]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/kernel/time.c
[MIPS] Dyntick support for SMTC:
[mirror_ubuntu-artful-kernel.git] / arch / mips / kernel / time.c
1 /*
2 * Copyright 2001 MontaVista Software Inc.
3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4 * Copyright (c) 2003, 2004 Maciej W. Rozycki
5 *
6 * Common time service routines for MIPS machines. See
7 * Documentation/mips/time.README.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 */
14 #include <linux/clockchips.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/param.h>
20 #include <linux/profile.h>
21 #include <linux/time.h>
22 #include <linux/timex.h>
23 #include <linux/smp.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/kallsyms.h>
29
30 #include <asm/bootinfo.h>
31 #include <asm/cache.h>
32 #include <asm/compiler.h>
33 #include <asm/cpu.h>
34 #include <asm/cpu-features.h>
35 #include <asm/div64.h>
36 #include <asm/sections.h>
37 #include <asm/smtc_ipi.h>
38 #include <asm/time.h>
39
40 #include <irq.h>
41
42 /*
43 * The integer part of the number of usecs per jiffy is taken from tick,
44 * but the fractional part is not recorded, so we calculate it using the
45 * initial value of HZ. This aids systems where tick isn't really an
46 * integer (e.g. for HZ = 128).
47 */
48 #define USECS_PER_JIFFY TICK_SIZE
49 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
50
51 #define TICK_SIZE (tick_nsec / 1000)
52
53 /*
54 * forward reference
55 */
56 DEFINE_SPINLOCK(rtc_lock);
57 EXPORT_SYMBOL(rtc_lock);
58
59 int __weak rtc_mips_set_time(unsigned long sec)
60 {
61 return 0;
62 }
63 EXPORT_SYMBOL(rtc_mips_set_time);
64
65 int __weak rtc_mips_set_mmss(unsigned long nowtime)
66 {
67 return rtc_mips_set_time(nowtime);
68 }
69
70 int update_persistent_clock(struct timespec now)
71 {
72 return rtc_mips_set_mmss(now.tv_sec);
73 }
74
75 /* how many counter cycles in a jiffy */
76 static unsigned long cycles_per_jiffy __read_mostly;
77
78 /*
79 * Null timer ack for systems not needing one (e.g. i8254).
80 */
81 static void null_timer_ack(void) { /* nothing */ }
82
83 /*
84 * Null high precision timer functions for systems lacking one.
85 */
86 static cycle_t null_hpt_read(void)
87 {
88 return 0;
89 }
90
91 /*
92 * Timer ack for an R4k-compatible timer of a known frequency.
93 */
94 static void c0_timer_ack(void)
95 {
96 write_c0_compare(read_c0_compare());
97 }
98
99 /*
100 * High precision timer functions for a R4k-compatible timer.
101 */
102 static cycle_t c0_hpt_read(void)
103 {
104 return read_c0_count();
105 }
106
107 int (*mips_timer_state)(void);
108 void (*mips_timer_ack)(void);
109
110 /*
111 * local_timer_interrupt() does profiling and process accounting
112 * on a per-CPU basis.
113 *
114 * In UP mode, it is invoked from the (global) timer_interrupt.
115 *
116 * In SMP mode, it might invoked by per-CPU timer interrupt, or
117 * a broadcasted inter-processor interrupt which itself is triggered
118 * by the global timer interrupt.
119 */
120 void local_timer_interrupt(int irq, void *dev_id)
121 {
122 profile_tick(CPU_PROFILING);
123 update_process_times(user_mode(get_irq_regs()));
124 }
125
126 int null_perf_irq(void)
127 {
128 return 0;
129 }
130
131 EXPORT_SYMBOL(null_perf_irq);
132
133 int (*perf_irq)(void) = null_perf_irq;
134
135 EXPORT_SYMBOL(perf_irq);
136
137 /*
138 * Timer interrupt
139 */
140 int cp0_compare_irq;
141
142 /*
143 * Performance counter IRQ or -1 if shared with timer
144 */
145 int cp0_perfcount_irq;
146 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
147
148 /*
149 * Possibly handle a performance counter interrupt.
150 * Return true if the timer interrupt should not be checked
151 */
152 static inline int handle_perf_irq (int r2)
153 {
154 /*
155 * The performance counter overflow interrupt may be shared with the
156 * timer interrupt (cp0_perfcount_irq < 0). If it is and a
157 * performance counter has overflowed (perf_irq() == IRQ_HANDLED)
158 * and we can't reliably determine if a counter interrupt has also
159 * happened (!r2) then don't check for a timer interrupt.
160 */
161 return (cp0_perfcount_irq < 0) &&
162 perf_irq() == IRQ_HANDLED &&
163 !r2;
164 }
165
166 /*
167 * time_init() - it does the following things.
168 *
169 * 1) plat_time_init() -
170 * a) (optional) set up RTC routines,
171 * b) (optional) calibrate and set the mips_hpt_frequency
172 * (only needed if you intended to use cpu counter as timer interrupt
173 * source)
174 * 2) calculate a couple of cached variables for later usage
175 * 3) plat_timer_setup() -
176 * a) (optional) over-write any choices made above by time_init().
177 * b) machine specific code should setup the timer irqaction.
178 * c) enable the timer interrupt
179 */
180
181 unsigned int mips_hpt_frequency;
182
183 static unsigned int __init calibrate_hpt(void)
184 {
185 cycle_t frequency, hpt_start, hpt_end, hpt_count, hz;
186
187 const int loops = HZ / 10;
188 int log_2_loops = 0;
189 int i;
190
191 /*
192 * We want to calibrate for 0.1s, but to avoid a 64-bit
193 * division we round the number of loops up to the nearest
194 * power of 2.
195 */
196 while (loops > 1 << log_2_loops)
197 log_2_loops++;
198 i = 1 << log_2_loops;
199
200 /*
201 * Wait for a rising edge of the timer interrupt.
202 */
203 while (mips_timer_state());
204 while (!mips_timer_state());
205
206 /*
207 * Now see how many high precision timer ticks happen
208 * during the calculated number of periods between timer
209 * interrupts.
210 */
211 hpt_start = clocksource_mips.read();
212 do {
213 while (mips_timer_state());
214 while (!mips_timer_state());
215 } while (--i);
216 hpt_end = clocksource_mips.read();
217
218 hpt_count = (hpt_end - hpt_start) & clocksource_mips.mask;
219 hz = HZ;
220 frequency = hpt_count * hz;
221
222 return frequency >> log_2_loops;
223 }
224
225 struct clocksource clocksource_mips = {
226 .name = "MIPS",
227 .mask = CLOCKSOURCE_MASK(32),
228 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
229 };
230
231 static int mips_next_event(unsigned long delta,
232 struct clock_event_device *evt)
233 {
234 unsigned int cnt;
235 int res;
236
237 #ifdef CONFIG_MIPS_MT_SMTC
238 {
239 unsigned long flags, vpflags;
240 local_irq_save(flags);
241 vpflags = dvpe();
242 #endif
243 cnt = read_c0_count();
244 cnt += delta;
245 write_c0_compare(cnt);
246 res = ((long)(read_c0_count() - cnt ) > 0) ? -ETIME : 0;
247 #ifdef CONFIG_MIPS_MT_SMTC
248 evpe(vpflags);
249 local_irq_restore(flags);
250 }
251 #endif
252 return res;
253 }
254
255 static void mips_set_mode(enum clock_event_mode mode,
256 struct clock_event_device *evt)
257 {
258 /* Nothing to do ... */
259 }
260
261 static DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device);
262 static int cp0_timer_irq_installed;
263
264 static irqreturn_t timer_interrupt(int irq, void *dev_id)
265 {
266 const int r2 = cpu_has_mips_r2;
267 struct clock_event_device *cd;
268 int cpu = smp_processor_id();
269
270 /*
271 * Suckage alert:
272 * Before R2 of the architecture there was no way to see if a
273 * performance counter interrupt was pending, so we have to run
274 * the performance counter interrupt handler anyway.
275 */
276 if (handle_perf_irq(r2))
277 goto out;
278
279 /*
280 * The same applies to performance counter interrupts. But with the
281 * above we now know that the reason we got here must be a timer
282 * interrupt. Being the paranoiacs we are we check anyway.
283 */
284 if (!r2 || (read_c0_cause() & (1 << 30))) {
285 c0_timer_ack();
286 #ifdef CONFIG_MIPS_MT_SMTC
287 if (cpu_data[cpu].vpe_id)
288 goto out;
289 cpu = 0;
290 #endif
291 cd = &per_cpu(mips_clockevent_device, cpu);
292 cd->event_handler(cd);
293 }
294
295 out:
296 return IRQ_HANDLED;
297 }
298
299 static struct irqaction timer_irqaction = {
300 .handler = timer_interrupt,
301 #ifdef CONFIG_MIPS_MT_SMTC
302 .flags = IRQF_DISABLED,
303 #else
304 .flags = IRQF_DISABLED | IRQF_PERCPU,
305 #endif
306 .name = "timer",
307 };
308
309 static void __init init_mips_clocksource(void)
310 {
311 u64 temp;
312 u32 shift;
313
314 if (!mips_hpt_frequency || clocksource_mips.read == null_hpt_read)
315 return;
316
317 /* Calclate a somewhat reasonable rating value */
318 clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
319 /* Find a shift value */
320 for (shift = 32; shift > 0; shift--) {
321 temp = (u64) NSEC_PER_SEC << shift;
322 do_div(temp, mips_hpt_frequency);
323 if ((temp >> 32) == 0)
324 break;
325 }
326 clocksource_mips.shift = shift;
327 clocksource_mips.mult = (u32)temp;
328
329 clocksource_register(&clocksource_mips);
330 }
331
332 void __init __weak plat_time_init(void)
333 {
334 }
335
336 void __init __weak plat_timer_setup(struct irqaction *irq)
337 {
338 }
339
340 #ifdef CONFIG_MIPS_MT_SMTC
341 DEFINE_PER_CPU(struct clock_event_device, smtc_dummy_clockevent_device);
342
343 static void smtc_set_mode(enum clock_event_mode mode,
344 struct clock_event_device *evt)
345 {
346 }
347
348 int dummycnt[NR_CPUS];
349
350 static void mips_broadcast(cpumask_t mask)
351 {
352 unsigned int cpu;
353
354 for_each_cpu_mask(cpu, mask)
355 smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
356 }
357
358 static void setup_smtc_dummy_clockevent_device(void)
359 {
360 //uint64_t mips_freq = mips_hpt_^frequency;
361 unsigned int cpu = smp_processor_id();
362 struct clock_event_device *cd;
363
364 cd = &per_cpu(smtc_dummy_clockevent_device, cpu);
365
366 cd->name = "SMTC";
367 cd->features = CLOCK_EVT_FEAT_DUMMY;
368
369 /* Calculate the min / max delta */
370 cd->mult = 0; //div_sc((unsigned long) mips_freq, NSEC_PER_SEC, 32);
371 cd->shift = 0; //32;
372 cd->max_delta_ns = 0; //clockevent_delta2ns(0x7fffffff, cd);
373 cd->min_delta_ns = 0; //clockevent_delta2ns(0x30, cd);
374
375 cd->rating = 200;
376 cd->irq = 17; //-1;
377 // if (cpu)
378 // cd->cpumask = CPU_MASK_ALL; // cpumask_of_cpu(cpu);
379 // else
380 cd->cpumask = cpumask_of_cpu(cpu);
381
382 cd->set_mode = smtc_set_mode;
383
384 cd->broadcast = mips_broadcast;
385
386 clockevents_register_device(cd);
387 }
388 #endif
389
390 static void mips_event_handler(struct clock_event_device *dev)
391 {
392 }
393
394 void __cpuinit mips_clockevent_init(void)
395 {
396 uint64_t mips_freq = mips_hpt_frequency;
397 unsigned int cpu = smp_processor_id();
398 struct clock_event_device *cd;
399 unsigned int irq = MIPS_CPU_IRQ_BASE + 7;
400
401 if (!cpu_has_counter)
402 return;
403
404 #ifdef CONFIG_MIPS_MT_SMTC
405 setup_smtc_dummy_clockevent_device();
406
407 /*
408 * On SMTC we only register VPE0's compare interrupt as clockevent
409 * device.
410 */
411 if (cpu)
412 return;
413 #endif
414
415 cd = &per_cpu(mips_clockevent_device, cpu);
416
417 cd->name = "MIPS";
418 cd->features = CLOCK_EVT_FEAT_ONESHOT;
419
420 /* Calculate the min / max delta */
421 cd->mult = div_sc((unsigned long) mips_freq, NSEC_PER_SEC, 32);
422 cd->shift = 32;
423 cd->max_delta_ns = clockevent_delta2ns(0x7fffffff, cd);
424 cd->min_delta_ns = clockevent_delta2ns(0x30, cd);
425
426 cd->rating = 300;
427 cd->irq = irq;
428 #ifdef CONFIG_MIPS_MT_SMTC
429 cd->cpumask = CPU_MASK_ALL;
430 #else
431 cd->cpumask = cpumask_of_cpu(cpu);
432 #endif
433 cd->set_next_event = mips_next_event;
434 cd->set_mode = mips_set_mode;
435 cd->event_handler = mips_event_handler;
436
437 clockevents_register_device(cd);
438
439 if (!cp0_timer_irq_installed) {
440 #ifdef CONFIG_MIPS_MT_SMTC
441 #define CPUCTR_IMASKBIT (0x100 << cp0_compare_irq)
442 setup_irq_smtc(irq, &timer_irqaction, CPUCTR_IMASKBIT);
443 #else
444 setup_irq(irq, &timer_irqaction);
445 #endif /* CONFIG_MIPS_MT_SMTC */
446 cp0_timer_irq_installed = 1;
447 }
448 }
449
450 void __init time_init(void)
451 {
452 plat_time_init();
453
454 /* Choose appropriate high precision timer routines. */
455 if (!cpu_has_counter && !clocksource_mips.read)
456 /* No high precision timer -- sorry. */
457 clocksource_mips.read = null_hpt_read;
458 else if (!mips_hpt_frequency && !mips_timer_state) {
459 /* A high precision timer of unknown frequency. */
460 if (!clocksource_mips.read)
461 /* No external high precision timer -- use R4k. */
462 clocksource_mips.read = c0_hpt_read;
463 } else {
464 /* We know counter frequency. Or we can get it. */
465 if (!clocksource_mips.read) {
466 /* No external high precision timer -- use R4k. */
467 clocksource_mips.read = c0_hpt_read;
468
469 if (!mips_timer_state) {
470 /* No external timer interrupt -- use R4k. */
471 mips_timer_ack = c0_timer_ack;
472 /* Calculate cache parameters. */
473 cycles_per_jiffy =
474 (mips_hpt_frequency + HZ / 2) / HZ;
475 }
476 }
477 if (!mips_hpt_frequency)
478 mips_hpt_frequency = calibrate_hpt();
479
480 /* Report the high precision timer rate for a reference. */
481 printk("Using %u.%03u MHz high precision timer.\n",
482 ((mips_hpt_frequency + 500) / 1000) / 1000,
483 ((mips_hpt_frequency + 500) / 1000) % 1000);
484
485 #ifdef CONFIG_IRQ_CPU
486 setup_irq(MIPS_CPU_IRQ_BASE + 7, &timer_irqaction);
487 #endif
488 }
489
490 if (!mips_timer_ack)
491 /* No timer interrupt ack (e.g. i8254). */
492 mips_timer_ack = null_timer_ack;
493
494 /*
495 * Call board specific timer interrupt setup.
496 *
497 * this pointer must be setup in machine setup routine.
498 *
499 * Even if a machine chooses to use a low-level timer interrupt,
500 * it still needs to setup the timer_irqaction.
501 * In that case, it might be better to set timer_irqaction.handler
502 * to be NULL function so that we are sure the high-level code
503 * is not invoked accidentally.
504 */
505 plat_timer_setup(&timer_irqaction);
506
507 init_mips_clocksource();
508 mips_clockevent_init();
509 }