cpu_set(0, cpu_callin_map);
182 }
183
184 /*
185 * Called once for each "cpu_possible(cpu)". Needs to spin up the cpu
186 * and keep control until "cpu_online(cpu)" is set. Note: cpu is
187 * physical, not logical.
188 */
189 static struct task_struct *cpu_idle_thread[NR_CPUS];
190
191 int __cpuinit __cpu_up(unsigned int cpu)
192 {
193 struct task_struct *idle;
194
195 /*
196 * Processor goes to start_secondary(), sets online flag
197 * The following code is purely to make sure
198 * Linux can schedule processes on this slave.
199 */
200 if (!cpu_idle_thread[cpu]) {
201 idle = fork_idle(cpu);
202 cpu_idle_thread[cpu] = idle;
203
204 if (IS_ERR(idle))
205 panic(KERN_ERR "Fork failed for CPU %d", cpu);
206 } else {
207 idle = cpu_idle_thread[cpu];
208 init_idle(idle, cpu);
209 }
210
211 mp_ops->boot_secondary(cpu, idle);
212
213 /*
214 * Trust is futile. We should really have timeouts ...
215 */
216 while (!cpu_isset(cpu, cpu_callin_map))
217 udelay(100);
218
219 cpu_set(cpu, cpu_online_map);
220
221 return 0;
222 }
223
224 /* Not really SMP stuff ... */
225 int setup_profiling_timer(unsigned int multiplier)
226 {
227 return 0;
228 }
229
230 static void flush_tlb_all_ipi(void *info)
231 {
232 local_flush_tlb_all();
233 }
234
235 void flush_tlb_all(void)
236 {
237 on_each_cpu(flush_tlb_all_ipi, NULL, 1);
238 }
239
240 static void flush_tlb_mm_ipi(void *mm)
241 {
242 local_flush_tlb_mm((struct mm_struct *)mm);
243 }
244
245 /*
246 * Special Variant of smp_call_function for use by TLB functions:
247 *
248 * o No return value
249 * o collapses to normal function call on UP kernels
250 * o collapses to normal function call on systems with a single shared
251 * primary cache.
252 * o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
253 */
254 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
255 {
256 #ifndef CONFIG_MIPS_MT_SMTC
257 smp_call_function(func, info, 1);
258 #endif
259 }
260
261 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
262 {
263 preempt_disable();
264
265 smp_on_other_tlbs(func, info);
266 func(info);
267
268 preempt_enable();
269 }
270
271 /*
272 * The following tlb flush calls are invoked when old translations are
273 * being torn down, or pte attributes are changing. For single threaded
274 * address spaces, a new context is obtained on the current cpu, and tlb
275 * context on other cpus are invalidated to force a new context allocation
276 * at switch_mm time, should the mm ever be used on other cpus. For
277 * multithreaded address spaces, intercpu interrupts have to be sent.
278 * Another case where intercpu interrupts are required is when the target
279 * mm might be active on another cpu (eg debuggers doing the flushes on
280 * behalf of debugees, kswapd stealing pages from another process etc).
281 * Kanoj 07/00.
282 */
283
284 void flush_tlb_mm(struct mm_struct *mm)
285 {
286 preempt_disable();
287
288 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
289 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
290 } else {
291 cpumask_t mask = cpu_online_map;
292 unsigned int cpu;
293
294 cpu_clear(smp_processor_id(), mask);
295 for_each_cpu_mask(cpu, mask)
296 if (cpu_context(cpu, mm))
297 cpu_context(cpu, mm) = 0;
298 }
299 local_flush_tlb_mm(mm);
300
301 preempt_enable();
302 }
303
304 struct flush_tlb_data {
305 struct vm_area_struct *vma;
306 unsigned long addr1;
307 unsigned long addr2;
308 };
309
310 static void flush_tlb_range_ipi(void *info)
311 {
312 struct flush_tlb_data *fd = info;
313
314 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
315 }
316
317 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
318 {
319 struct mm_struct *mm = vma->vm_mm;
320
321 preempt_disable();
322 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
323 struct flush_tlb_data fd = {
324 .vma = vma,
325 .addr1 = start,
326 .addr2 = end,
327 };
328
329 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
330 } else {
331 cpumask_t mask = cpu_online_map;
332 unsigned int cpu;
333
334 cpu_clear(smp_processor_id(), mask);
335 for_each_cpu_mask(cpu, mask)
336 if (cpu_context(cpu, mm))
337 cpu_context(cpu, mm) = 0;
338 }
339 local_flush_tlb_range(vma, start, end);
340 preempt_enable();
341 }
342
343 static void flush_tlb_kernel_range_ipi(void *info)
344 {
345 struct flush_tlb_data *fd = info;
346
347 local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
348 }
349
350 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
351 {
352 struct flush_tlb_data fd = {
353 .addr1 = start,
354 .addr2 = end,
355 };
356
357 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
358 }
359
360 static void flush_tlb_page_ipi(void *info)
361 {
362 struct flush_tlb_data *fd = info;
363
364 local_flush_tlb_page(fd->vma, fd->addr1);
365 }
366
367 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
368 {
369 preempt_disable();
370 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
371 struct flush_tlb_data fd = {
372 .vma = vma,
373 .addr1 = page,
374 };
375
376 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
377 } else {
378 cpumask_t mask = cpu_online_map;
379 unsigned int cpu;
380
381 cpu_clear(smp_processor_id(), mask);
382 for_each_cpu_mask(cpu, mask)
383 if (cpu_context(cpu, vma->vm_mm))
384 cpu_context(cpu, vma->vm_mm) = 0;
385 }
386 local_flush_tlb_page(vma, page);
387 preempt_enable();
388 }
389
390 static void flush_tlb_one_ipi(void *info)
391 {
392 unsigned long vaddr = (unsigned long) info;
393
394 local_flush_tlb_one(vaddr);
395 }
396
397 void flush_tlb_one(unsigned long vaddr)
398 {
399 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
400 }
401
402 EXPORT_SYMBOL(flush_tlb_page);
403 EXPORT_SYMBOL(flush_tlb_one);