]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/kernel/time.c
[MIPS] mips hpt cleanup: get rid of mips_hpt_init
[mirror_ubuntu-artful-kernel.git] / arch / mips / kernel / time.c
1 /*
2 * Copyright 2001 MontaVista Software Inc.
3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4 * Copyright (c) 2003, 2004 Maciej W. Rozycki
5 *
6 * Common time service routines for MIPS machines. See
7 * Documentation/mips/time.README.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 */
14 #include <linux/clocksource.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/param.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/smp.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
27
28 #include <asm/bootinfo.h>
29 #include <asm/cache.h>
30 #include <asm/compiler.h>
31 #include <asm/cpu.h>
32 #include <asm/cpu-features.h>
33 #include <asm/div64.h>
34 #include <asm/sections.h>
35 #include <asm/time.h>
36
37 /*
38 * The integer part of the number of usecs per jiffy is taken from tick,
39 * but the fractional part is not recorded, so we calculate it using the
40 * initial value of HZ. This aids systems where tick isn't really an
41 * integer (e.g. for HZ = 128).
42 */
43 #define USECS_PER_JIFFY TICK_SIZE
44 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
45
46 #define TICK_SIZE (tick_nsec / 1000)
47
48 /*
49 * forward reference
50 */
51 DEFINE_SPINLOCK(rtc_lock);
52
53 /*
54 * By default we provide the null RTC ops
55 */
56 static unsigned long null_rtc_get_time(void)
57 {
58 return mktime(2000, 1, 1, 0, 0, 0);
59 }
60
61 static int null_rtc_set_time(unsigned long sec)
62 {
63 return 0;
64 }
65
66 unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time;
67 int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time;
68 int (*rtc_mips_set_mmss)(unsigned long);
69
70
71 /* how many counter cycles in a jiffy */
72 static unsigned long cycles_per_jiffy __read_mostly;
73
74 /* expirelo is the count value for next CPU timer interrupt */
75 static unsigned int expirelo;
76
77
78 /*
79 * Null timer ack for systems not needing one (e.g. i8254).
80 */
81 static void null_timer_ack(void) { /* nothing */ }
82
83 /*
84 * Null high precision timer functions for systems lacking one.
85 */
86 static unsigned int null_hpt_read(void)
87 {
88 return 0;
89 }
90
91 /*
92 * Timer ack for an R4k-compatible timer of a known frequency.
93 */
94 static void c0_timer_ack(void)
95 {
96 unsigned int count;
97
98 #ifndef CONFIG_SOC_PNX8550 /* pnx8550 resets to zero */
99 /* Ack this timer interrupt and set the next one. */
100 expirelo += cycles_per_jiffy;
101 #endif
102 write_c0_compare(expirelo);
103
104 /* Check to see if we have missed any timer interrupts. */
105 while (((count = read_c0_count()) - expirelo) < 0x7fffffff) {
106 /* missed_timer_count++; */
107 expirelo = count + cycles_per_jiffy;
108 write_c0_compare(expirelo);
109 }
110 }
111
112 /*
113 * High precision timer functions for a R4k-compatible timer.
114 */
115 static unsigned int c0_hpt_read(void)
116 {
117 return read_c0_count();
118 }
119
120 /* For use both as a high precision timer and an interrupt source. */
121 static void __init c0_hpt_timer_init(void)
122 {
123 expirelo = read_c0_count() + cycles_per_jiffy;
124 write_c0_compare(expirelo);
125 }
126
127 int (*mips_timer_state)(void);
128 void (*mips_timer_ack)(void);
129 unsigned int (*mips_hpt_read)(void);
130 unsigned int mips_hpt_mask = 0xffffffff;
131
132 /* last time when xtime and rtc are sync'ed up */
133 static long last_rtc_update;
134
135 /*
136 * local_timer_interrupt() does profiling and process accounting
137 * on a per-CPU basis.
138 *
139 * In UP mode, it is invoked from the (global) timer_interrupt.
140 *
141 * In SMP mode, it might invoked by per-CPU timer interrupt, or
142 * a broadcasted inter-processor interrupt which itself is triggered
143 * by the global timer interrupt.
144 */
145 void local_timer_interrupt(int irq, void *dev_id)
146 {
147 profile_tick(CPU_PROFILING);
148 update_process_times(user_mode(get_irq_regs()));
149 }
150
151 /*
152 * High-level timer interrupt service routines. This function
153 * is set as irqaction->handler and is invoked through do_IRQ.
154 */
155 irqreturn_t timer_interrupt(int irq, void *dev_id)
156 {
157 write_seqlock(&xtime_lock);
158
159 mips_timer_ack();
160
161 /*
162 * call the generic timer interrupt handling
163 */
164 do_timer(1);
165
166 /*
167 * If we have an externally synchronized Linux clock, then update
168 * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be
169 * called as close as possible to 500 ms before the new second starts.
170 */
171 if (ntp_synced() &&
172 xtime.tv_sec > last_rtc_update + 660 &&
173 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
174 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
175 if (rtc_mips_set_mmss(xtime.tv_sec) == 0) {
176 last_rtc_update = xtime.tv_sec;
177 } else {
178 /* do it again in 60 s */
179 last_rtc_update = xtime.tv_sec - 600;
180 }
181 }
182
183 write_sequnlock(&xtime_lock);
184
185 /*
186 * In UP mode, we call local_timer_interrupt() to do profiling
187 * and process accouting.
188 *
189 * In SMP mode, local_timer_interrupt() is invoked by appropriate
190 * low-level local timer interrupt handler.
191 */
192 local_timer_interrupt(irq, dev_id);
193
194 return IRQ_HANDLED;
195 }
196
197 int null_perf_irq(void)
198 {
199 return 0;
200 }
201
202 int (*perf_irq)(void) = null_perf_irq;
203
204 EXPORT_SYMBOL(null_perf_irq);
205 EXPORT_SYMBOL(perf_irq);
206
207 asmlinkage void ll_timer_interrupt(int irq)
208 {
209 int r2 = cpu_has_mips_r2;
210
211 irq_enter();
212 kstat_this_cpu.irqs[irq]++;
213
214 /*
215 * Suckage alert:
216 * Before R2 of the architecture there was no way to see if a
217 * performance counter interrupt was pending, so we have to run the
218 * performance counter interrupt handler anyway.
219 */
220 if (!r2 || (read_c0_cause() & (1 << 26)))
221 if (perf_irq())
222 goto out;
223
224 /* we keep interrupt disabled all the time */
225 if (!r2 || (read_c0_cause() & (1 << 30)))
226 timer_interrupt(irq, NULL);
227
228 out:
229 irq_exit();
230 }
231
232 asmlinkage void ll_local_timer_interrupt(int irq)
233 {
234 irq_enter();
235 if (smp_processor_id() != 0)
236 kstat_this_cpu.irqs[irq]++;
237
238 /* we keep interrupt disabled all the time */
239 local_timer_interrupt(irq, NULL);
240
241 irq_exit();
242 }
243
244 /*
245 * time_init() - it does the following things.
246 *
247 * 1) board_time_init() -
248 * a) (optional) set up RTC routines,
249 * b) (optional) calibrate and set the mips_hpt_frequency
250 * (only needed if you intended to use cpu counter as timer interrupt
251 * source)
252 * 2) setup xtime based on rtc_mips_get_time().
253 * 3) calculate a couple of cached variables for later usage
254 * 4) plat_timer_setup() -
255 * a) (optional) over-write any choices made above by time_init().
256 * b) machine specific code should setup the timer irqaction.
257 * c) enable the timer interrupt
258 */
259
260 void (*board_time_init)(void);
261
262 unsigned int mips_hpt_frequency;
263
264 static struct irqaction timer_irqaction = {
265 .handler = timer_interrupt,
266 .flags = IRQF_DISABLED,
267 .name = "timer",
268 };
269
270 static unsigned int __init calibrate_hpt(void)
271 {
272 u64 frequency;
273 u32 hpt_start, hpt_end, hpt_count, hz;
274
275 const int loops = HZ / 10;
276 int log_2_loops = 0;
277 int i;
278
279 /*
280 * We want to calibrate for 0.1s, but to avoid a 64-bit
281 * division we round the number of loops up to the nearest
282 * power of 2.
283 */
284 while (loops > 1 << log_2_loops)
285 log_2_loops++;
286 i = 1 << log_2_loops;
287
288 /*
289 * Wait for a rising edge of the timer interrupt.
290 */
291 while (mips_timer_state());
292 while (!mips_timer_state());
293
294 /*
295 * Now see how many high precision timer ticks happen
296 * during the calculated number of periods between timer
297 * interrupts.
298 */
299 hpt_start = mips_hpt_read();
300 do {
301 while (mips_timer_state());
302 while (!mips_timer_state());
303 } while (--i);
304 hpt_end = mips_hpt_read();
305
306 hpt_count = (hpt_end - hpt_start) & mips_hpt_mask;
307 hz = HZ;
308 frequency = (u64)hpt_count * (u64)hz;
309
310 return frequency >> log_2_loops;
311 }
312
313 static cycle_t read_mips_hpt(void)
314 {
315 return (cycle_t)mips_hpt_read();
316 }
317
318 static struct clocksource clocksource_mips = {
319 .name = "MIPS",
320 .read = read_mips_hpt,
321 .is_continuous = 1,
322 };
323
324 static void __init init_mips_clocksource(void)
325 {
326 u64 temp;
327 u32 shift;
328
329 if (!mips_hpt_frequency || mips_hpt_read == null_hpt_read)
330 return;
331
332 /* Calclate a somewhat reasonable rating value */
333 clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
334 /* Find a shift value */
335 for (shift = 32; shift > 0; shift--) {
336 temp = (u64) NSEC_PER_SEC << shift;
337 do_div(temp, mips_hpt_frequency);
338 if ((temp >> 32) == 0)
339 break;
340 }
341 clocksource_mips.shift = shift;
342 clocksource_mips.mult = (u32)temp;
343 clocksource_mips.mask = mips_hpt_mask;
344
345 clocksource_register(&clocksource_mips);
346 }
347
348 void __init time_init(void)
349 {
350 if (board_time_init)
351 board_time_init();
352
353 if (!rtc_mips_set_mmss)
354 rtc_mips_set_mmss = rtc_mips_set_time;
355
356 xtime.tv_sec = rtc_mips_get_time();
357 xtime.tv_nsec = 0;
358
359 set_normalized_timespec(&wall_to_monotonic,
360 -xtime.tv_sec, -xtime.tv_nsec);
361
362 /* Choose appropriate high precision timer routines. */
363 if (!cpu_has_counter && !mips_hpt_read)
364 /* No high precision timer -- sorry. */
365 mips_hpt_read = null_hpt_read;
366 else if (!mips_hpt_frequency && !mips_timer_state) {
367 /* A high precision timer of unknown frequency. */
368 if (!mips_hpt_read)
369 /* No external high precision timer -- use R4k. */
370 mips_hpt_read = c0_hpt_read;
371 } else {
372 /* We know counter frequency. Or we can get it. */
373 if (!mips_hpt_read) {
374 /* No external high precision timer -- use R4k. */
375 mips_hpt_read = c0_hpt_read;
376
377 if (!mips_timer_state) {
378 /* No external timer interrupt -- use R4k. */
379 mips_timer_ack = c0_timer_ack;
380 /* Calculate cache parameters. */
381 cycles_per_jiffy =
382 (mips_hpt_frequency + HZ / 2) / HZ;
383 /*
384 * This sets up the high precision
385 * timer for the first interrupt.
386 */
387 c0_hpt_timer_init();
388 }
389 }
390 if (!mips_hpt_frequency)
391 mips_hpt_frequency = calibrate_hpt();
392
393 /* Report the high precision timer rate for a reference. */
394 printk("Using %u.%03u MHz high precision timer.\n",
395 ((mips_hpt_frequency + 500) / 1000) / 1000,
396 ((mips_hpt_frequency + 500) / 1000) % 1000);
397 }
398
399 if (!mips_timer_ack)
400 /* No timer interrupt ack (e.g. i8254). */
401 mips_timer_ack = null_timer_ack;
402
403 /*
404 * Call board specific timer interrupt setup.
405 *
406 * this pointer must be setup in machine setup routine.
407 *
408 * Even if a machine chooses to use a low-level timer interrupt,
409 * it still needs to setup the timer_irqaction.
410 * In that case, it might be better to set timer_irqaction.handler
411 * to be NULL function so that we are sure the high-level code
412 * is not invoked accidentally.
413 */
414 plat_timer_setup(&timer_irqaction);
415
416 init_mips_clocksource();
417 }
418
419 #define FEBRUARY 2
420 #define STARTOFTIME 1970
421 #define SECDAY 86400L
422 #define SECYR (SECDAY * 365)
423 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
424 #define days_in_year(y) (leapyear(y) ? 366 : 365)
425 #define days_in_month(m) (month_days[(m) - 1])
426
427 static int month_days[12] = {
428 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
429 };
430
431 void to_tm(unsigned long tim, struct rtc_time *tm)
432 {
433 long hms, day, gday;
434 int i;
435
436 gday = day = tim / SECDAY;
437 hms = tim % SECDAY;
438
439 /* Hours, minutes, seconds are easy */
440 tm->tm_hour = hms / 3600;
441 tm->tm_min = (hms % 3600) / 60;
442 tm->tm_sec = (hms % 3600) % 60;
443
444 /* Number of years in days */
445 for (i = STARTOFTIME; day >= days_in_year(i); i++)
446 day -= days_in_year(i);
447 tm->tm_year = i;
448
449 /* Number of months in days left */
450 if (leapyear(tm->tm_year))
451 days_in_month(FEBRUARY) = 29;
452 for (i = 1; day >= days_in_month(i); i++)
453 day -= days_in_month(i);
454 days_in_month(FEBRUARY) = 28;
455 tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */
456
457 /* Days are what is left over (+1) from all that. */
458 tm->tm_mday = day + 1;
459
460 /*
461 * Determine the day of week
462 */
463 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
464 }
465
466 EXPORT_SYMBOL(rtc_lock);
467 EXPORT_SYMBOL(to_tm);
468 EXPORT_SYMBOL(rtc_mips_set_time);
469 EXPORT_SYMBOL(rtc_mips_get_time);
470
471 unsigned long long sched_clock(void)
472 {
473 return (unsigned long long)jiffies*(1000000000/HZ);
474 }