]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/mips/kernel/smtc.c
Input: xpad - add USB ID for the drumkit controller from Rock Band
[mirror_ubuntu-jammy-kernel.git] / arch / mips / kernel / smtc.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15 *
16 * Copyright (C) 2004 Mips Technologies, Inc
17 * Copyright (C) 2008 Kevin D. Kissell
18 */
19
20 #include <linux/clockchips.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/cpumask.h>
25 #include <linux/interrupt.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/module.h>
28
29 #include <asm/cpu.h>
30 #include <asm/processor.h>
31 #include <asm/atomic.h>
32 #include <asm/system.h>
33 #include <asm/hardirq.h>
34 #include <asm/hazards.h>
35 #include <asm/irq.h>
36 #include <asm/mmu_context.h>
37 #include <asm/mipsregs.h>
38 #include <asm/cacheflush.h>
39 #include <asm/time.h>
40 #include <asm/addrspace.h>
41 #include <asm/smtc.h>
42 #include <asm/smtc_proc.h>
43
44 /*
45 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
46 * in do_IRQ. These are passed in setup_irq_smtc() and stored
47 * in this table.
48 */
49 unsigned long irq_hwmask[NR_IRQS];
50
51 #define LOCK_MT_PRA() \
52 local_irq_save(flags); \
53 mtflags = dmt()
54
55 #define UNLOCK_MT_PRA() \
56 emt(mtflags); \
57 local_irq_restore(flags)
58
59 #define LOCK_CORE_PRA() \
60 local_irq_save(flags); \
61 mtflags = dvpe()
62
63 #define UNLOCK_CORE_PRA() \
64 evpe(mtflags); \
65 local_irq_restore(flags)
66
67 /*
68 * Data structures purely associated with SMTC parallelism
69 */
70
71
72 /*
73 * Table for tracking ASIDs whose lifetime is prolonged.
74 */
75
76 asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
77
78
79 /*
80 * Number of InterProcessor Interrupt (IPI) message buffers to allocate
81 */
82
83 #define IPIBUF_PER_CPU 4
84
85 struct smtc_ipi_q IPIQ[NR_CPUS];
86 static struct smtc_ipi_q freeIPIq;
87
88
89 /* Forward declarations */
90
91 void ipi_decode(struct smtc_ipi *);
92 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
93 static void setup_cross_vpe_interrupts(unsigned int nvpe);
94 void init_smtc_stats(void);
95
96 /* Global SMTC Status */
97
98 unsigned int smtc_status = 0;
99
100 /* Boot command line configuration overrides */
101
102 static int vpe0limit;
103 static int ipibuffers = 0;
104 static int nostlb = 0;
105 static int asidmask = 0;
106 unsigned long smtc_asid_mask = 0xff;
107
108 static int __init vpe0tcs(char *str)
109 {
110 get_option(&str, &vpe0limit);
111
112 return 1;
113 }
114
115 static int __init ipibufs(char *str)
116 {
117 get_option(&str, &ipibuffers);
118 return 1;
119 }
120
121 static int __init stlb_disable(char *s)
122 {
123 nostlb = 1;
124 return 1;
125 }
126
127 static int __init asidmask_set(char *str)
128 {
129 get_option(&str, &asidmask);
130 switch (asidmask) {
131 case 0x1:
132 case 0x3:
133 case 0x7:
134 case 0xf:
135 case 0x1f:
136 case 0x3f:
137 case 0x7f:
138 case 0xff:
139 smtc_asid_mask = (unsigned long)asidmask;
140 break;
141 default:
142 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
143 }
144 return 1;
145 }
146
147 __setup("vpe0tcs=", vpe0tcs);
148 __setup("ipibufs=", ipibufs);
149 __setup("nostlb", stlb_disable);
150 __setup("asidmask=", asidmask_set);
151
152 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
153
154 static int hang_trig = 0;
155
156 static int __init hangtrig_enable(char *s)
157 {
158 hang_trig = 1;
159 return 1;
160 }
161
162
163 __setup("hangtrig", hangtrig_enable);
164
165 #define DEFAULT_BLOCKED_IPI_LIMIT 32
166
167 static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
168
169 static int __init tintq(char *str)
170 {
171 get_option(&str, &timerq_limit);
172 return 1;
173 }
174
175 __setup("tintq=", tintq);
176
177 static int imstuckcount[2][8];
178 /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
179 static int vpemask[2][8] = {
180 {0, 0, 1, 0, 0, 0, 0, 1},
181 {0, 0, 0, 0, 0, 0, 0, 1}
182 };
183 int tcnoprog[NR_CPUS];
184 static atomic_t idle_hook_initialized = {0};
185 static int clock_hang_reported[NR_CPUS];
186
187 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
188
189 /*
190 * Configure shared TLB - VPC configuration bit must be set by caller
191 */
192
193 static void smtc_configure_tlb(void)
194 {
195 int i, tlbsiz, vpes;
196 unsigned long mvpconf0;
197 unsigned long config1val;
198
199 /* Set up ASID preservation table */
200 for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
201 for(i = 0; i < MAX_SMTC_ASIDS; i++) {
202 smtc_live_asid[vpes][i] = 0;
203 }
204 }
205 mvpconf0 = read_c0_mvpconf0();
206
207 if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
208 >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
209 /* If we have multiple VPEs, try to share the TLB */
210 if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
211 /*
212 * If TLB sizing is programmable, shared TLB
213 * size is the total available complement.
214 * Otherwise, we have to take the sum of all
215 * static VPE TLB entries.
216 */
217 if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
218 >> MVPCONF0_PTLBE_SHIFT)) == 0) {
219 /*
220 * If there's more than one VPE, there had better
221 * be more than one TC, because we need one to bind
222 * to each VPE in turn to be able to read
223 * its configuration state!
224 */
225 settc(1);
226 /* Stop the TC from doing anything foolish */
227 write_tc_c0_tchalt(TCHALT_H);
228 mips_ihb();
229 /* No need to un-Halt - that happens later anyway */
230 for (i=0; i < vpes; i++) {
231 write_tc_c0_tcbind(i);
232 /*
233 * To be 100% sure we're really getting the right
234 * information, we exit the configuration state
235 * and do an IHB after each rebinding.
236 */
237 write_c0_mvpcontrol(
238 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
239 mips_ihb();
240 /*
241 * Only count if the MMU Type indicated is TLB
242 */
243 if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
244 config1val = read_vpe_c0_config1();
245 tlbsiz += ((config1val >> 25) & 0x3f) + 1;
246 }
247
248 /* Put core back in configuration state */
249 write_c0_mvpcontrol(
250 read_c0_mvpcontrol() | MVPCONTROL_VPC );
251 mips_ihb();
252 }
253 }
254 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
255 ehb();
256
257 /*
258 * Setup kernel data structures to use software total,
259 * rather than read the per-VPE Config1 value. The values
260 * for "CPU 0" gets copied to all the other CPUs as part
261 * of their initialization in smtc_cpu_setup().
262 */
263
264 /* MIPS32 limits TLB indices to 64 */
265 if (tlbsiz > 64)
266 tlbsiz = 64;
267 cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
268 smtc_status |= SMTC_TLB_SHARED;
269 local_flush_tlb_all();
270
271 printk("TLB of %d entry pairs shared by %d VPEs\n",
272 tlbsiz, vpes);
273 } else {
274 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
275 }
276 }
277 }
278
279
280 /*
281 * Incrementally build the CPU map out of constituent MIPS MT cores,
282 * using the specified available VPEs and TCs. Plaform code needs
283 * to ensure that each MIPS MT core invokes this routine on reset,
284 * one at a time(!).
285 *
286 * This version of the build_cpu_map and prepare_cpus routines assumes
287 * that *all* TCs of a MIPS MT core will be used for Linux, and that
288 * they will be spread across *all* available VPEs (to minimise the
289 * loss of efficiency due to exception service serialization).
290 * An improved version would pick up configuration information and
291 * possibly leave some TCs/VPEs as "slave" processors.
292 *
293 * Use c0_MVPConf0 to find out how many TCs are available, setting up
294 * cpu_possible_map and the logical/physical mappings.
295 */
296
297 int __init smtc_build_cpu_map(int start_cpu_slot)
298 {
299 int i, ntcs;
300
301 /*
302 * The CPU map isn't actually used for anything at this point,
303 * so it's not clear what else we should do apart from set
304 * everything up so that "logical" = "physical".
305 */
306 ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
307 for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
308 cpu_set(i, cpu_possible_map);
309 __cpu_number_map[i] = i;
310 __cpu_logical_map[i] = i;
311 }
312 #ifdef CONFIG_MIPS_MT_FPAFF
313 /* Initialize map of CPUs with FPUs */
314 cpus_clear(mt_fpu_cpumask);
315 #endif
316
317 /* One of those TC's is the one booting, and not a secondary... */
318 printk("%i available secondary CPU TC(s)\n", i - 1);
319
320 return i;
321 }
322
323 /*
324 * Common setup before any secondaries are started
325 * Make sure all CPU's are in a sensible state before we boot any of the
326 * secondaries.
327 *
328 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
329 * as possible across the available VPEs.
330 */
331
332 static void smtc_tc_setup(int vpe, int tc, int cpu)
333 {
334 settc(tc);
335 write_tc_c0_tchalt(TCHALT_H);
336 mips_ihb();
337 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
338 & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
339 | TCSTATUS_A);
340 /*
341 * TCContext gets an offset from the base of the IPIQ array
342 * to be used in low-level code to detect the presence of
343 * an active IPI queue
344 */
345 write_tc_c0_tccontext((sizeof(struct smtc_ipi_q) * cpu) << 16);
346 /* Bind tc to vpe */
347 write_tc_c0_tcbind(vpe);
348 /* In general, all TCs should have the same cpu_data indications */
349 memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
350 /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
351 if (cpu_data[0].cputype == CPU_34K ||
352 cpu_data[0].cputype == CPU_1004K)
353 cpu_data[cpu].options &= ~MIPS_CPU_FPU;
354 cpu_data[cpu].vpe_id = vpe;
355 cpu_data[cpu].tc_id = tc;
356 /* Multi-core SMTC hasn't been tested, but be prepared */
357 cpu_data[cpu].core = (read_vpe_c0_ebase() >> 1) & 0xff;
358 }
359
360 /*
361 * Tweak to get Count registes in as close a sync as possible.
362 * Value seems good for 34K-class cores.
363 */
364
365 #define CP0_SKEW 8
366
367 void smtc_prepare_cpus(int cpus)
368 {
369 int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu;
370 unsigned long flags;
371 unsigned long val;
372 int nipi;
373 struct smtc_ipi *pipi;
374
375 /* disable interrupts so we can disable MT */
376 local_irq_save(flags);
377 /* disable MT so we can configure */
378 dvpe();
379 dmt();
380
381 spin_lock_init(&freeIPIq.lock);
382
383 /*
384 * We probably don't have as many VPEs as we do SMP "CPUs",
385 * but it's possible - and in any case we'll never use more!
386 */
387 for (i=0; i<NR_CPUS; i++) {
388 IPIQ[i].head = IPIQ[i].tail = NULL;
389 spin_lock_init(&IPIQ[i].lock);
390 IPIQ[i].depth = 0;
391 }
392
393 /* cpu_data index starts at zero */
394 cpu = 0;
395 cpu_data[cpu].vpe_id = 0;
396 cpu_data[cpu].tc_id = 0;
397 cpu_data[cpu].core = (read_c0_ebase() >> 1) & 0xff;
398 cpu++;
399
400 /* Report on boot-time options */
401 mips_mt_set_cpuoptions();
402 if (vpelimit > 0)
403 printk("Limit of %d VPEs set\n", vpelimit);
404 if (tclimit > 0)
405 printk("Limit of %d TCs set\n", tclimit);
406 if (nostlb) {
407 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
408 }
409 if (asidmask)
410 printk("ASID mask value override to 0x%x\n", asidmask);
411
412 /* Temporary */
413 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
414 if (hang_trig)
415 printk("Logic Analyser Trigger on suspected TC hang\n");
416 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
417
418 /* Put MVPE's into 'configuration state' */
419 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
420
421 val = read_c0_mvpconf0();
422 nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
423 if (vpelimit > 0 && nvpe > vpelimit)
424 nvpe = vpelimit;
425 ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
426 if (ntc > NR_CPUS)
427 ntc = NR_CPUS;
428 if (tclimit > 0 && ntc > tclimit)
429 ntc = tclimit;
430 slop = ntc % nvpe;
431 for (i = 0; i < nvpe; i++) {
432 tcpervpe[i] = ntc / nvpe;
433 if (slop) {
434 if((slop - i) > 0) tcpervpe[i]++;
435 }
436 }
437 /* Handle command line override for VPE0 */
438 if (vpe0limit > ntc) vpe0limit = ntc;
439 if (vpe0limit > 0) {
440 int slopslop;
441 if (vpe0limit < tcpervpe[0]) {
442 /* Reducing TC count - distribute to others */
443 slop = tcpervpe[0] - vpe0limit;
444 slopslop = slop % (nvpe - 1);
445 tcpervpe[0] = vpe0limit;
446 for (i = 1; i < nvpe; i++) {
447 tcpervpe[i] += slop / (nvpe - 1);
448 if(slopslop && ((slopslop - (i - 1) > 0)))
449 tcpervpe[i]++;
450 }
451 } else if (vpe0limit > tcpervpe[0]) {
452 /* Increasing TC count - steal from others */
453 slop = vpe0limit - tcpervpe[0];
454 slopslop = slop % (nvpe - 1);
455 tcpervpe[0] = vpe0limit;
456 for (i = 1; i < nvpe; i++) {
457 tcpervpe[i] -= slop / (nvpe - 1);
458 if(slopslop && ((slopslop - (i - 1) > 0)))
459 tcpervpe[i]--;
460 }
461 }
462 }
463
464 /* Set up shared TLB */
465 smtc_configure_tlb();
466
467 for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
468 /*
469 * Set the MVP bits.
470 */
471 settc(tc);
472 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP);
473 if (vpe != 0)
474 printk(", ");
475 printk("VPE %d: TC", vpe);
476 for (i = 0; i < tcpervpe[vpe]; i++) {
477 /*
478 * TC 0 is bound to VPE 0 at reset,
479 * and is presumably executing this
480 * code. Leave it alone!
481 */
482 if (tc != 0) {
483 smtc_tc_setup(vpe, tc, cpu);
484 cpu++;
485 }
486 printk(" %d", tc);
487 tc++;
488 }
489 if (vpe != 0) {
490 /*
491 * Clear any stale software interrupts from VPE's Cause
492 */
493 write_vpe_c0_cause(0);
494
495 /*
496 * Clear ERL/EXL of VPEs other than 0
497 * and set restricted interrupt enable/mask.
498 */
499 write_vpe_c0_status((read_vpe_c0_status()
500 & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
501 | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
502 | ST0_IE));
503 /*
504 * set config to be the same as vpe0,
505 * particularly kseg0 coherency alg
506 */
507 write_vpe_c0_config(read_c0_config());
508 /* Clear any pending timer interrupt */
509 write_vpe_c0_compare(0);
510 /* Propagate Config7 */
511 write_vpe_c0_config7(read_c0_config7());
512 write_vpe_c0_count(read_c0_count() + CP0_SKEW);
513 ehb();
514 }
515 /* enable multi-threading within VPE */
516 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
517 /* enable the VPE */
518 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
519 }
520
521 /*
522 * Pull any physically present but unused TCs out of circulation.
523 */
524 while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
525 cpu_clear(tc, cpu_possible_map);
526 cpu_clear(tc, cpu_present_map);
527 tc++;
528 }
529
530 /* release config state */
531 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
532
533 printk("\n");
534
535 /* Set up coprocessor affinity CPU mask(s) */
536
537 #ifdef CONFIG_MIPS_MT_FPAFF
538 for (tc = 0; tc < ntc; tc++) {
539 if (cpu_data[tc].options & MIPS_CPU_FPU)
540 cpu_set(tc, mt_fpu_cpumask);
541 }
542 #endif
543
544 /* set up ipi interrupts... */
545
546 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
547
548 setup_cross_vpe_interrupts(nvpe);
549
550 /* Set up queue of free IPI "messages". */
551 nipi = NR_CPUS * IPIBUF_PER_CPU;
552 if (ipibuffers > 0)
553 nipi = ipibuffers;
554
555 pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
556 if (pipi == NULL)
557 panic("kmalloc of IPI message buffers failed\n");
558 else
559 printk("IPI buffer pool of %d buffers\n", nipi);
560 for (i = 0; i < nipi; i++) {
561 smtc_ipi_nq(&freeIPIq, pipi);
562 pipi++;
563 }
564
565 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
566 emt(EMT_ENABLE);
567 evpe(EVPE_ENABLE);
568 local_irq_restore(flags);
569 /* Initialize SMTC /proc statistics/diagnostics */
570 init_smtc_stats();
571 }
572
573
574 /*
575 * Setup the PC, SP, and GP of a secondary processor and start it
576 * running!
577 * smp_bootstrap is the place to resume from
578 * __KSTK_TOS(idle) is apparently the stack pointer
579 * (unsigned long)idle->thread_info the gp
580 *
581 */
582 void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
583 {
584 extern u32 kernelsp[NR_CPUS];
585 unsigned long flags;
586 int mtflags;
587
588 LOCK_MT_PRA();
589 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
590 dvpe();
591 }
592 settc(cpu_data[cpu].tc_id);
593
594 /* pc */
595 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
596
597 /* stack pointer */
598 kernelsp[cpu] = __KSTK_TOS(idle);
599 write_tc_gpr_sp(__KSTK_TOS(idle));
600
601 /* global pointer */
602 write_tc_gpr_gp((unsigned long)task_thread_info(idle));
603
604 smtc_status |= SMTC_MTC_ACTIVE;
605 write_tc_c0_tchalt(0);
606 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
607 evpe(EVPE_ENABLE);
608 }
609 UNLOCK_MT_PRA();
610 }
611
612 void smtc_init_secondary(void)
613 {
614 local_irq_enable();
615 }
616
617 void smtc_smp_finish(void)
618 {
619 int cpu = smp_processor_id();
620
621 /*
622 * Lowest-numbered CPU per VPE starts a clock tick.
623 * Like per_cpu_trap_init() hack, this assumes that
624 * SMTC init code assigns TCs consdecutively and
625 * in ascending order across available VPEs.
626 */
627 if (cpu > 0 && (cpu_data[cpu].vpe_id != cpu_data[cpu - 1].vpe_id))
628 write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
629
630 printk("TC %d going on-line as CPU %d\n",
631 cpu_data[smp_processor_id()].tc_id, smp_processor_id());
632 }
633
634 void smtc_cpus_done(void)
635 {
636 }
637
638 /*
639 * Support for SMTC-optimized driver IRQ registration
640 */
641
642 /*
643 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
644 * in do_IRQ. These are passed in setup_irq_smtc() and stored
645 * in this table.
646 */
647
648 int setup_irq_smtc(unsigned int irq, struct irqaction * new,
649 unsigned long hwmask)
650 {
651 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
652 unsigned int vpe = current_cpu_data.vpe_id;
653
654 vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
655 #endif
656 irq_hwmask[irq] = hwmask;
657
658 return setup_irq(irq, new);
659 }
660
661 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
662 /*
663 * Support for IRQ affinity to TCs
664 */
665
666 void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity)
667 {
668 /*
669 * If a "fast path" cache of quickly decodable affinity state
670 * is maintained, this is where it gets done, on a call up
671 * from the platform affinity code.
672 */
673 }
674
675 void smtc_forward_irq(unsigned int irq)
676 {
677 int target;
678
679 /*
680 * OK wise guy, now figure out how to get the IRQ
681 * to be serviced on an authorized "CPU".
682 *
683 * Ideally, to handle the situation where an IRQ has multiple
684 * eligible CPUS, we would maintain state per IRQ that would
685 * allow a fair distribution of service requests. Since the
686 * expected use model is any-or-only-one, for simplicity
687 * and efficiency, we just pick the easiest one to find.
688 */
689
690 target = cpumask_first(irq_desc[irq].affinity);
691
692 /*
693 * We depend on the platform code to have correctly processed
694 * IRQ affinity change requests to ensure that the IRQ affinity
695 * mask has been purged of bits corresponding to nonexistent and
696 * offline "CPUs", and to TCs bound to VPEs other than the VPE
697 * connected to the physical interrupt input for the interrupt
698 * in question. Otherwise we have a nasty problem with interrupt
699 * mask management. This is best handled in non-performance-critical
700 * platform IRQ affinity setting code, to minimize interrupt-time
701 * checks.
702 */
703
704 /* If no one is eligible, service locally */
705 if (target >= NR_CPUS) {
706 do_IRQ_no_affinity(irq);
707 return;
708 }
709
710 smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq);
711 }
712
713 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
714
715 /*
716 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
717 * Within a VPE one TC can interrupt another by different approaches.
718 * The easiest to get right would probably be to make all TCs except
719 * the target IXMT and set a software interrupt, but an IXMT-based
720 * scheme requires that a handler must run before a new IPI could
721 * be sent, which would break the "broadcast" loops in MIPS MT.
722 * A more gonzo approach within a VPE is to halt the TC, extract
723 * its Restart, Status, and a couple of GPRs, and program the Restart
724 * address to emulate an interrupt.
725 *
726 * Within a VPE, one can be confident that the target TC isn't in
727 * a critical EXL state when halted, since the write to the Halt
728 * register could not have issued on the writing thread if the
729 * halting thread had EXL set. So k0 and k1 of the target TC
730 * can be used by the injection code. Across VPEs, one can't
731 * be certain that the target TC isn't in a critical exception
732 * state. So we try a two-step process of sending a software
733 * interrupt to the target VPE, which either handles the event
734 * itself (if it was the target) or injects the event within
735 * the VPE.
736 */
737
738 static void smtc_ipi_qdump(void)
739 {
740 int i;
741
742 for (i = 0; i < NR_CPUS ;i++) {
743 printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
744 i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
745 IPIQ[i].depth);
746 }
747 }
748
749 /*
750 * The standard atomic.h primitives don't quite do what we want
751 * here: We need an atomic add-and-return-previous-value (which
752 * could be done with atomic_add_return and a decrement) and an
753 * atomic set/zero-and-return-previous-value (which can't really
754 * be done with the atomic.h primitives). And since this is
755 * MIPS MT, we can assume that we have LL/SC.
756 */
757 static inline int atomic_postincrement(atomic_t *v)
758 {
759 unsigned long result;
760
761 unsigned long temp;
762
763 __asm__ __volatile__(
764 "1: ll %0, %2 \n"
765 " addu %1, %0, 1 \n"
766 " sc %1, %2 \n"
767 " beqz %1, 1b \n"
768 __WEAK_LLSC_MB
769 : "=&r" (result), "=&r" (temp), "=m" (v->counter)
770 : "m" (v->counter)
771 : "memory");
772
773 return result;
774 }
775
776 void smtc_send_ipi(int cpu, int type, unsigned int action)
777 {
778 int tcstatus;
779 struct smtc_ipi *pipi;
780 unsigned long flags;
781 int mtflags;
782 unsigned long tcrestart;
783 extern void r4k_wait_irqoff(void), __pastwait(void);
784
785 if (cpu == smp_processor_id()) {
786 printk("Cannot Send IPI to self!\n");
787 return;
788 }
789 /* Set up a descriptor, to be delivered either promptly or queued */
790 pipi = smtc_ipi_dq(&freeIPIq);
791 if (pipi == NULL) {
792 bust_spinlocks(1);
793 mips_mt_regdump(dvpe());
794 panic("IPI Msg. Buffers Depleted\n");
795 }
796 pipi->type = type;
797 pipi->arg = (void *)action;
798 pipi->dest = cpu;
799 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
800 /* If not on same VPE, enqueue and send cross-VPE interrupt */
801 smtc_ipi_nq(&IPIQ[cpu], pipi);
802 LOCK_CORE_PRA();
803 settc(cpu_data[cpu].tc_id);
804 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
805 UNLOCK_CORE_PRA();
806 } else {
807 /*
808 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
809 * since ASID shootdown on the other VPE may
810 * collide with this operation.
811 */
812 LOCK_CORE_PRA();
813 settc(cpu_data[cpu].tc_id);
814 /* Halt the targeted TC */
815 write_tc_c0_tchalt(TCHALT_H);
816 mips_ihb();
817
818 /*
819 * Inspect TCStatus - if IXMT is set, we have to queue
820 * a message. Otherwise, we set up the "interrupt"
821 * of the other TC
822 */
823 tcstatus = read_tc_c0_tcstatus();
824
825 if ((tcstatus & TCSTATUS_IXMT) != 0) {
826 /*
827 * If we're in the the irq-off version of the wait
828 * loop, we need to force exit from the wait and
829 * do a direct post of the IPI.
830 */
831 if (cpu_wait == r4k_wait_irqoff) {
832 tcrestart = read_tc_c0_tcrestart();
833 if (tcrestart >= (unsigned long)r4k_wait_irqoff
834 && tcrestart < (unsigned long)__pastwait) {
835 write_tc_c0_tcrestart(__pastwait);
836 tcstatus &= ~TCSTATUS_IXMT;
837 write_tc_c0_tcstatus(tcstatus);
838 goto postdirect;
839 }
840 }
841 /*
842 * Otherwise we queue the message for the target TC
843 * to pick up when he does a local_irq_restore()
844 */
845 write_tc_c0_tchalt(0);
846 UNLOCK_CORE_PRA();
847 smtc_ipi_nq(&IPIQ[cpu], pipi);
848 } else {
849 postdirect:
850 post_direct_ipi(cpu, pipi);
851 write_tc_c0_tchalt(0);
852 UNLOCK_CORE_PRA();
853 }
854 }
855 }
856
857 /*
858 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
859 */
860 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
861 {
862 struct pt_regs *kstack;
863 unsigned long tcstatus;
864 unsigned long tcrestart;
865 extern u32 kernelsp[NR_CPUS];
866 extern void __smtc_ipi_vector(void);
867 //printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
868
869 /* Extract Status, EPC from halted TC */
870 tcstatus = read_tc_c0_tcstatus();
871 tcrestart = read_tc_c0_tcrestart();
872 /* If TCRestart indicates a WAIT instruction, advance the PC */
873 if ((tcrestart & 0x80000000)
874 && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
875 tcrestart += 4;
876 }
877 /*
878 * Save on TC's future kernel stack
879 *
880 * CU bit of Status is indicator that TC was
881 * already running on a kernel stack...
882 */
883 if (tcstatus & ST0_CU0) {
884 /* Note that this "- 1" is pointer arithmetic */
885 kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
886 } else {
887 kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
888 }
889
890 kstack->cp0_epc = (long)tcrestart;
891 /* Save TCStatus */
892 kstack->cp0_tcstatus = tcstatus;
893 /* Pass token of operation to be performed kernel stack pad area */
894 kstack->pad0[4] = (unsigned long)pipi;
895 /* Pass address of function to be called likewise */
896 kstack->pad0[5] = (unsigned long)&ipi_decode;
897 /* Set interrupt exempt and kernel mode */
898 tcstatus |= TCSTATUS_IXMT;
899 tcstatus &= ~TCSTATUS_TKSU;
900 write_tc_c0_tcstatus(tcstatus);
901 ehb();
902 /* Set TC Restart address to be SMTC IPI vector */
903 write_tc_c0_tcrestart(__smtc_ipi_vector);
904 }
905
906 static void ipi_resched_interrupt(void)
907 {
908 /* Return from interrupt should be enough to cause scheduler check */
909 }
910
911 static void ipi_call_interrupt(void)
912 {
913 /* Invoke generic function invocation code in smp.c */
914 smp_call_function_interrupt();
915 }
916
917 DECLARE_PER_CPU(struct clock_event_device, mips_clockevent_device);
918
919 void ipi_decode(struct smtc_ipi *pipi)
920 {
921 unsigned int cpu = smp_processor_id();
922 struct clock_event_device *cd;
923 void *arg_copy = pipi->arg;
924 int type_copy = pipi->type;
925 int irq = MIPS_CPU_IRQ_BASE + 1;
926
927 smtc_ipi_nq(&freeIPIq, pipi);
928
929 switch (type_copy) {
930 case SMTC_CLOCK_TICK:
931 irq_enter();
932 kstat_incr_irqs_this_cpu(irq, irq_to_desc(irq));
933 cd = &per_cpu(mips_clockevent_device, cpu);
934 cd->event_handler(cd);
935 irq_exit();
936 break;
937
938 case LINUX_SMP_IPI:
939 switch ((int)arg_copy) {
940 case SMP_RESCHEDULE_YOURSELF:
941 ipi_resched_interrupt();
942 break;
943 case SMP_CALL_FUNCTION:
944 ipi_call_interrupt();
945 break;
946 default:
947 printk("Impossible SMTC IPI Argument 0x%x\n",
948 (int)arg_copy);
949 break;
950 }
951 break;
952 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
953 case IRQ_AFFINITY_IPI:
954 /*
955 * Accept a "forwarded" interrupt that was initially
956 * taken by a TC who doesn't have affinity for the IRQ.
957 */
958 do_IRQ_no_affinity((int)arg_copy);
959 break;
960 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
961 default:
962 printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
963 break;
964 }
965 }
966
967 /*
968 * Similar to smtc_ipi_replay(), but invoked from context restore,
969 * so it reuses the current exception frame rather than set up a
970 * new one with self_ipi.
971 */
972
973 void deferred_smtc_ipi(void)
974 {
975 int cpu = smp_processor_id();
976
977 /*
978 * Test is not atomic, but much faster than a dequeue,
979 * and the vast majority of invocations will have a null queue.
980 * If irq_disabled when this was called, then any IPIs queued
981 * after we test last will be taken on the next irq_enable/restore.
982 * If interrupts were enabled, then any IPIs added after the
983 * last test will be taken directly.
984 */
985
986 while (IPIQ[cpu].head != NULL) {
987 struct smtc_ipi_q *q = &IPIQ[cpu];
988 struct smtc_ipi *pipi;
989 unsigned long flags;
990
991 /*
992 * It may be possible we'll come in with interrupts
993 * already enabled.
994 */
995 local_irq_save(flags);
996
997 spin_lock(&q->lock);
998 pipi = __smtc_ipi_dq(q);
999 spin_unlock(&q->lock);
1000 if (pipi != NULL)
1001 ipi_decode(pipi);
1002 /*
1003 * The use of the __raw_local restore isn't
1004 * as obviously necessary here as in smtc_ipi_replay(),
1005 * but it's more efficient, given that we're already
1006 * running down the IPI queue.
1007 */
1008 __raw_local_irq_restore(flags);
1009 }
1010 }
1011
1012 /*
1013 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
1014 * set via cross-VPE MTTR manipulation of the Cause register. It would be
1015 * in some regards preferable to have external logic for "doorbell" hardware
1016 * interrupts.
1017 */
1018
1019 static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
1020
1021 static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
1022 {
1023 int my_vpe = cpu_data[smp_processor_id()].vpe_id;
1024 int my_tc = cpu_data[smp_processor_id()].tc_id;
1025 int cpu;
1026 struct smtc_ipi *pipi;
1027 unsigned long tcstatus;
1028 int sent;
1029 unsigned long flags;
1030 unsigned int mtflags;
1031 unsigned int vpflags;
1032
1033 /*
1034 * So long as cross-VPE interrupts are done via
1035 * MFTR/MTTR read-modify-writes of Cause, we need
1036 * to stop other VPEs whenever the local VPE does
1037 * anything similar.
1038 */
1039 local_irq_save(flags);
1040 vpflags = dvpe();
1041 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
1042 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
1043 irq_enable_hazard();
1044 evpe(vpflags);
1045 local_irq_restore(flags);
1046
1047 /*
1048 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
1049 * queued for TCs on this VPE other than the current one.
1050 * Return-from-interrupt should cause us to drain the queue
1051 * for the current TC, so we ought not to have to do it explicitly here.
1052 */
1053
1054 for_each_online_cpu(cpu) {
1055 if (cpu_data[cpu].vpe_id != my_vpe)
1056 continue;
1057
1058 pipi = smtc_ipi_dq(&IPIQ[cpu]);
1059 if (pipi != NULL) {
1060 if (cpu_data[cpu].tc_id != my_tc) {
1061 sent = 0;
1062 LOCK_MT_PRA();
1063 settc(cpu_data[cpu].tc_id);
1064 write_tc_c0_tchalt(TCHALT_H);
1065 mips_ihb();
1066 tcstatus = read_tc_c0_tcstatus();
1067 if ((tcstatus & TCSTATUS_IXMT) == 0) {
1068 post_direct_ipi(cpu, pipi);
1069 sent = 1;
1070 }
1071 write_tc_c0_tchalt(0);
1072 UNLOCK_MT_PRA();
1073 if (!sent) {
1074 smtc_ipi_req(&IPIQ[cpu], pipi);
1075 }
1076 } else {
1077 /*
1078 * ipi_decode() should be called
1079 * with interrupts off
1080 */
1081 local_irq_save(flags);
1082 ipi_decode(pipi);
1083 local_irq_restore(flags);
1084 }
1085 }
1086 }
1087
1088 return IRQ_HANDLED;
1089 }
1090
1091 static void ipi_irq_dispatch(void)
1092 {
1093 do_IRQ(cpu_ipi_irq);
1094 }
1095
1096 static struct irqaction irq_ipi = {
1097 .handler = ipi_interrupt,
1098 .flags = IRQF_DISABLED,
1099 .name = "SMTC_IPI",
1100 .flags = IRQF_PERCPU
1101 };
1102
1103 static void setup_cross_vpe_interrupts(unsigned int nvpe)
1104 {
1105 if (nvpe < 1)
1106 return;
1107
1108 if (!cpu_has_vint)
1109 panic("SMTC Kernel requires Vectored Interrupt support");
1110
1111 set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1112
1113 setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1114
1115 set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
1116 }
1117
1118 /*
1119 * SMTC-specific hacks invoked from elsewhere in the kernel.
1120 */
1121
1122 /*
1123 * smtc_ipi_replay is called from raw_local_irq_restore
1124 */
1125
1126 void smtc_ipi_replay(void)
1127 {
1128 unsigned int cpu = smp_processor_id();
1129
1130 /*
1131 * To the extent that we've ever turned interrupts off,
1132 * we may have accumulated deferred IPIs. This is subtle.
1133 * we should be OK: If we pick up something and dispatch
1134 * it here, that's great. If we see nothing, but concurrent
1135 * with this operation, another TC sends us an IPI, IXMT
1136 * is clear, and we'll handle it as a real pseudo-interrupt
1137 * and not a pseudo-pseudo interrupt. The important thing
1138 * is to do the last check for queued message *after* the
1139 * re-enabling of interrupts.
1140 */
1141 while (IPIQ[cpu].head != NULL) {
1142 struct smtc_ipi_q *q = &IPIQ[cpu];
1143 struct smtc_ipi *pipi;
1144 unsigned long flags;
1145
1146 /*
1147 * It's just possible we'll come in with interrupts
1148 * already enabled.
1149 */
1150 local_irq_save(flags);
1151
1152 spin_lock(&q->lock);
1153 pipi = __smtc_ipi_dq(q);
1154 spin_unlock(&q->lock);
1155 /*
1156 ** But use a raw restore here to avoid recursion.
1157 */
1158 __raw_local_irq_restore(flags);
1159
1160 if (pipi) {
1161 self_ipi(pipi);
1162 smtc_cpu_stats[cpu].selfipis++;
1163 }
1164 }
1165 }
1166
1167 EXPORT_SYMBOL(smtc_ipi_replay);
1168
1169 void smtc_idle_loop_hook(void)
1170 {
1171 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1172 int im;
1173 int flags;
1174 int mtflags;
1175 int bit;
1176 int vpe;
1177 int tc;
1178 int hook_ntcs;
1179 /*
1180 * printk within DMT-protected regions can deadlock,
1181 * so buffer diagnostic messages for later output.
1182 */
1183 char *pdb_msg;
1184 char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1185
1186 if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1187 if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1188 int mvpconf0;
1189 /* Tedious stuff to just do once */
1190 mvpconf0 = read_c0_mvpconf0();
1191 hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1192 if (hook_ntcs > NR_CPUS)
1193 hook_ntcs = NR_CPUS;
1194 for (tc = 0; tc < hook_ntcs; tc++) {
1195 tcnoprog[tc] = 0;
1196 clock_hang_reported[tc] = 0;
1197 }
1198 for (vpe = 0; vpe < 2; vpe++)
1199 for (im = 0; im < 8; im++)
1200 imstuckcount[vpe][im] = 0;
1201 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1202 atomic_set(&idle_hook_initialized, 1000);
1203 } else {
1204 /* Someone else is initializing in parallel - let 'em finish */
1205 while (atomic_read(&idle_hook_initialized) < 1000)
1206 ;
1207 }
1208 }
1209
1210 /* Have we stupidly left IXMT set somewhere? */
1211 if (read_c0_tcstatus() & 0x400) {
1212 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1213 ehb();
1214 printk("Dangling IXMT in cpu_idle()\n");
1215 }
1216
1217 /* Have we stupidly left an IM bit turned off? */
1218 #define IM_LIMIT 2000
1219 local_irq_save(flags);
1220 mtflags = dmt();
1221 pdb_msg = &id_ho_db_msg[0];
1222 im = read_c0_status();
1223 vpe = current_cpu_data.vpe_id;
1224 for (bit = 0; bit < 8; bit++) {
1225 /*
1226 * In current prototype, I/O interrupts
1227 * are masked for VPE > 0
1228 */
1229 if (vpemask[vpe][bit]) {
1230 if (!(im & (0x100 << bit)))
1231 imstuckcount[vpe][bit]++;
1232 else
1233 imstuckcount[vpe][bit] = 0;
1234 if (imstuckcount[vpe][bit] > IM_LIMIT) {
1235 set_c0_status(0x100 << bit);
1236 ehb();
1237 imstuckcount[vpe][bit] = 0;
1238 pdb_msg += sprintf(pdb_msg,
1239 "Dangling IM %d fixed for VPE %d\n", bit,
1240 vpe);
1241 }
1242 }
1243 }
1244
1245 emt(mtflags);
1246 local_irq_restore(flags);
1247 if (pdb_msg != &id_ho_db_msg[0])
1248 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1249 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1250
1251 smtc_ipi_replay();
1252 }
1253
1254 void smtc_soft_dump(void)
1255 {
1256 int i;
1257
1258 printk("Counter Interrupts taken per CPU (TC)\n");
1259 for (i=0; i < NR_CPUS; i++) {
1260 printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1261 }
1262 printk("Self-IPI invocations:\n");
1263 for (i=0; i < NR_CPUS; i++) {
1264 printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1265 }
1266 smtc_ipi_qdump();
1267 printk("%d Recoveries of \"stolen\" FPU\n",
1268 atomic_read(&smtc_fpu_recoveries));
1269 }
1270
1271
1272 /*
1273 * TLB management routines special to SMTC
1274 */
1275
1276 void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1277 {
1278 unsigned long flags, mtflags, tcstat, prevhalt, asid;
1279 int tlb, i;
1280
1281 /*
1282 * It would be nice to be able to use a spinlock here,
1283 * but this is invoked from within TLB flush routines
1284 * that protect themselves with DVPE, so if a lock is
1285 * held by another TC, it'll never be freed.
1286 *
1287 * DVPE/DMT must not be done with interrupts enabled,
1288 * so even so most callers will already have disabled
1289 * them, let's be really careful...
1290 */
1291
1292 local_irq_save(flags);
1293 if (smtc_status & SMTC_TLB_SHARED) {
1294 mtflags = dvpe();
1295 tlb = 0;
1296 } else {
1297 mtflags = dmt();
1298 tlb = cpu_data[cpu].vpe_id;
1299 }
1300 asid = asid_cache(cpu);
1301
1302 do {
1303 if (!((asid += ASID_INC) & ASID_MASK) ) {
1304 if (cpu_has_vtag_icache)
1305 flush_icache_all();
1306 /* Traverse all online CPUs (hack requires contigous range) */
1307 for_each_online_cpu(i) {
1308 /*
1309 * We don't need to worry about our own CPU, nor those of
1310 * CPUs who don't share our TLB.
1311 */
1312 if ((i != smp_processor_id()) &&
1313 ((smtc_status & SMTC_TLB_SHARED) ||
1314 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1315 settc(cpu_data[i].tc_id);
1316 prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1317 if (!prevhalt) {
1318 write_tc_c0_tchalt(TCHALT_H);
1319 mips_ihb();
1320 }
1321 tcstat = read_tc_c0_tcstatus();
1322 smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1323 if (!prevhalt)
1324 write_tc_c0_tchalt(0);
1325 }
1326 }
1327 if (!asid) /* fix version if needed */
1328 asid = ASID_FIRST_VERSION;
1329 local_flush_tlb_all(); /* start new asid cycle */
1330 }
1331 } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1332
1333 /*
1334 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1335 */
1336 for_each_online_cpu(i) {
1337 if ((smtc_status & SMTC_TLB_SHARED) ||
1338 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1339 cpu_context(i, mm) = asid_cache(i) = asid;
1340 }
1341
1342 if (smtc_status & SMTC_TLB_SHARED)
1343 evpe(mtflags);
1344 else
1345 emt(mtflags);
1346 local_irq_restore(flags);
1347 }
1348
1349 /*
1350 * Invoked from macros defined in mmu_context.h
1351 * which must already have disabled interrupts
1352 * and done a DVPE or DMT as appropriate.
1353 */
1354
1355 void smtc_flush_tlb_asid(unsigned long asid)
1356 {
1357 int entry;
1358 unsigned long ehi;
1359
1360 entry = read_c0_wired();
1361
1362 /* Traverse all non-wired entries */
1363 while (entry < current_cpu_data.tlbsize) {
1364 write_c0_index(entry);
1365 ehb();
1366 tlb_read();
1367 ehb();
1368 ehi = read_c0_entryhi();
1369 if ((ehi & ASID_MASK) == asid) {
1370 /*
1371 * Invalidate only entries with specified ASID,
1372 * makiing sure all entries differ.
1373 */
1374 write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1375 write_c0_entrylo0(0);
1376 write_c0_entrylo1(0);
1377 mtc0_tlbw_hazard();
1378 tlb_write_indexed();
1379 }
1380 entry++;
1381 }
1382 write_c0_index(PARKED_INDEX);
1383 tlbw_use_hazard();
1384 }
1385
1386 /*
1387 * Support for single-threading cache flush operations.
1388 */
1389
1390 static int halt_state_save[NR_CPUS];
1391
1392 /*
1393 * To really, really be sure that nothing is being done
1394 * by other TCs, halt them all. This code assumes that
1395 * a DVPE has already been done, so while their Halted
1396 * state is theoretically architecturally unstable, in
1397 * practice, it's not going to change while we're looking
1398 * at it.
1399 */
1400
1401 void smtc_cflush_lockdown(void)
1402 {
1403 int cpu;
1404
1405 for_each_online_cpu(cpu) {
1406 if (cpu != smp_processor_id()) {
1407 settc(cpu_data[cpu].tc_id);
1408 halt_state_save[cpu] = read_tc_c0_tchalt();
1409 write_tc_c0_tchalt(TCHALT_H);
1410 }
1411 }
1412 mips_ihb();
1413 }
1414
1415 /* It would be cheating to change the cpu_online states during a flush! */
1416
1417 void smtc_cflush_release(void)
1418 {
1419 int cpu;
1420
1421 /*
1422 * Start with a hazard barrier to ensure
1423 * that all CACHE ops have played through.
1424 */
1425 mips_ihb();
1426
1427 for_each_online_cpu(cpu) {
1428 if (cpu != smp_processor_id()) {
1429 settc(cpu_data[cpu].tc_id);
1430 write_tc_c0_tchalt(halt_state_save[cpu]);
1431 }
1432 }
1433 mips_ihb();
1434 }