]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/mips/kernel/time.c
[MIPS] Deforest the function pointer jungle in the time code.
[mirror_ubuntu-zesty-kernel.git] / arch / mips / kernel / time.c
1 /*
2 * Copyright 2001 MontaVista Software Inc.
3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4 * Copyright (c) 2003, 2004 Maciej W. Rozycki
5 *
6 * Common time service routines for MIPS machines. See
7 * Documentation/mips/time.README.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 */
14 #include <linux/types.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/param.h>
19 #include <linux/profile.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/smp.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
27
28 #include <asm/bootinfo.h>
29 #include <asm/cache.h>
30 #include <asm/compiler.h>
31 #include <asm/cpu.h>
32 #include <asm/cpu-features.h>
33 #include <asm/div64.h>
34 #include <asm/sections.h>
35 #include <asm/time.h>
36
37 /*
38 * The integer part of the number of usecs per jiffy is taken from tick,
39 * but the fractional part is not recorded, so we calculate it using the
40 * initial value of HZ. This aids systems where tick isn't really an
41 * integer (e.g. for HZ = 128).
42 */
43 #define USECS_PER_JIFFY TICK_SIZE
44 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
45
46 #define TICK_SIZE (tick_nsec / 1000)
47
48 /*
49 * forward reference
50 */
51 DEFINE_SPINLOCK(rtc_lock);
52 EXPORT_SYMBOL(rtc_lock);
53
54 int __weak rtc_mips_set_time(unsigned long sec)
55 {
56 return 0;
57 }
58 EXPORT_SYMBOL(rtc_mips_set_time);
59
60 int __weak rtc_mips_set_mmss(unsigned long nowtime)
61 {
62 return rtc_mips_set_time(nowtime);
63 }
64
65 int update_persistent_clock(struct timespec now)
66 {
67 return rtc_mips_set_mmss(now.tv_sec);
68 }
69
70 /* how many counter cycles in a jiffy */
71 static unsigned long cycles_per_jiffy __read_mostly;
72
73 /* expirelo is the count value for next CPU timer interrupt */
74 static unsigned int expirelo;
75
76
77 /*
78 * Null timer ack for systems not needing one (e.g. i8254).
79 */
80 static void null_timer_ack(void) { /* nothing */ }
81
82 /*
83 * Null high precision timer functions for systems lacking one.
84 */
85 static cycle_t null_hpt_read(void)
86 {
87 return 0;
88 }
89
90 /*
91 * Timer ack for an R4k-compatible timer of a known frequency.
92 */
93 static void c0_timer_ack(void)
94 {
95 unsigned int count;
96
97 /* Ack this timer interrupt and set the next one. */
98 expirelo += cycles_per_jiffy;
99 write_c0_compare(expirelo);
100
101 /* Check to see if we have missed any timer interrupts. */
102 while (((count = read_c0_count()) - expirelo) < 0x7fffffff) {
103 /* missed_timer_count++; */
104 expirelo = count + cycles_per_jiffy;
105 write_c0_compare(expirelo);
106 }
107 }
108
109 /*
110 * High precision timer functions for a R4k-compatible timer.
111 */
112 static cycle_t c0_hpt_read(void)
113 {
114 return read_c0_count();
115 }
116
117 /* For use both as a high precision timer and an interrupt source. */
118 static void __init c0_hpt_timer_init(void)
119 {
120 expirelo = read_c0_count() + cycles_per_jiffy;
121 write_c0_compare(expirelo);
122 }
123
124 int (*mips_timer_state)(void);
125 void (*mips_timer_ack)(void);
126
127 /*
128 * local_timer_interrupt() does profiling and process accounting
129 * on a per-CPU basis.
130 *
131 * In UP mode, it is invoked from the (global) timer_interrupt.
132 *
133 * In SMP mode, it might invoked by per-CPU timer interrupt, or
134 * a broadcasted inter-processor interrupt which itself is triggered
135 * by the global timer interrupt.
136 */
137 void local_timer_interrupt(int irq, void *dev_id)
138 {
139 profile_tick(CPU_PROFILING);
140 update_process_times(user_mode(get_irq_regs()));
141 }
142
143 /*
144 * High-level timer interrupt service routines. This function
145 * is set as irqaction->handler and is invoked through do_IRQ.
146 */
147 irqreturn_t timer_interrupt(int irq, void *dev_id)
148 {
149 write_seqlock(&xtime_lock);
150
151 mips_timer_ack();
152
153 /*
154 * call the generic timer interrupt handling
155 */
156 do_timer(1);
157
158 write_sequnlock(&xtime_lock);
159
160 /*
161 * In UP mode, we call local_timer_interrupt() to do profiling
162 * and process accouting.
163 *
164 * In SMP mode, local_timer_interrupt() is invoked by appropriate
165 * low-level local timer interrupt handler.
166 */
167 local_timer_interrupt(irq, dev_id);
168
169 return IRQ_HANDLED;
170 }
171
172 int null_perf_irq(void)
173 {
174 return 0;
175 }
176
177 int (*perf_irq)(void) = null_perf_irq;
178
179 EXPORT_SYMBOL(null_perf_irq);
180 EXPORT_SYMBOL(perf_irq);
181
182 /*
183 * Timer interrupt
184 */
185 int cp0_compare_irq;
186
187 /*
188 * Performance counter IRQ or -1 if shared with timer
189 */
190 int cp0_perfcount_irq;
191 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
192
193 /*
194 * Possibly handle a performance counter interrupt.
195 * Return true if the timer interrupt should not be checked
196 */
197 static inline int handle_perf_irq (int r2)
198 {
199 /*
200 * The performance counter overflow interrupt may be shared with the
201 * timer interrupt (cp0_perfcount_irq < 0). If it is and a
202 * performance counter has overflowed (perf_irq() == IRQ_HANDLED)
203 * and we can't reliably determine if a counter interrupt has also
204 * happened (!r2) then don't check for a timer interrupt.
205 */
206 return (cp0_perfcount_irq < 0) &&
207 perf_irq() == IRQ_HANDLED &&
208 !r2;
209 }
210
211 asmlinkage void ll_timer_interrupt(int irq)
212 {
213 int r2 = cpu_has_mips_r2;
214
215 irq_enter();
216 kstat_this_cpu.irqs[irq]++;
217
218 if (handle_perf_irq(r2))
219 goto out;
220
221 if (r2 && ((read_c0_cause() & (1 << 30)) == 0))
222 goto out;
223
224 timer_interrupt(irq, NULL);
225
226 out:
227 irq_exit();
228 }
229
230 asmlinkage void ll_local_timer_interrupt(int irq)
231 {
232 irq_enter();
233 if (smp_processor_id() != 0)
234 kstat_this_cpu.irqs[irq]++;
235
236 /* we keep interrupt disabled all the time */
237 local_timer_interrupt(irq, NULL);
238
239 irq_exit();
240 }
241
242 /*
243 * time_init() - it does the following things.
244 *
245 * 1) plat_time_init() -
246 * a) (optional) set up RTC routines,
247 * b) (optional) calibrate and set the mips_hpt_frequency
248 * (only needed if you intended to use cpu counter as timer interrupt
249 * source)
250 * 2) calculate a couple of cached variables for later usage
251 * 3) plat_timer_setup() -
252 * a) (optional) over-write any choices made above by time_init().
253 * b) machine specific code should setup the timer irqaction.
254 * c) enable the timer interrupt
255 */
256
257 unsigned int mips_hpt_frequency;
258
259 static struct irqaction timer_irqaction = {
260 .handler = timer_interrupt,
261 .flags = IRQF_DISABLED | IRQF_PERCPU,
262 .name = "timer",
263 };
264
265 static unsigned int __init calibrate_hpt(void)
266 {
267 cycle_t frequency, hpt_start, hpt_end, hpt_count, hz;
268
269 const int loops = HZ / 10;
270 int log_2_loops = 0;
271 int i;
272
273 /*
274 * We want to calibrate for 0.1s, but to avoid a 64-bit
275 * division we round the number of loops up to the nearest
276 * power of 2.
277 */
278 while (loops > 1 << log_2_loops)
279 log_2_loops++;
280 i = 1 << log_2_loops;
281
282 /*
283 * Wait for a rising edge of the timer interrupt.
284 */
285 while (mips_timer_state());
286 while (!mips_timer_state());
287
288 /*
289 * Now see how many high precision timer ticks happen
290 * during the calculated number of periods between timer
291 * interrupts.
292 */
293 hpt_start = clocksource_mips.read();
294 do {
295 while (mips_timer_state());
296 while (!mips_timer_state());
297 } while (--i);
298 hpt_end = clocksource_mips.read();
299
300 hpt_count = (hpt_end - hpt_start) & clocksource_mips.mask;
301 hz = HZ;
302 frequency = hpt_count * hz;
303
304 return frequency >> log_2_loops;
305 }
306
307 struct clocksource clocksource_mips = {
308 .name = "MIPS",
309 .mask = CLOCKSOURCE_MASK(32),
310 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
311 };
312
313 static void __init init_mips_clocksource(void)
314 {
315 u64 temp;
316 u32 shift;
317
318 if (!mips_hpt_frequency || clocksource_mips.read == null_hpt_read)
319 return;
320
321 /* Calclate a somewhat reasonable rating value */
322 clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
323 /* Find a shift value */
324 for (shift = 32; shift > 0; shift--) {
325 temp = (u64) NSEC_PER_SEC << shift;
326 do_div(temp, mips_hpt_frequency);
327 if ((temp >> 32) == 0)
328 break;
329 }
330 clocksource_mips.shift = shift;
331 clocksource_mips.mult = (u32)temp;
332
333 clocksource_register(&clocksource_mips);
334 }
335
336 void __init __weak plat_time_init(void)
337 {
338 }
339
340 void __init time_init(void)
341 {
342 plat_time_init();
343
344 /* Choose appropriate high precision timer routines. */
345 if (!cpu_has_counter && !clocksource_mips.read)
346 /* No high precision timer -- sorry. */
347 clocksource_mips.read = null_hpt_read;
348 else if (!mips_hpt_frequency && !mips_timer_state) {
349 /* A high precision timer of unknown frequency. */
350 if (!clocksource_mips.read)
351 /* No external high precision timer -- use R4k. */
352 clocksource_mips.read = c0_hpt_read;
353 } else {
354 /* We know counter frequency. Or we can get it. */
355 if (!clocksource_mips.read) {
356 /* No external high precision timer -- use R4k. */
357 clocksource_mips.read = c0_hpt_read;
358
359 if (!mips_timer_state) {
360 /* No external timer interrupt -- use R4k. */
361 mips_timer_ack = c0_timer_ack;
362 /* Calculate cache parameters. */
363 cycles_per_jiffy =
364 (mips_hpt_frequency + HZ / 2) / HZ;
365 /*
366 * This sets up the high precision
367 * timer for the first interrupt.
368 */
369 c0_hpt_timer_init();
370 }
371 }
372 if (!mips_hpt_frequency)
373 mips_hpt_frequency = calibrate_hpt();
374
375 /* Report the high precision timer rate for a reference. */
376 printk("Using %u.%03u MHz high precision timer.\n",
377 ((mips_hpt_frequency + 500) / 1000) / 1000,
378 ((mips_hpt_frequency + 500) / 1000) % 1000);
379 }
380
381 if (!mips_timer_ack)
382 /* No timer interrupt ack (e.g. i8254). */
383 mips_timer_ack = null_timer_ack;
384
385 /*
386 * Call board specific timer interrupt setup.
387 *
388 * this pointer must be setup in machine setup routine.
389 *
390 * Even if a machine chooses to use a low-level timer interrupt,
391 * it still needs to setup the timer_irqaction.
392 * In that case, it might be better to set timer_irqaction.handler
393 * to be NULL function so that we are sure the high-level code
394 * is not invoked accidentally.
395 */
396 plat_timer_setup(&timer_irqaction);
397
398 init_mips_clocksource();
399 }
400
401 #define FEBRUARY 2
402 #define STARTOFTIME 1970
403 #define SECDAY 86400L
404 #define SECYR (SECDAY * 365)
405 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
406 #define days_in_year(y) (leapyear(y) ? 366 : 365)
407 #define days_in_month(m) (month_days[(m) - 1])
408
409 static int month_days[12] = {
410 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
411 };
412
413 void to_tm(unsigned long tim, struct rtc_time *tm)
414 {
415 long hms, day, gday;
416 int i;
417
418 gday = day = tim / SECDAY;
419 hms = tim % SECDAY;
420
421 /* Hours, minutes, seconds are easy */
422 tm->tm_hour = hms / 3600;
423 tm->tm_min = (hms % 3600) / 60;
424 tm->tm_sec = (hms % 3600) % 60;
425
426 /* Number of years in days */
427 for (i = STARTOFTIME; day >= days_in_year(i); i++)
428 day -= days_in_year(i);
429 tm->tm_year = i;
430
431 /* Number of months in days left */
432 if (leapyear(tm->tm_year))
433 days_in_month(FEBRUARY) = 29;
434 for (i = 1; day >= days_in_month(i); i++)
435 day -= days_in_month(i);
436 days_in_month(FEBRUARY) = 28;
437 tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */
438
439 /* Days are what is left over (+1) from all that. */
440 tm->tm_mday = day + 1;
441
442 /*
443 * Determine the day of week
444 */
445 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
446 }
447
448 EXPORT_SYMBOL(to_tm);