]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/mips/kernel/smtc.c
Merge branch 'mxc-audio' into for-2.6.34
[mirror_ubuntu-zesty-kernel.git] / arch / mips / kernel / smtc.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15 *
16 * Copyright (C) 2004 Mips Technologies, Inc
17 * Copyright (C) 2008 Kevin D. Kissell
18 */
19
20 #include <linux/clockchips.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/cpumask.h>
25 #include <linux/interrupt.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/module.h>
28 #include <linux/ftrace.h>
29
30 #include <asm/cpu.h>
31 #include <asm/processor.h>
32 #include <asm/atomic.h>
33 #include <asm/system.h>
34 #include <asm/hardirq.h>
35 #include <asm/hazards.h>
36 #include <asm/irq.h>
37 #include <asm/mmu_context.h>
38 #include <asm/mipsregs.h>
39 #include <asm/cacheflush.h>
40 #include <asm/time.h>
41 #include <asm/addrspace.h>
42 #include <asm/smtc.h>
43 #include <asm/smtc_proc.h>
44
45 /*
46 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
47 * in do_IRQ. These are passed in setup_irq_smtc() and stored
48 * in this table.
49 */
50 unsigned long irq_hwmask[NR_IRQS];
51
52 #define LOCK_MT_PRA() \
53 local_irq_save(flags); \
54 mtflags = dmt()
55
56 #define UNLOCK_MT_PRA() \
57 emt(mtflags); \
58 local_irq_restore(flags)
59
60 #define LOCK_CORE_PRA() \
61 local_irq_save(flags); \
62 mtflags = dvpe()
63
64 #define UNLOCK_CORE_PRA() \
65 evpe(mtflags); \
66 local_irq_restore(flags)
67
68 /*
69 * Data structures purely associated with SMTC parallelism
70 */
71
72
73 /*
74 * Table for tracking ASIDs whose lifetime is prolonged.
75 */
76
77 asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
78
79 /*
80 * Number of InterProcessor Interrupt (IPI) message buffers to allocate
81 */
82
83 #define IPIBUF_PER_CPU 4
84
85 struct smtc_ipi_q IPIQ[NR_CPUS];
86 static struct smtc_ipi_q freeIPIq;
87
88
89 /* Forward declarations */
90
91 void ipi_decode(struct smtc_ipi *);
92 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
93 static void setup_cross_vpe_interrupts(unsigned int nvpe);
94 void init_smtc_stats(void);
95
96 /* Global SMTC Status */
97
98 unsigned int smtc_status;
99
100 /* Boot command line configuration overrides */
101
102 static int vpe0limit;
103 static int ipibuffers;
104 static int nostlb;
105 static int asidmask;
106 unsigned long smtc_asid_mask = 0xff;
107
108 static int __init vpe0tcs(char *str)
109 {
110 get_option(&str, &vpe0limit);
111
112 return 1;
113 }
114
115 static int __init ipibufs(char *str)
116 {
117 get_option(&str, &ipibuffers);
118 return 1;
119 }
120
121 static int __init stlb_disable(char *s)
122 {
123 nostlb = 1;
124 return 1;
125 }
126
127 static int __init asidmask_set(char *str)
128 {
129 get_option(&str, &asidmask);
130 switch (asidmask) {
131 case 0x1:
132 case 0x3:
133 case 0x7:
134 case 0xf:
135 case 0x1f:
136 case 0x3f:
137 case 0x7f:
138 case 0xff:
139 smtc_asid_mask = (unsigned long)asidmask;
140 break;
141 default:
142 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
143 }
144 return 1;
145 }
146
147 __setup("vpe0tcs=", vpe0tcs);
148 __setup("ipibufs=", ipibufs);
149 __setup("nostlb", stlb_disable);
150 __setup("asidmask=", asidmask_set);
151
152 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
153
154 static int hang_trig;
155
156 static int __init hangtrig_enable(char *s)
157 {
158 hang_trig = 1;
159 return 1;
160 }
161
162
163 __setup("hangtrig", hangtrig_enable);
164
165 #define DEFAULT_BLOCKED_IPI_LIMIT 32
166
167 static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
168
169 static int __init tintq(char *str)
170 {
171 get_option(&str, &timerq_limit);
172 return 1;
173 }
174
175 __setup("tintq=", tintq);
176
177 static int imstuckcount[2][8];
178 /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
179 static int vpemask[2][8] = {
180 {0, 0, 1, 0, 0, 0, 0, 1},
181 {0, 0, 0, 0, 0, 0, 0, 1}
182 };
183 int tcnoprog[NR_CPUS];
184 static atomic_t idle_hook_initialized = {0};
185 static int clock_hang_reported[NR_CPUS];
186
187 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
188
189 /*
190 * Configure shared TLB - VPC configuration bit must be set by caller
191 */
192
193 static void smtc_configure_tlb(void)
194 {
195 int i, tlbsiz, vpes;
196 unsigned long mvpconf0;
197 unsigned long config1val;
198
199 /* Set up ASID preservation table */
200 for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
201 for(i = 0; i < MAX_SMTC_ASIDS; i++) {
202 smtc_live_asid[vpes][i] = 0;
203 }
204 }
205 mvpconf0 = read_c0_mvpconf0();
206
207 if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
208 >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
209 /* If we have multiple VPEs, try to share the TLB */
210 if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
211 /*
212 * If TLB sizing is programmable, shared TLB
213 * size is the total available complement.
214 * Otherwise, we have to take the sum of all
215 * static VPE TLB entries.
216 */
217 if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
218 >> MVPCONF0_PTLBE_SHIFT)) == 0) {
219 /*
220 * If there's more than one VPE, there had better
221 * be more than one TC, because we need one to bind
222 * to each VPE in turn to be able to read
223 * its configuration state!
224 */
225 settc(1);
226 /* Stop the TC from doing anything foolish */
227 write_tc_c0_tchalt(TCHALT_H);
228 mips_ihb();
229 /* No need to un-Halt - that happens later anyway */
230 for (i=0; i < vpes; i++) {
231 write_tc_c0_tcbind(i);
232 /*
233 * To be 100% sure we're really getting the right
234 * information, we exit the configuration state
235 * and do an IHB after each rebinding.
236 */
237 write_c0_mvpcontrol(
238 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
239 mips_ihb();
240 /*
241 * Only count if the MMU Type indicated is TLB
242 */
243 if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
244 config1val = read_vpe_c0_config1();
245 tlbsiz += ((config1val >> 25) & 0x3f) + 1;
246 }
247
248 /* Put core back in configuration state */
249 write_c0_mvpcontrol(
250 read_c0_mvpcontrol() | MVPCONTROL_VPC );
251 mips_ihb();
252 }
253 }
254 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
255 ehb();
256
257 /*
258 * Setup kernel data structures to use software total,
259 * rather than read the per-VPE Config1 value. The values
260 * for "CPU 0" gets copied to all the other CPUs as part
261 * of their initialization in smtc_cpu_setup().
262 */
263
264 /* MIPS32 limits TLB indices to 64 */
265 if (tlbsiz > 64)
266 tlbsiz = 64;
267 cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
268 smtc_status |= SMTC_TLB_SHARED;
269 local_flush_tlb_all();
270
271 printk("TLB of %d entry pairs shared by %d VPEs\n",
272 tlbsiz, vpes);
273 } else {
274 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
275 }
276 }
277 }
278
279
280 /*
281 * Incrementally build the CPU map out of constituent MIPS MT cores,
282 * using the specified available VPEs and TCs. Plaform code needs
283 * to ensure that each MIPS MT core invokes this routine on reset,
284 * one at a time(!).
285 *
286 * This version of the build_cpu_map and prepare_cpus routines assumes
287 * that *all* TCs of a MIPS MT core will be used for Linux, and that
288 * they will be spread across *all* available VPEs (to minimise the
289 * loss of efficiency due to exception service serialization).
290 * An improved version would pick up configuration information and
291 * possibly leave some TCs/VPEs as "slave" processors.
292 *
293 * Use c0_MVPConf0 to find out how many TCs are available, setting up
294 * cpu_possible_map and the logical/physical mappings.
295 */
296
297 int __init smtc_build_cpu_map(int start_cpu_slot)
298 {
299 int i, ntcs;
300
301 /*
302 * The CPU map isn't actually used for anything at this point,
303 * so it's not clear what else we should do apart from set
304 * everything up so that "logical" = "physical".
305 */
306 ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
307 for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
308 set_cpu_possible(i, true);
309 __cpu_number_map[i] = i;
310 __cpu_logical_map[i] = i;
311 }
312 #ifdef CONFIG_MIPS_MT_FPAFF
313 /* Initialize map of CPUs with FPUs */
314 cpus_clear(mt_fpu_cpumask);
315 #endif
316
317 /* One of those TC's is the one booting, and not a secondary... */
318 printk("%i available secondary CPU TC(s)\n", i - 1);
319
320 return i;
321 }
322
323 /*
324 * Common setup before any secondaries are started
325 * Make sure all CPU's are in a sensible state before we boot any of the
326 * secondaries.
327 *
328 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
329 * as possible across the available VPEs.
330 */
331
332 static void smtc_tc_setup(int vpe, int tc, int cpu)
333 {
334 settc(tc);
335 write_tc_c0_tchalt(TCHALT_H);
336 mips_ihb();
337 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
338 & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
339 | TCSTATUS_A);
340 /*
341 * TCContext gets an offset from the base of the IPIQ array
342 * to be used in low-level code to detect the presence of
343 * an active IPI queue
344 */
345 write_tc_c0_tccontext((sizeof(struct smtc_ipi_q) * cpu) << 16);
346 /* Bind tc to vpe */
347 write_tc_c0_tcbind(vpe);
348 /* In general, all TCs should have the same cpu_data indications */
349 memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
350 /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
351 if (cpu_data[0].cputype == CPU_34K ||
352 cpu_data[0].cputype == CPU_1004K)
353 cpu_data[cpu].options &= ~MIPS_CPU_FPU;
354 cpu_data[cpu].vpe_id = vpe;
355 cpu_data[cpu].tc_id = tc;
356 /* Multi-core SMTC hasn't been tested, but be prepared */
357 cpu_data[cpu].core = (read_vpe_c0_ebase() >> 1) & 0xff;
358 }
359
360 /*
361 * Tweak to get Count registes in as close a sync as possible.
362 * Value seems good for 34K-class cores.
363 */
364
365 #define CP0_SKEW 8
366
367 void smtc_prepare_cpus(int cpus)
368 {
369 int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu;
370 unsigned long flags;
371 unsigned long val;
372 int nipi;
373 struct smtc_ipi *pipi;
374
375 /* disable interrupts so we can disable MT */
376 local_irq_save(flags);
377 /* disable MT so we can configure */
378 dvpe();
379 dmt();
380
381 spin_lock_init(&freeIPIq.lock);
382
383 /*
384 * We probably don't have as many VPEs as we do SMP "CPUs",
385 * but it's possible - and in any case we'll never use more!
386 */
387 for (i=0; i<NR_CPUS; i++) {
388 IPIQ[i].head = IPIQ[i].tail = NULL;
389 spin_lock_init(&IPIQ[i].lock);
390 IPIQ[i].depth = 0;
391 IPIQ[i].resched_flag = 0; /* No reschedules queued initially */
392 }
393
394 /* cpu_data index starts at zero */
395 cpu = 0;
396 cpu_data[cpu].vpe_id = 0;
397 cpu_data[cpu].tc_id = 0;
398 cpu_data[cpu].core = (read_c0_ebase() >> 1) & 0xff;
399 cpu++;
400
401 /* Report on boot-time options */
402 mips_mt_set_cpuoptions();
403 if (vpelimit > 0)
404 printk("Limit of %d VPEs set\n", vpelimit);
405 if (tclimit > 0)
406 printk("Limit of %d TCs set\n", tclimit);
407 if (nostlb) {
408 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
409 }
410 if (asidmask)
411 printk("ASID mask value override to 0x%x\n", asidmask);
412
413 /* Temporary */
414 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
415 if (hang_trig)
416 printk("Logic Analyser Trigger on suspected TC hang\n");
417 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
418
419 /* Put MVPE's into 'configuration state' */
420 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
421
422 val = read_c0_mvpconf0();
423 nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
424 if (vpelimit > 0 && nvpe > vpelimit)
425 nvpe = vpelimit;
426 ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
427 if (ntc > NR_CPUS)
428 ntc = NR_CPUS;
429 if (tclimit > 0 && ntc > tclimit)
430 ntc = tclimit;
431 slop = ntc % nvpe;
432 for (i = 0; i < nvpe; i++) {
433 tcpervpe[i] = ntc / nvpe;
434 if (slop) {
435 if((slop - i) > 0) tcpervpe[i]++;
436 }
437 }
438 /* Handle command line override for VPE0 */
439 if (vpe0limit > ntc) vpe0limit = ntc;
440 if (vpe0limit > 0) {
441 int slopslop;
442 if (vpe0limit < tcpervpe[0]) {
443 /* Reducing TC count - distribute to others */
444 slop = tcpervpe[0] - vpe0limit;
445 slopslop = slop % (nvpe - 1);
446 tcpervpe[0] = vpe0limit;
447 for (i = 1; i < nvpe; i++) {
448 tcpervpe[i] += slop / (nvpe - 1);
449 if(slopslop && ((slopslop - (i - 1) > 0)))
450 tcpervpe[i]++;
451 }
452 } else if (vpe0limit > tcpervpe[0]) {
453 /* Increasing TC count - steal from others */
454 slop = vpe0limit - tcpervpe[0];
455 slopslop = slop % (nvpe - 1);
456 tcpervpe[0] = vpe0limit;
457 for (i = 1; i < nvpe; i++) {
458 tcpervpe[i] -= slop / (nvpe - 1);
459 if(slopslop && ((slopslop - (i - 1) > 0)))
460 tcpervpe[i]--;
461 }
462 }
463 }
464
465 /* Set up shared TLB */
466 smtc_configure_tlb();
467
468 for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
469 if (tcpervpe[vpe] == 0)
470 continue;
471 if (vpe != 0)
472 printk(", ");
473 printk("VPE %d: TC", vpe);
474 for (i = 0; i < tcpervpe[vpe]; i++) {
475 /*
476 * TC 0 is bound to VPE 0 at reset,
477 * and is presumably executing this
478 * code. Leave it alone!
479 */
480 if (tc != 0) {
481 smtc_tc_setup(vpe, tc, cpu);
482 cpu++;
483 }
484 printk(" %d", tc);
485 tc++;
486 }
487 if (vpe != 0) {
488 /*
489 * Allow this VPE to control others.
490 */
491 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() |
492 VPECONF0_MVP);
493
494 /*
495 * Clear any stale software interrupts from VPE's Cause
496 */
497 write_vpe_c0_cause(0);
498
499 /*
500 * Clear ERL/EXL of VPEs other than 0
501 * and set restricted interrupt enable/mask.
502 */
503 write_vpe_c0_status((read_vpe_c0_status()
504 & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
505 | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
506 | ST0_IE));
507 /*
508 * set config to be the same as vpe0,
509 * particularly kseg0 coherency alg
510 */
511 write_vpe_c0_config(read_c0_config());
512 /* Clear any pending timer interrupt */
513 write_vpe_c0_compare(0);
514 /* Propagate Config7 */
515 write_vpe_c0_config7(read_c0_config7());
516 write_vpe_c0_count(read_c0_count() + CP0_SKEW);
517 ehb();
518 }
519 /* enable multi-threading within VPE */
520 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
521 /* enable the VPE */
522 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
523 }
524
525 /*
526 * Pull any physically present but unused TCs out of circulation.
527 */
528 while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
529 set_cpu_possible(tc, false);
530 set_cpu_present(tc, false);
531 tc++;
532 }
533
534 /* release config state */
535 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
536
537 printk("\n");
538
539 /* Set up coprocessor affinity CPU mask(s) */
540
541 #ifdef CONFIG_MIPS_MT_FPAFF
542 for (tc = 0; tc < ntc; tc++) {
543 if (cpu_data[tc].options & MIPS_CPU_FPU)
544 cpu_set(tc, mt_fpu_cpumask);
545 }
546 #endif
547
548 /* set up ipi interrupts... */
549
550 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
551
552 setup_cross_vpe_interrupts(nvpe);
553
554 /* Set up queue of free IPI "messages". */
555 nipi = NR_CPUS * IPIBUF_PER_CPU;
556 if (ipibuffers > 0)
557 nipi = ipibuffers;
558
559 pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
560 if (pipi == NULL)
561 panic("kmalloc of IPI message buffers failed\n");
562 else
563 printk("IPI buffer pool of %d buffers\n", nipi);
564 for (i = 0; i < nipi; i++) {
565 smtc_ipi_nq(&freeIPIq, pipi);
566 pipi++;
567 }
568
569 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
570 emt(EMT_ENABLE);
571 evpe(EVPE_ENABLE);
572 local_irq_restore(flags);
573 /* Initialize SMTC /proc statistics/diagnostics */
574 init_smtc_stats();
575 }
576
577
578 /*
579 * Setup the PC, SP, and GP of a secondary processor and start it
580 * running!
581 * smp_bootstrap is the place to resume from
582 * __KSTK_TOS(idle) is apparently the stack pointer
583 * (unsigned long)idle->thread_info the gp
584 *
585 */
586 void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
587 {
588 extern u32 kernelsp[NR_CPUS];
589 unsigned long flags;
590 int mtflags;
591
592 LOCK_MT_PRA();
593 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
594 dvpe();
595 }
596 settc(cpu_data[cpu].tc_id);
597
598 /* pc */
599 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
600
601 /* stack pointer */
602 kernelsp[cpu] = __KSTK_TOS(idle);
603 write_tc_gpr_sp(__KSTK_TOS(idle));
604
605 /* global pointer */
606 write_tc_gpr_gp((unsigned long)task_thread_info(idle));
607
608 smtc_status |= SMTC_MTC_ACTIVE;
609 write_tc_c0_tchalt(0);
610 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
611 evpe(EVPE_ENABLE);
612 }
613 UNLOCK_MT_PRA();
614 }
615
616 void smtc_init_secondary(void)
617 {
618 local_irq_enable();
619 }
620
621 void smtc_smp_finish(void)
622 {
623 int cpu = smp_processor_id();
624
625 /*
626 * Lowest-numbered CPU per VPE starts a clock tick.
627 * Like per_cpu_trap_init() hack, this assumes that
628 * SMTC init code assigns TCs consdecutively and
629 * in ascending order across available VPEs.
630 */
631 if (cpu > 0 && (cpu_data[cpu].vpe_id != cpu_data[cpu - 1].vpe_id))
632 write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
633
634 printk("TC %d going on-line as CPU %d\n",
635 cpu_data[smp_processor_id()].tc_id, smp_processor_id());
636 }
637
638 void smtc_cpus_done(void)
639 {
640 }
641
642 /*
643 * Support for SMTC-optimized driver IRQ registration
644 */
645
646 /*
647 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
648 * in do_IRQ. These are passed in setup_irq_smtc() and stored
649 * in this table.
650 */
651
652 int setup_irq_smtc(unsigned int irq, struct irqaction * new,
653 unsigned long hwmask)
654 {
655 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
656 unsigned int vpe = current_cpu_data.vpe_id;
657
658 vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
659 #endif
660 irq_hwmask[irq] = hwmask;
661
662 return setup_irq(irq, new);
663 }
664
665 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
666 /*
667 * Support for IRQ affinity to TCs
668 */
669
670 void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity)
671 {
672 /*
673 * If a "fast path" cache of quickly decodable affinity state
674 * is maintained, this is where it gets done, on a call up
675 * from the platform affinity code.
676 */
677 }
678
679 void smtc_forward_irq(unsigned int irq)
680 {
681 int target;
682
683 /*
684 * OK wise guy, now figure out how to get the IRQ
685 * to be serviced on an authorized "CPU".
686 *
687 * Ideally, to handle the situation where an IRQ has multiple
688 * eligible CPUS, we would maintain state per IRQ that would
689 * allow a fair distribution of service requests. Since the
690 * expected use model is any-or-only-one, for simplicity
691 * and efficiency, we just pick the easiest one to find.
692 */
693
694 target = cpumask_first(irq_desc[irq].affinity);
695
696 /*
697 * We depend on the platform code to have correctly processed
698 * IRQ affinity change requests to ensure that the IRQ affinity
699 * mask has been purged of bits corresponding to nonexistent and
700 * offline "CPUs", and to TCs bound to VPEs other than the VPE
701 * connected to the physical interrupt input for the interrupt
702 * in question. Otherwise we have a nasty problem with interrupt
703 * mask management. This is best handled in non-performance-critical
704 * platform IRQ affinity setting code, to minimize interrupt-time
705 * checks.
706 */
707
708 /* If no one is eligible, service locally */
709 if (target >= NR_CPUS) {
710 do_IRQ_no_affinity(irq);
711 return;
712 }
713
714 smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq);
715 }
716
717 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
718
719 /*
720 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
721 * Within a VPE one TC can interrupt another by different approaches.
722 * The easiest to get right would probably be to make all TCs except
723 * the target IXMT and set a software interrupt, but an IXMT-based
724 * scheme requires that a handler must run before a new IPI could
725 * be sent, which would break the "broadcast" loops in MIPS MT.
726 * A more gonzo approach within a VPE is to halt the TC, extract
727 * its Restart, Status, and a couple of GPRs, and program the Restart
728 * address to emulate an interrupt.
729 *
730 * Within a VPE, one can be confident that the target TC isn't in
731 * a critical EXL state when halted, since the write to the Halt
732 * register could not have issued on the writing thread if the
733 * halting thread had EXL set. So k0 and k1 of the target TC
734 * can be used by the injection code. Across VPEs, one can't
735 * be certain that the target TC isn't in a critical exception
736 * state. So we try a two-step process of sending a software
737 * interrupt to the target VPE, which either handles the event
738 * itself (if it was the target) or injects the event within
739 * the VPE.
740 */
741
742 static void smtc_ipi_qdump(void)
743 {
744 int i;
745 struct smtc_ipi *temp;
746
747 for (i = 0; i < NR_CPUS ;i++) {
748 pr_info("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
749 i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
750 IPIQ[i].depth);
751 temp = IPIQ[i].head;
752
753 while (temp != IPIQ[i].tail) {
754 pr_debug("%d %d %d: ", temp->type, temp->dest,
755 (int)temp->arg);
756 #ifdef SMTC_IPI_DEBUG
757 pr_debug("%u %lu\n", temp->sender, temp->stamp);
758 #else
759 pr_debug("\n");
760 #endif
761 temp = temp->flink;
762 }
763 }
764 }
765
766 /*
767 * The standard atomic.h primitives don't quite do what we want
768 * here: We need an atomic add-and-return-previous-value (which
769 * could be done with atomic_add_return and a decrement) and an
770 * atomic set/zero-and-return-previous-value (which can't really
771 * be done with the atomic.h primitives). And since this is
772 * MIPS MT, we can assume that we have LL/SC.
773 */
774 static inline int atomic_postincrement(atomic_t *v)
775 {
776 unsigned long result;
777
778 unsigned long temp;
779
780 __asm__ __volatile__(
781 "1: ll %0, %2 \n"
782 " addu %1, %0, 1 \n"
783 " sc %1, %2 \n"
784 " beqz %1, 1b \n"
785 __WEAK_LLSC_MB
786 : "=&r" (result), "=&r" (temp), "=m" (v->counter)
787 : "m" (v->counter)
788 : "memory");
789
790 return result;
791 }
792
793 void smtc_send_ipi(int cpu, int type, unsigned int action)
794 {
795 int tcstatus;
796 struct smtc_ipi *pipi;
797 unsigned long flags;
798 int mtflags;
799 unsigned long tcrestart;
800 extern void r4k_wait_irqoff(void), __pastwait(void);
801 int set_resched_flag = (type == LINUX_SMP_IPI &&
802 action == SMP_RESCHEDULE_YOURSELF);
803
804 if (cpu == smp_processor_id()) {
805 printk("Cannot Send IPI to self!\n");
806 return;
807 }
808 if (set_resched_flag && IPIQ[cpu].resched_flag != 0)
809 return; /* There is a reschedule queued already */
810
811 /* Set up a descriptor, to be delivered either promptly or queued */
812 pipi = smtc_ipi_dq(&freeIPIq);
813 if (pipi == NULL) {
814 bust_spinlocks(1);
815 mips_mt_regdump(dvpe());
816 panic("IPI Msg. Buffers Depleted\n");
817 }
818 pipi->type = type;
819 pipi->arg = (void *)action;
820 pipi->dest = cpu;
821 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
822 /* If not on same VPE, enqueue and send cross-VPE interrupt */
823 IPIQ[cpu].resched_flag |= set_resched_flag;
824 smtc_ipi_nq(&IPIQ[cpu], pipi);
825 LOCK_CORE_PRA();
826 settc(cpu_data[cpu].tc_id);
827 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
828 UNLOCK_CORE_PRA();
829 } else {
830 /*
831 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
832 * since ASID shootdown on the other VPE may
833 * collide with this operation.
834 */
835 LOCK_CORE_PRA();
836 settc(cpu_data[cpu].tc_id);
837 /* Halt the targeted TC */
838 write_tc_c0_tchalt(TCHALT_H);
839 mips_ihb();
840
841 /*
842 * Inspect TCStatus - if IXMT is set, we have to queue
843 * a message. Otherwise, we set up the "interrupt"
844 * of the other TC
845 */
846 tcstatus = read_tc_c0_tcstatus();
847
848 if ((tcstatus & TCSTATUS_IXMT) != 0) {
849 /*
850 * If we're in the the irq-off version of the wait
851 * loop, we need to force exit from the wait and
852 * do a direct post of the IPI.
853 */
854 if (cpu_wait == r4k_wait_irqoff) {
855 tcrestart = read_tc_c0_tcrestart();
856 if (tcrestart >= (unsigned long)r4k_wait_irqoff
857 && tcrestart < (unsigned long)__pastwait) {
858 write_tc_c0_tcrestart(__pastwait);
859 tcstatus &= ~TCSTATUS_IXMT;
860 write_tc_c0_tcstatus(tcstatus);
861 goto postdirect;
862 }
863 }
864 /*
865 * Otherwise we queue the message for the target TC
866 * to pick up when he does a local_irq_restore()
867 */
868 write_tc_c0_tchalt(0);
869 UNLOCK_CORE_PRA();
870 IPIQ[cpu].resched_flag |= set_resched_flag;
871 smtc_ipi_nq(&IPIQ[cpu], pipi);
872 } else {
873 postdirect:
874 post_direct_ipi(cpu, pipi);
875 write_tc_c0_tchalt(0);
876 UNLOCK_CORE_PRA();
877 }
878 }
879 }
880
881 /*
882 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
883 */
884 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
885 {
886 struct pt_regs *kstack;
887 unsigned long tcstatus;
888 unsigned long tcrestart;
889 extern u32 kernelsp[NR_CPUS];
890 extern void __smtc_ipi_vector(void);
891 //printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
892
893 /* Extract Status, EPC from halted TC */
894 tcstatus = read_tc_c0_tcstatus();
895 tcrestart = read_tc_c0_tcrestart();
896 /* If TCRestart indicates a WAIT instruction, advance the PC */
897 if ((tcrestart & 0x80000000)
898 && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
899 tcrestart += 4;
900 }
901 /*
902 * Save on TC's future kernel stack
903 *
904 * CU bit of Status is indicator that TC was
905 * already running on a kernel stack...
906 */
907 if (tcstatus & ST0_CU0) {
908 /* Note that this "- 1" is pointer arithmetic */
909 kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
910 } else {
911 kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
912 }
913
914 kstack->cp0_epc = (long)tcrestart;
915 /* Save TCStatus */
916 kstack->cp0_tcstatus = tcstatus;
917 /* Pass token of operation to be performed kernel stack pad area */
918 kstack->pad0[4] = (unsigned long)pipi;
919 /* Pass address of function to be called likewise */
920 kstack->pad0[5] = (unsigned long)&ipi_decode;
921 /* Set interrupt exempt and kernel mode */
922 tcstatus |= TCSTATUS_IXMT;
923 tcstatus &= ~TCSTATUS_TKSU;
924 write_tc_c0_tcstatus(tcstatus);
925 ehb();
926 /* Set TC Restart address to be SMTC IPI vector */
927 write_tc_c0_tcrestart(__smtc_ipi_vector);
928 }
929
930 static void ipi_resched_interrupt(void)
931 {
932 /* Return from interrupt should be enough to cause scheduler check */
933 }
934
935 static void ipi_call_interrupt(void)
936 {
937 /* Invoke generic function invocation code in smp.c */
938 smp_call_function_interrupt();
939 }
940
941 DECLARE_PER_CPU(struct clock_event_device, mips_clockevent_device);
942
943 static void __irq_entry smtc_clock_tick_interrupt(void)
944 {
945 unsigned int cpu = smp_processor_id();
946 struct clock_event_device *cd;
947 int irq = MIPS_CPU_IRQ_BASE + 1;
948
949 irq_enter();
950 kstat_incr_irqs_this_cpu(irq, irq_to_desc(irq));
951 cd = &per_cpu(mips_clockevent_device, cpu);
952 cd->event_handler(cd);
953 irq_exit();
954 }
955
956 void ipi_decode(struct smtc_ipi *pipi)
957 {
958 void *arg_copy = pipi->arg;
959 int type_copy = pipi->type;
960
961 smtc_ipi_nq(&freeIPIq, pipi);
962
963 switch (type_copy) {
964 case SMTC_CLOCK_TICK:
965 smtc_clock_tick_interrupt();
966 break;
967
968 case LINUX_SMP_IPI:
969 switch ((int)arg_copy) {
970 case SMP_RESCHEDULE_YOURSELF:
971 ipi_resched_interrupt();
972 break;
973 case SMP_CALL_FUNCTION:
974 ipi_call_interrupt();
975 break;
976 default:
977 printk("Impossible SMTC IPI Argument 0x%x\n",
978 (int)arg_copy);
979 break;
980 }
981 break;
982 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
983 case IRQ_AFFINITY_IPI:
984 /*
985 * Accept a "forwarded" interrupt that was initially
986 * taken by a TC who doesn't have affinity for the IRQ.
987 */
988 do_IRQ_no_affinity((int)arg_copy);
989 break;
990 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
991 default:
992 printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
993 break;
994 }
995 }
996
997 /*
998 * Similar to smtc_ipi_replay(), but invoked from context restore,
999 * so it reuses the current exception frame rather than set up a
1000 * new one with self_ipi.
1001 */
1002
1003 void deferred_smtc_ipi(void)
1004 {
1005 int cpu = smp_processor_id();
1006
1007 /*
1008 * Test is not atomic, but much faster than a dequeue,
1009 * and the vast majority of invocations will have a null queue.
1010 * If irq_disabled when this was called, then any IPIs queued
1011 * after we test last will be taken on the next irq_enable/restore.
1012 * If interrupts were enabled, then any IPIs added after the
1013 * last test will be taken directly.
1014 */
1015
1016 while (IPIQ[cpu].head != NULL) {
1017 struct smtc_ipi_q *q = &IPIQ[cpu];
1018 struct smtc_ipi *pipi;
1019 unsigned long flags;
1020
1021 /*
1022 * It may be possible we'll come in with interrupts
1023 * already enabled.
1024 */
1025 local_irq_save(flags);
1026 spin_lock(&q->lock);
1027 pipi = __smtc_ipi_dq(q);
1028 spin_unlock(&q->lock);
1029 if (pipi != NULL) {
1030 if (pipi->type == LINUX_SMP_IPI &&
1031 (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1032 IPIQ[cpu].resched_flag = 0;
1033 ipi_decode(pipi);
1034 }
1035 /*
1036 * The use of the __raw_local restore isn't
1037 * as obviously necessary here as in smtc_ipi_replay(),
1038 * but it's more efficient, given that we're already
1039 * running down the IPI queue.
1040 */
1041 __raw_local_irq_restore(flags);
1042 }
1043 }
1044
1045 /*
1046 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
1047 * set via cross-VPE MTTR manipulation of the Cause register. It would be
1048 * in some regards preferable to have external logic for "doorbell" hardware
1049 * interrupts.
1050 */
1051
1052 static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
1053
1054 static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
1055 {
1056 int my_vpe = cpu_data[smp_processor_id()].vpe_id;
1057 int my_tc = cpu_data[smp_processor_id()].tc_id;
1058 int cpu;
1059 struct smtc_ipi *pipi;
1060 unsigned long tcstatus;
1061 int sent;
1062 unsigned long flags;
1063 unsigned int mtflags;
1064 unsigned int vpflags;
1065
1066 /*
1067 * So long as cross-VPE interrupts are done via
1068 * MFTR/MTTR read-modify-writes of Cause, we need
1069 * to stop other VPEs whenever the local VPE does
1070 * anything similar.
1071 */
1072 local_irq_save(flags);
1073 vpflags = dvpe();
1074 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
1075 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
1076 irq_enable_hazard();
1077 evpe(vpflags);
1078 local_irq_restore(flags);
1079
1080 /*
1081 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
1082 * queued for TCs on this VPE other than the current one.
1083 * Return-from-interrupt should cause us to drain the queue
1084 * for the current TC, so we ought not to have to do it explicitly here.
1085 */
1086
1087 for_each_online_cpu(cpu) {
1088 if (cpu_data[cpu].vpe_id != my_vpe)
1089 continue;
1090
1091 pipi = smtc_ipi_dq(&IPIQ[cpu]);
1092 if (pipi != NULL) {
1093 if (cpu_data[cpu].tc_id != my_tc) {
1094 sent = 0;
1095 LOCK_MT_PRA();
1096 settc(cpu_data[cpu].tc_id);
1097 write_tc_c0_tchalt(TCHALT_H);
1098 mips_ihb();
1099 tcstatus = read_tc_c0_tcstatus();
1100 if ((tcstatus & TCSTATUS_IXMT) == 0) {
1101 post_direct_ipi(cpu, pipi);
1102 sent = 1;
1103 }
1104 write_tc_c0_tchalt(0);
1105 UNLOCK_MT_PRA();
1106 if (!sent) {
1107 smtc_ipi_req(&IPIQ[cpu], pipi);
1108 }
1109 } else {
1110 /*
1111 * ipi_decode() should be called
1112 * with interrupts off
1113 */
1114 local_irq_save(flags);
1115 if (pipi->type == LINUX_SMP_IPI &&
1116 (int)pipi->arg == SMP_RESCHEDULE_YOURSELF)
1117 IPIQ[cpu].resched_flag = 0;
1118 ipi_decode(pipi);
1119 local_irq_restore(flags);
1120 }
1121 }
1122 }
1123
1124 return IRQ_HANDLED;
1125 }
1126
1127 static void ipi_irq_dispatch(void)
1128 {
1129 do_IRQ(cpu_ipi_irq);
1130 }
1131
1132 static struct irqaction irq_ipi = {
1133 .handler = ipi_interrupt,
1134 .flags = IRQF_DISABLED | IRQF_PERCPU,
1135 .name = "SMTC_IPI"
1136 };
1137
1138 static void setup_cross_vpe_interrupts(unsigned int nvpe)
1139 {
1140 if (nvpe < 1)
1141 return;
1142
1143 if (!cpu_has_vint)
1144 panic("SMTC Kernel requires Vectored Interrupt support");
1145
1146 set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1147
1148 setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1149
1150 set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
1151 }
1152
1153 /*
1154 * SMTC-specific hacks invoked from elsewhere in the kernel.
1155 */
1156
1157 /*
1158 * smtc_ipi_replay is called from raw_local_irq_restore
1159 */
1160
1161 void smtc_ipi_replay(void)
1162 {
1163 unsigned int cpu = smp_processor_id();
1164
1165 /*
1166 * To the extent that we've ever turned interrupts off,
1167 * we may have accumulated deferred IPIs. This is subtle.
1168 * we should be OK: If we pick up something and dispatch
1169 * it here, that's great. If we see nothing, but concurrent
1170 * with this operation, another TC sends us an IPI, IXMT
1171 * is clear, and we'll handle it as a real pseudo-interrupt
1172 * and not a pseudo-pseudo interrupt. The important thing
1173 * is to do the last check for queued message *after* the
1174 * re-enabling of interrupts.
1175 */
1176 while (IPIQ[cpu].head != NULL) {
1177 struct smtc_ipi_q *q = &IPIQ[cpu];
1178 struct smtc_ipi *pipi;
1179 unsigned long flags;
1180
1181 /*
1182 * It's just possible we'll come in with interrupts
1183 * already enabled.
1184 */
1185 local_irq_save(flags);
1186
1187 spin_lock(&q->lock);
1188 pipi = __smtc_ipi_dq(q);
1189 spin_unlock(&q->lock);
1190 /*
1191 ** But use a raw restore here to avoid recursion.
1192 */
1193 __raw_local_irq_restore(flags);
1194
1195 if (pipi) {
1196 self_ipi(pipi);
1197 smtc_cpu_stats[cpu].selfipis++;
1198 }
1199 }
1200 }
1201
1202 EXPORT_SYMBOL(smtc_ipi_replay);
1203
1204 void smtc_idle_loop_hook(void)
1205 {
1206 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1207 int im;
1208 int flags;
1209 int mtflags;
1210 int bit;
1211 int vpe;
1212 int tc;
1213 int hook_ntcs;
1214 /*
1215 * printk within DMT-protected regions can deadlock,
1216 * so buffer diagnostic messages for later output.
1217 */
1218 char *pdb_msg;
1219 char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1220
1221 if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1222 if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1223 int mvpconf0;
1224 /* Tedious stuff to just do once */
1225 mvpconf0 = read_c0_mvpconf0();
1226 hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1227 if (hook_ntcs > NR_CPUS)
1228 hook_ntcs = NR_CPUS;
1229 for (tc = 0; tc < hook_ntcs; tc++) {
1230 tcnoprog[tc] = 0;
1231 clock_hang_reported[tc] = 0;
1232 }
1233 for (vpe = 0; vpe < 2; vpe++)
1234 for (im = 0; im < 8; im++)
1235 imstuckcount[vpe][im] = 0;
1236 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1237 atomic_set(&idle_hook_initialized, 1000);
1238 } else {
1239 /* Someone else is initializing in parallel - let 'em finish */
1240 while (atomic_read(&idle_hook_initialized) < 1000)
1241 ;
1242 }
1243 }
1244
1245 /* Have we stupidly left IXMT set somewhere? */
1246 if (read_c0_tcstatus() & 0x400) {
1247 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1248 ehb();
1249 printk("Dangling IXMT in cpu_idle()\n");
1250 }
1251
1252 /* Have we stupidly left an IM bit turned off? */
1253 #define IM_LIMIT 2000
1254 local_irq_save(flags);
1255 mtflags = dmt();
1256 pdb_msg = &id_ho_db_msg[0];
1257 im = read_c0_status();
1258 vpe = current_cpu_data.vpe_id;
1259 for (bit = 0; bit < 8; bit++) {
1260 /*
1261 * In current prototype, I/O interrupts
1262 * are masked for VPE > 0
1263 */
1264 if (vpemask[vpe][bit]) {
1265 if (!(im & (0x100 << bit)))
1266 imstuckcount[vpe][bit]++;
1267 else
1268 imstuckcount[vpe][bit] = 0;
1269 if (imstuckcount[vpe][bit] > IM_LIMIT) {
1270 set_c0_status(0x100 << bit);
1271 ehb();
1272 imstuckcount[vpe][bit] = 0;
1273 pdb_msg += sprintf(pdb_msg,
1274 "Dangling IM %d fixed for VPE %d\n", bit,
1275 vpe);
1276 }
1277 }
1278 }
1279
1280 emt(mtflags);
1281 local_irq_restore(flags);
1282 if (pdb_msg != &id_ho_db_msg[0])
1283 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1284 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1285
1286 smtc_ipi_replay();
1287 }
1288
1289 void smtc_soft_dump(void)
1290 {
1291 int i;
1292
1293 printk("Counter Interrupts taken per CPU (TC)\n");
1294 for (i=0; i < NR_CPUS; i++) {
1295 printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1296 }
1297 printk("Self-IPI invocations:\n");
1298 for (i=0; i < NR_CPUS; i++) {
1299 printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1300 }
1301 smtc_ipi_qdump();
1302 printk("%d Recoveries of \"stolen\" FPU\n",
1303 atomic_read(&smtc_fpu_recoveries));
1304 }
1305
1306
1307 /*
1308 * TLB management routines special to SMTC
1309 */
1310
1311 void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1312 {
1313 unsigned long flags, mtflags, tcstat, prevhalt, asid;
1314 int tlb, i;
1315
1316 /*
1317 * It would be nice to be able to use a spinlock here,
1318 * but this is invoked from within TLB flush routines
1319 * that protect themselves with DVPE, so if a lock is
1320 * held by another TC, it'll never be freed.
1321 *
1322 * DVPE/DMT must not be done with interrupts enabled,
1323 * so even so most callers will already have disabled
1324 * them, let's be really careful...
1325 */
1326
1327 local_irq_save(flags);
1328 if (smtc_status & SMTC_TLB_SHARED) {
1329 mtflags = dvpe();
1330 tlb = 0;
1331 } else {
1332 mtflags = dmt();
1333 tlb = cpu_data[cpu].vpe_id;
1334 }
1335 asid = asid_cache(cpu);
1336
1337 do {
1338 if (!((asid += ASID_INC) & ASID_MASK) ) {
1339 if (cpu_has_vtag_icache)
1340 flush_icache_all();
1341 /* Traverse all online CPUs (hack requires contiguous range) */
1342 for_each_online_cpu(i) {
1343 /*
1344 * We don't need to worry about our own CPU, nor those of
1345 * CPUs who don't share our TLB.
1346 */
1347 if ((i != smp_processor_id()) &&
1348 ((smtc_status & SMTC_TLB_SHARED) ||
1349 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1350 settc(cpu_data[i].tc_id);
1351 prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1352 if (!prevhalt) {
1353 write_tc_c0_tchalt(TCHALT_H);
1354 mips_ihb();
1355 }
1356 tcstat = read_tc_c0_tcstatus();
1357 smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1358 if (!prevhalt)
1359 write_tc_c0_tchalt(0);
1360 }
1361 }
1362 if (!asid) /* fix version if needed */
1363 asid = ASID_FIRST_VERSION;
1364 local_flush_tlb_all(); /* start new asid cycle */
1365 }
1366 } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1367
1368 /*
1369 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1370 */
1371 for_each_online_cpu(i) {
1372 if ((smtc_status & SMTC_TLB_SHARED) ||
1373 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1374 cpu_context(i, mm) = asid_cache(i) = asid;
1375 }
1376
1377 if (smtc_status & SMTC_TLB_SHARED)
1378 evpe(mtflags);
1379 else
1380 emt(mtflags);
1381 local_irq_restore(flags);
1382 }
1383
1384 /*
1385 * Invoked from macros defined in mmu_context.h
1386 * which must already have disabled interrupts
1387 * and done a DVPE or DMT as appropriate.
1388 */
1389
1390 void smtc_flush_tlb_asid(unsigned long asid)
1391 {
1392 int entry;
1393 unsigned long ehi;
1394
1395 entry = read_c0_wired();
1396
1397 /* Traverse all non-wired entries */
1398 while (entry < current_cpu_data.tlbsize) {
1399 write_c0_index(entry);
1400 ehb();
1401 tlb_read();
1402 ehb();
1403 ehi = read_c0_entryhi();
1404 if ((ehi & ASID_MASK) == asid) {
1405 /*
1406 * Invalidate only entries with specified ASID,
1407 * makiing sure all entries differ.
1408 */
1409 write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1410 write_c0_entrylo0(0);
1411 write_c0_entrylo1(0);
1412 mtc0_tlbw_hazard();
1413 tlb_write_indexed();
1414 }
1415 entry++;
1416 }
1417 write_c0_index(PARKED_INDEX);
1418 tlbw_use_hazard();
1419 }
1420
1421 /*
1422 * Support for single-threading cache flush operations.
1423 */
1424
1425 static int halt_state_save[NR_CPUS];
1426
1427 /*
1428 * To really, really be sure that nothing is being done
1429 * by other TCs, halt them all. This code assumes that
1430 * a DVPE has already been done, so while their Halted
1431 * state is theoretically architecturally unstable, in
1432 * practice, it's not going to change while we're looking
1433 * at it.
1434 */
1435
1436 void smtc_cflush_lockdown(void)
1437 {
1438 int cpu;
1439
1440 for_each_online_cpu(cpu) {
1441 if (cpu != smp_processor_id()) {
1442 settc(cpu_data[cpu].tc_id);
1443 halt_state_save[cpu] = read_tc_c0_tchalt();
1444 write_tc_c0_tchalt(TCHALT_H);
1445 }
1446 }
1447 mips_ihb();
1448 }
1449
1450 /* It would be cheating to change the cpu_online states during a flush! */
1451
1452 void smtc_cflush_release(void)
1453 {
1454 int cpu;
1455
1456 /*
1457 * Start with a hazard barrier to ensure
1458 * that all CACHE ops have played through.
1459 */
1460 mips_ihb();
1461
1462 for_each_online_cpu(cpu) {
1463 if (cpu != smp_processor_id()) {
1464 settc(cpu_data[cpu].tc_id);
1465 write_tc_c0_tchalt(halt_state_save[cpu]);
1466 }
1467 }
1468 mips_ihb();
1469 }