]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/mips/kernel/traps.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-focal-kernel.git] / arch / mips / kernel / traps.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/bootmem.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/mips-cps.h>
54 #include <asm/mips-r2-to-r6-emul.h>
55 #include <asm/mipsregs.h>
56 #include <asm/mipsmtregs.h>
57 #include <asm/module.h>
58 #include <asm/msa.h>
59 #include <asm/pgtable.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <linux/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
70 #include <asm/uasm.h>
71
72 extern void check_wait(void);
73 extern asmlinkage void rollback_handle_int(void);
74 extern asmlinkage void handle_int(void);
75 extern u32 handle_tlbl[];
76 extern u32 handle_tlbs[];
77 extern u32 handle_tlbm[];
78 extern asmlinkage void handle_adel(void);
79 extern asmlinkage void handle_ades(void);
80 extern asmlinkage void handle_ibe(void);
81 extern asmlinkage void handle_dbe(void);
82 extern asmlinkage void handle_sys(void);
83 extern asmlinkage void handle_bp(void);
84 extern asmlinkage void handle_ri(void);
85 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
86 extern asmlinkage void handle_ri_rdhwr(void);
87 extern asmlinkage void handle_cpu(void);
88 extern asmlinkage void handle_ov(void);
89 extern asmlinkage void handle_tr(void);
90 extern asmlinkage void handle_msa_fpe(void);
91 extern asmlinkage void handle_fpe(void);
92 extern asmlinkage void handle_ftlb(void);
93 extern asmlinkage void handle_msa(void);
94 extern asmlinkage void handle_mdmx(void);
95 extern asmlinkage void handle_watch(void);
96 extern asmlinkage void handle_mt(void);
97 extern asmlinkage void handle_dsp(void);
98 extern asmlinkage void handle_mcheck(void);
99 extern asmlinkage void handle_reserved(void);
100 extern void tlb_do_page_fault_0(void);
101
102 void (*board_be_init)(void);
103 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
104 void (*board_nmi_handler_setup)(void);
105 void (*board_ejtag_handler_setup)(void);
106 void (*board_bind_eic_interrupt)(int irq, int regset);
107 void (*board_ebase_setup)(void);
108 void(*board_cache_error_setup)(void);
109
110 static void show_raw_backtrace(unsigned long reg29)
111 {
112 unsigned long *sp = (unsigned long *)(reg29 & ~3);
113 unsigned long addr;
114
115 printk("Call Trace:");
116 #ifdef CONFIG_KALLSYMS
117 printk("\n");
118 #endif
119 while (!kstack_end(sp)) {
120 unsigned long __user *p =
121 (unsigned long __user *)(unsigned long)sp++;
122 if (__get_user(addr, p)) {
123 printk(" (Bad stack address)");
124 break;
125 }
126 if (__kernel_text_address(addr))
127 print_ip_sym(addr);
128 }
129 printk("\n");
130 }
131
132 #ifdef CONFIG_KALLSYMS
133 int raw_show_trace;
134 static int __init set_raw_show_trace(char *str)
135 {
136 raw_show_trace = 1;
137 return 1;
138 }
139 __setup("raw_show_trace", set_raw_show_trace);
140 #endif
141
142 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
143 {
144 unsigned long sp = regs->regs[29];
145 unsigned long ra = regs->regs[31];
146 unsigned long pc = regs->cp0_epc;
147
148 if (!task)
149 task = current;
150
151 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
152 show_raw_backtrace(sp);
153 return;
154 }
155 printk("Call Trace:\n");
156 do {
157 print_ip_sym(pc);
158 pc = unwind_stack(task, &sp, pc, &ra);
159 } while (pc);
160 pr_cont("\n");
161 }
162
163 /*
164 * This routine abuses get_user()/put_user() to reference pointers
165 * with at least a bit of error checking ...
166 */
167 static void show_stacktrace(struct task_struct *task,
168 const struct pt_regs *regs)
169 {
170 const int field = 2 * sizeof(unsigned long);
171 long stackdata;
172 int i;
173 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
174
175 printk("Stack :");
176 i = 0;
177 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
178 if (i && ((i % (64 / field)) == 0)) {
179 pr_cont("\n");
180 printk(" ");
181 }
182 if (i > 39) {
183 pr_cont(" ...");
184 break;
185 }
186
187 if (__get_user(stackdata, sp++)) {
188 pr_cont(" (Bad stack address)");
189 break;
190 }
191
192 pr_cont(" %0*lx", field, stackdata);
193 i++;
194 }
195 pr_cont("\n");
196 show_backtrace(task, regs);
197 }
198
199 void show_stack(struct task_struct *task, unsigned long *sp)
200 {
201 struct pt_regs regs;
202 mm_segment_t old_fs = get_fs();
203
204 regs.cp0_status = KSU_KERNEL;
205 if (sp) {
206 regs.regs[29] = (unsigned long)sp;
207 regs.regs[31] = 0;
208 regs.cp0_epc = 0;
209 } else {
210 if (task && task != current) {
211 regs.regs[29] = task->thread.reg29;
212 regs.regs[31] = 0;
213 regs.cp0_epc = task->thread.reg31;
214 #ifdef CONFIG_KGDB_KDB
215 } else if (atomic_read(&kgdb_active) != -1 &&
216 kdb_current_regs) {
217 memcpy(&regs, kdb_current_regs, sizeof(regs));
218 #endif /* CONFIG_KGDB_KDB */
219 } else {
220 prepare_frametrace(&regs);
221 }
222 }
223 /*
224 * show_stack() deals exclusively with kernel mode, so be sure to access
225 * the stack in the kernel (not user) address space.
226 */
227 set_fs(KERNEL_DS);
228 show_stacktrace(task, &regs);
229 set_fs(old_fs);
230 }
231
232 static void show_code(unsigned int __user *pc)
233 {
234 long i;
235 unsigned short __user *pc16 = NULL;
236
237 printk("Code:");
238
239 if ((unsigned long)pc & 1)
240 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
241 for(i = -3 ; i < 6 ; i++) {
242 unsigned int insn;
243 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
244 pr_cont(" (Bad address in epc)\n");
245 break;
246 }
247 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
248 }
249 pr_cont("\n");
250 }
251
252 static void __show_regs(const struct pt_regs *regs)
253 {
254 const int field = 2 * sizeof(unsigned long);
255 unsigned int cause = regs->cp0_cause;
256 unsigned int exccode;
257 int i;
258
259 show_regs_print_info(KERN_DEFAULT);
260
261 /*
262 * Saved main processor registers
263 */
264 for (i = 0; i < 32; ) {
265 if ((i % 4) == 0)
266 printk("$%2d :", i);
267 if (i == 0)
268 pr_cont(" %0*lx", field, 0UL);
269 else if (i == 26 || i == 27)
270 pr_cont(" %*s", field, "");
271 else
272 pr_cont(" %0*lx", field, regs->regs[i]);
273
274 i++;
275 if ((i % 4) == 0)
276 pr_cont("\n");
277 }
278
279 #ifdef CONFIG_CPU_HAS_SMARTMIPS
280 printk("Acx : %0*lx\n", field, regs->acx);
281 #endif
282 printk("Hi : %0*lx\n", field, regs->hi);
283 printk("Lo : %0*lx\n", field, regs->lo);
284
285 /*
286 * Saved cp0 registers
287 */
288 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
289 (void *) regs->cp0_epc);
290 printk("ra : %0*lx %pS\n", field, regs->regs[31],
291 (void *) regs->regs[31]);
292
293 printk("Status: %08x ", (uint32_t) regs->cp0_status);
294
295 if (cpu_has_3kex) {
296 if (regs->cp0_status & ST0_KUO)
297 pr_cont("KUo ");
298 if (regs->cp0_status & ST0_IEO)
299 pr_cont("IEo ");
300 if (regs->cp0_status & ST0_KUP)
301 pr_cont("KUp ");
302 if (regs->cp0_status & ST0_IEP)
303 pr_cont("IEp ");
304 if (regs->cp0_status & ST0_KUC)
305 pr_cont("KUc ");
306 if (regs->cp0_status & ST0_IEC)
307 pr_cont("IEc ");
308 } else if (cpu_has_4kex) {
309 if (regs->cp0_status & ST0_KX)
310 pr_cont("KX ");
311 if (regs->cp0_status & ST0_SX)
312 pr_cont("SX ");
313 if (regs->cp0_status & ST0_UX)
314 pr_cont("UX ");
315 switch (regs->cp0_status & ST0_KSU) {
316 case KSU_USER:
317 pr_cont("USER ");
318 break;
319 case KSU_SUPERVISOR:
320 pr_cont("SUPERVISOR ");
321 break;
322 case KSU_KERNEL:
323 pr_cont("KERNEL ");
324 break;
325 default:
326 pr_cont("BAD_MODE ");
327 break;
328 }
329 if (regs->cp0_status & ST0_ERL)
330 pr_cont("ERL ");
331 if (regs->cp0_status & ST0_EXL)
332 pr_cont("EXL ");
333 if (regs->cp0_status & ST0_IE)
334 pr_cont("IE ");
335 }
336 pr_cont("\n");
337
338 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
339 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
340
341 if (1 <= exccode && exccode <= 5)
342 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
343
344 printk("PrId : %08x (%s)\n", read_c0_prid(),
345 cpu_name_string());
346 }
347
348 /*
349 * FIXME: really the generic show_regs should take a const pointer argument.
350 */
351 void show_regs(struct pt_regs *regs)
352 {
353 __show_regs((struct pt_regs *)regs);
354 }
355
356 void show_registers(struct pt_regs *regs)
357 {
358 const int field = 2 * sizeof(unsigned long);
359 mm_segment_t old_fs = get_fs();
360
361 __show_regs(regs);
362 print_modules();
363 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
364 current->comm, current->pid, current_thread_info(), current,
365 field, current_thread_info()->tp_value);
366 if (cpu_has_userlocal) {
367 unsigned long tls;
368
369 tls = read_c0_userlocal();
370 if (tls != current_thread_info()->tp_value)
371 printk("*HwTLS: %0*lx\n", field, tls);
372 }
373
374 if (!user_mode(regs))
375 /* Necessary for getting the correct stack content */
376 set_fs(KERNEL_DS);
377 show_stacktrace(current, regs);
378 show_code((unsigned int __user *) regs->cp0_epc);
379 printk("\n");
380 set_fs(old_fs);
381 }
382
383 static DEFINE_RAW_SPINLOCK(die_lock);
384
385 void __noreturn die(const char *str, struct pt_regs *regs)
386 {
387 static int die_counter;
388 int sig = SIGSEGV;
389
390 oops_enter();
391
392 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
393 SIGSEGV) == NOTIFY_STOP)
394 sig = 0;
395
396 console_verbose();
397 raw_spin_lock_irq(&die_lock);
398 bust_spinlocks(1);
399
400 printk("%s[#%d]:\n", str, ++die_counter);
401 show_registers(regs);
402 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
403 raw_spin_unlock_irq(&die_lock);
404
405 oops_exit();
406
407 if (in_interrupt())
408 panic("Fatal exception in interrupt");
409
410 if (panic_on_oops)
411 panic("Fatal exception");
412
413 if (regs && kexec_should_crash(current))
414 crash_kexec(regs);
415
416 do_exit(sig);
417 }
418
419 extern struct exception_table_entry __start___dbe_table[];
420 extern struct exception_table_entry __stop___dbe_table[];
421
422 __asm__(
423 " .section __dbe_table, \"a\"\n"
424 " .previous \n");
425
426 /* Given an address, look for it in the exception tables. */
427 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
428 {
429 const struct exception_table_entry *e;
430
431 e = search_extable(__start___dbe_table,
432 __stop___dbe_table - __start___dbe_table, addr);
433 if (!e)
434 e = search_module_dbetables(addr);
435 return e;
436 }
437
438 asmlinkage void do_be(struct pt_regs *regs)
439 {
440 const int field = 2 * sizeof(unsigned long);
441 const struct exception_table_entry *fixup = NULL;
442 int data = regs->cp0_cause & 4;
443 int action = MIPS_BE_FATAL;
444 enum ctx_state prev_state;
445
446 prev_state = exception_enter();
447 /* XXX For now. Fixme, this searches the wrong table ... */
448 if (data && !user_mode(regs))
449 fixup = search_dbe_tables(exception_epc(regs));
450
451 if (fixup)
452 action = MIPS_BE_FIXUP;
453
454 if (board_be_handler)
455 action = board_be_handler(regs, fixup != NULL);
456 else
457 mips_cm_error_report();
458
459 switch (action) {
460 case MIPS_BE_DISCARD:
461 goto out;
462 case MIPS_BE_FIXUP:
463 if (fixup) {
464 regs->cp0_epc = fixup->nextinsn;
465 goto out;
466 }
467 break;
468 default:
469 break;
470 }
471
472 /*
473 * Assume it would be too dangerous to continue ...
474 */
475 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
476 data ? "Data" : "Instruction",
477 field, regs->cp0_epc, field, regs->regs[31]);
478 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
479 SIGBUS) == NOTIFY_STOP)
480 goto out;
481
482 die_if_kernel("Oops", regs);
483 force_sig(SIGBUS, current);
484
485 out:
486 exception_exit(prev_state);
487 }
488
489 /*
490 * ll/sc, rdhwr, sync emulation
491 */
492
493 #define OPCODE 0xfc000000
494 #define BASE 0x03e00000
495 #define RT 0x001f0000
496 #define OFFSET 0x0000ffff
497 #define LL 0xc0000000
498 #define SC 0xe0000000
499 #define SPEC0 0x00000000
500 #define SPEC3 0x7c000000
501 #define RD 0x0000f800
502 #define FUNC 0x0000003f
503 #define SYNC 0x0000000f
504 #define RDHWR 0x0000003b
505
506 /* microMIPS definitions */
507 #define MM_POOL32A_FUNC 0xfc00ffff
508 #define MM_RDHWR 0x00006b3c
509 #define MM_RS 0x001f0000
510 #define MM_RT 0x03e00000
511
512 /*
513 * The ll_bit is cleared by r*_switch.S
514 */
515
516 unsigned int ll_bit;
517 struct task_struct *ll_task;
518
519 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
520 {
521 unsigned long value, __user *vaddr;
522 long offset;
523
524 /*
525 * analyse the ll instruction that just caused a ri exception
526 * and put the referenced address to addr.
527 */
528
529 /* sign extend offset */
530 offset = opcode & OFFSET;
531 offset <<= 16;
532 offset >>= 16;
533
534 vaddr = (unsigned long __user *)
535 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
536
537 if ((unsigned long)vaddr & 3)
538 return SIGBUS;
539 if (get_user(value, vaddr))
540 return SIGSEGV;
541
542 preempt_disable();
543
544 if (ll_task == NULL || ll_task == current) {
545 ll_bit = 1;
546 } else {
547 ll_bit = 0;
548 }
549 ll_task = current;
550
551 preempt_enable();
552
553 regs->regs[(opcode & RT) >> 16] = value;
554
555 return 0;
556 }
557
558 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
559 {
560 unsigned long __user *vaddr;
561 unsigned long reg;
562 long offset;
563
564 /*
565 * analyse the sc instruction that just caused a ri exception
566 * and put the referenced address to addr.
567 */
568
569 /* sign extend offset */
570 offset = opcode & OFFSET;
571 offset <<= 16;
572 offset >>= 16;
573
574 vaddr = (unsigned long __user *)
575 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
576 reg = (opcode & RT) >> 16;
577
578 if ((unsigned long)vaddr & 3)
579 return SIGBUS;
580
581 preempt_disable();
582
583 if (ll_bit == 0 || ll_task != current) {
584 regs->regs[reg] = 0;
585 preempt_enable();
586 return 0;
587 }
588
589 preempt_enable();
590
591 if (put_user(regs->regs[reg], vaddr))
592 return SIGSEGV;
593
594 regs->regs[reg] = 1;
595
596 return 0;
597 }
598
599 /*
600 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
601 * opcodes are supposed to result in coprocessor unusable exceptions if
602 * executed on ll/sc-less processors. That's the theory. In practice a
603 * few processors such as NEC's VR4100 throw reserved instruction exceptions
604 * instead, so we're doing the emulation thing in both exception handlers.
605 */
606 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
607 {
608 if ((opcode & OPCODE) == LL) {
609 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
610 1, regs, 0);
611 return simulate_ll(regs, opcode);
612 }
613 if ((opcode & OPCODE) == SC) {
614 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
615 1, regs, 0);
616 return simulate_sc(regs, opcode);
617 }
618
619 return -1; /* Must be something else ... */
620 }
621
622 /*
623 * Simulate trapping 'rdhwr' instructions to provide user accessible
624 * registers not implemented in hardware.
625 */
626 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
627 {
628 struct thread_info *ti = task_thread_info(current);
629
630 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
631 1, regs, 0);
632 switch (rd) {
633 case MIPS_HWR_CPUNUM: /* CPU number */
634 regs->regs[rt] = smp_processor_id();
635 return 0;
636 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
637 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
638 current_cpu_data.icache.linesz);
639 return 0;
640 case MIPS_HWR_CC: /* Read count register */
641 regs->regs[rt] = read_c0_count();
642 return 0;
643 case MIPS_HWR_CCRES: /* Count register resolution */
644 switch (current_cpu_type()) {
645 case CPU_20KC:
646 case CPU_25KF:
647 regs->regs[rt] = 1;
648 break;
649 default:
650 regs->regs[rt] = 2;
651 }
652 return 0;
653 case MIPS_HWR_ULR: /* Read UserLocal register */
654 regs->regs[rt] = ti->tp_value;
655 return 0;
656 default:
657 return -1;
658 }
659 }
660
661 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
662 {
663 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
664 int rd = (opcode & RD) >> 11;
665 int rt = (opcode & RT) >> 16;
666
667 simulate_rdhwr(regs, rd, rt);
668 return 0;
669 }
670
671 /* Not ours. */
672 return -1;
673 }
674
675 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
676 {
677 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
678 int rd = (opcode & MM_RS) >> 16;
679 int rt = (opcode & MM_RT) >> 21;
680 simulate_rdhwr(regs, rd, rt);
681 return 0;
682 }
683
684 /* Not ours. */
685 return -1;
686 }
687
688 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
689 {
690 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
691 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
692 1, regs, 0);
693 return 0;
694 }
695
696 return -1; /* Must be something else ... */
697 }
698
699 asmlinkage void do_ov(struct pt_regs *regs)
700 {
701 enum ctx_state prev_state;
702 siginfo_t info = {
703 .si_signo = SIGFPE,
704 .si_code = FPE_INTOVF,
705 .si_addr = (void __user *)regs->cp0_epc,
706 };
707
708 prev_state = exception_enter();
709 die_if_kernel("Integer overflow", regs);
710
711 force_sig_info(SIGFPE, &info, current);
712 exception_exit(prev_state);
713 }
714
715 /*
716 * Send SIGFPE according to FCSR Cause bits, which must have already
717 * been masked against Enable bits. This is impotant as Inexact can
718 * happen together with Overflow or Underflow, and `ptrace' can set
719 * any bits.
720 */
721 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
722 struct task_struct *tsk)
723 {
724 struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE };
725
726 if (fcr31 & FPU_CSR_INV_X)
727 si.si_code = FPE_FLTINV;
728 else if (fcr31 & FPU_CSR_DIV_X)
729 si.si_code = FPE_FLTDIV;
730 else if (fcr31 & FPU_CSR_OVF_X)
731 si.si_code = FPE_FLTOVF;
732 else if (fcr31 & FPU_CSR_UDF_X)
733 si.si_code = FPE_FLTUND;
734 else if (fcr31 & FPU_CSR_INE_X)
735 si.si_code = FPE_FLTRES;
736
737 force_sig_info(SIGFPE, &si, tsk);
738 }
739
740 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
741 {
742 struct siginfo si = { 0 };
743 struct vm_area_struct *vma;
744
745 switch (sig) {
746 case 0:
747 return 0;
748
749 case SIGFPE:
750 force_fcr31_sig(fcr31, fault_addr, current);
751 return 1;
752
753 case SIGBUS:
754 si.si_addr = fault_addr;
755 si.si_signo = sig;
756 si.si_code = BUS_ADRERR;
757 force_sig_info(sig, &si, current);
758 return 1;
759
760 case SIGSEGV:
761 si.si_addr = fault_addr;
762 si.si_signo = sig;
763 down_read(&current->mm->mmap_sem);
764 vma = find_vma(current->mm, (unsigned long)fault_addr);
765 if (vma && (vma->vm_start <= (unsigned long)fault_addr))
766 si.si_code = SEGV_ACCERR;
767 else
768 si.si_code = SEGV_MAPERR;
769 up_read(&current->mm->mmap_sem);
770 force_sig_info(sig, &si, current);
771 return 1;
772
773 default:
774 force_sig(sig, current);
775 return 1;
776 }
777 }
778
779 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
780 unsigned long old_epc, unsigned long old_ra)
781 {
782 union mips_instruction inst = { .word = opcode };
783 void __user *fault_addr;
784 unsigned long fcr31;
785 int sig;
786
787 /* If it's obviously not an FP instruction, skip it */
788 switch (inst.i_format.opcode) {
789 case cop1_op:
790 case cop1x_op:
791 case lwc1_op:
792 case ldc1_op:
793 case swc1_op:
794 case sdc1_op:
795 break;
796
797 default:
798 return -1;
799 }
800
801 /*
802 * do_ri skipped over the instruction via compute_return_epc, undo
803 * that for the FPU emulator.
804 */
805 regs->cp0_epc = old_epc;
806 regs->regs[31] = old_ra;
807
808 /* Save the FP context to struct thread_struct */
809 lose_fpu(1);
810
811 /* Run the emulator */
812 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
813 &fault_addr);
814
815 /*
816 * We can't allow the emulated instruction to leave any
817 * enabled Cause bits set in $fcr31.
818 */
819 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
820 current->thread.fpu.fcr31 &= ~fcr31;
821
822 /* Restore the hardware register state */
823 own_fpu(1);
824
825 /* Send a signal if required. */
826 process_fpemu_return(sig, fault_addr, fcr31);
827
828 return 0;
829 }
830
831 /*
832 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
833 */
834 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
835 {
836 enum ctx_state prev_state;
837 void __user *fault_addr;
838 int sig;
839
840 prev_state = exception_enter();
841 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
842 SIGFPE) == NOTIFY_STOP)
843 goto out;
844
845 /* Clear FCSR.Cause before enabling interrupts */
846 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
847 local_irq_enable();
848
849 die_if_kernel("FP exception in kernel code", regs);
850
851 if (fcr31 & FPU_CSR_UNI_X) {
852 /*
853 * Unimplemented operation exception. If we've got the full
854 * software emulator on-board, let's use it...
855 *
856 * Force FPU to dump state into task/thread context. We're
857 * moving a lot of data here for what is probably a single
858 * instruction, but the alternative is to pre-decode the FP
859 * register operands before invoking the emulator, which seems
860 * a bit extreme for what should be an infrequent event.
861 */
862 /* Ensure 'resume' not overwrite saved fp context again. */
863 lose_fpu(1);
864
865 /* Run the emulator */
866 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
867 &fault_addr);
868
869 /*
870 * We can't allow the emulated instruction to leave any
871 * enabled Cause bits set in $fcr31.
872 */
873 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
874 current->thread.fpu.fcr31 &= ~fcr31;
875
876 /* Restore the hardware register state */
877 own_fpu(1); /* Using the FPU again. */
878 } else {
879 sig = SIGFPE;
880 fault_addr = (void __user *) regs->cp0_epc;
881 }
882
883 /* Send a signal if required. */
884 process_fpemu_return(sig, fault_addr, fcr31);
885
886 out:
887 exception_exit(prev_state);
888 }
889
890 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
891 const char *str)
892 {
893 siginfo_t info = { 0 };
894 char b[40];
895
896 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
897 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
898 SIGTRAP) == NOTIFY_STOP)
899 return;
900 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
901
902 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
903 SIGTRAP) == NOTIFY_STOP)
904 return;
905
906 /*
907 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
908 * insns, even for trap and break codes that indicate arithmetic
909 * failures. Weird ...
910 * But should we continue the brokenness??? --macro
911 */
912 switch (code) {
913 case BRK_OVERFLOW:
914 case BRK_DIVZERO:
915 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
916 die_if_kernel(b, regs);
917 if (code == BRK_DIVZERO)
918 info.si_code = FPE_INTDIV;
919 else
920 info.si_code = FPE_INTOVF;
921 info.si_signo = SIGFPE;
922 info.si_addr = (void __user *) regs->cp0_epc;
923 force_sig_info(SIGFPE, &info, current);
924 break;
925 case BRK_BUG:
926 die_if_kernel("Kernel bug detected", regs);
927 force_sig(SIGTRAP, current);
928 break;
929 case BRK_MEMU:
930 /*
931 * This breakpoint code is used by the FPU emulator to retake
932 * control of the CPU after executing the instruction from the
933 * delay slot of an emulated branch.
934 *
935 * Terminate if exception was recognized as a delay slot return
936 * otherwise handle as normal.
937 */
938 if (do_dsemulret(regs))
939 return;
940
941 die_if_kernel("Math emu break/trap", regs);
942 force_sig(SIGTRAP, current);
943 break;
944 default:
945 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
946 die_if_kernel(b, regs);
947 if (si_code) {
948 info.si_signo = SIGTRAP;
949 info.si_code = si_code;
950 force_sig_info(SIGTRAP, &info, current);
951 } else {
952 force_sig(SIGTRAP, current);
953 }
954 }
955 }
956
957 asmlinkage void do_bp(struct pt_regs *regs)
958 {
959 unsigned long epc = msk_isa16_mode(exception_epc(regs));
960 unsigned int opcode, bcode;
961 enum ctx_state prev_state;
962 mm_segment_t seg;
963
964 seg = get_fs();
965 if (!user_mode(regs))
966 set_fs(KERNEL_DS);
967
968 prev_state = exception_enter();
969 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
970 if (get_isa16_mode(regs->cp0_epc)) {
971 u16 instr[2];
972
973 if (__get_user(instr[0], (u16 __user *)epc))
974 goto out_sigsegv;
975
976 if (!cpu_has_mmips) {
977 /* MIPS16e mode */
978 bcode = (instr[0] >> 5) & 0x3f;
979 } else if (mm_insn_16bit(instr[0])) {
980 /* 16-bit microMIPS BREAK */
981 bcode = instr[0] & 0xf;
982 } else {
983 /* 32-bit microMIPS BREAK */
984 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
985 goto out_sigsegv;
986 opcode = (instr[0] << 16) | instr[1];
987 bcode = (opcode >> 6) & ((1 << 20) - 1);
988 }
989 } else {
990 if (__get_user(opcode, (unsigned int __user *)epc))
991 goto out_sigsegv;
992 bcode = (opcode >> 6) & ((1 << 20) - 1);
993 }
994
995 /*
996 * There is the ancient bug in the MIPS assemblers that the break
997 * code starts left to bit 16 instead to bit 6 in the opcode.
998 * Gas is bug-compatible, but not always, grrr...
999 * We handle both cases with a simple heuristics. --macro
1000 */
1001 if (bcode >= (1 << 10))
1002 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1003
1004 /*
1005 * notify the kprobe handlers, if instruction is likely to
1006 * pertain to them.
1007 */
1008 switch (bcode) {
1009 case BRK_UPROBE:
1010 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1011 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1012 goto out;
1013 else
1014 break;
1015 case BRK_UPROBE_XOL:
1016 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1017 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1018 goto out;
1019 else
1020 break;
1021 case BRK_KPROBE_BP:
1022 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1023 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1024 goto out;
1025 else
1026 break;
1027 case BRK_KPROBE_SSTEPBP:
1028 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1029 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1030 goto out;
1031 else
1032 break;
1033 default:
1034 break;
1035 }
1036
1037 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1038
1039 out:
1040 set_fs(seg);
1041 exception_exit(prev_state);
1042 return;
1043
1044 out_sigsegv:
1045 force_sig(SIGSEGV, current);
1046 goto out;
1047 }
1048
1049 asmlinkage void do_tr(struct pt_regs *regs)
1050 {
1051 u32 opcode, tcode = 0;
1052 enum ctx_state prev_state;
1053 u16 instr[2];
1054 mm_segment_t seg;
1055 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1056
1057 seg = get_fs();
1058 if (!user_mode(regs))
1059 set_fs(get_ds());
1060
1061 prev_state = exception_enter();
1062 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1063 if (get_isa16_mode(regs->cp0_epc)) {
1064 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1065 __get_user(instr[1], (u16 __user *)(epc + 2)))
1066 goto out_sigsegv;
1067 opcode = (instr[0] << 16) | instr[1];
1068 /* Immediate versions don't provide a code. */
1069 if (!(opcode & OPCODE))
1070 tcode = (opcode >> 12) & ((1 << 4) - 1);
1071 } else {
1072 if (__get_user(opcode, (u32 __user *)epc))
1073 goto out_sigsegv;
1074 /* Immediate versions don't provide a code. */
1075 if (!(opcode & OPCODE))
1076 tcode = (opcode >> 6) & ((1 << 10) - 1);
1077 }
1078
1079 do_trap_or_bp(regs, tcode, 0, "Trap");
1080
1081 out:
1082 set_fs(seg);
1083 exception_exit(prev_state);
1084 return;
1085
1086 out_sigsegv:
1087 force_sig(SIGSEGV, current);
1088 goto out;
1089 }
1090
1091 asmlinkage void do_ri(struct pt_regs *regs)
1092 {
1093 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1094 unsigned long old_epc = regs->cp0_epc;
1095 unsigned long old31 = regs->regs[31];
1096 enum ctx_state prev_state;
1097 unsigned int opcode = 0;
1098 int status = -1;
1099
1100 /*
1101 * Avoid any kernel code. Just emulate the R2 instruction
1102 * as quickly as possible.
1103 */
1104 if (mipsr2_emulation && cpu_has_mips_r6 &&
1105 likely(user_mode(regs)) &&
1106 likely(get_user(opcode, epc) >= 0)) {
1107 unsigned long fcr31 = 0;
1108
1109 status = mipsr2_decoder(regs, opcode, &fcr31);
1110 switch (status) {
1111 case 0:
1112 case SIGEMT:
1113 return;
1114 case SIGILL:
1115 goto no_r2_instr;
1116 default:
1117 process_fpemu_return(status,
1118 &current->thread.cp0_baduaddr,
1119 fcr31);
1120 return;
1121 }
1122 }
1123
1124 no_r2_instr:
1125
1126 prev_state = exception_enter();
1127 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1128
1129 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1130 SIGILL) == NOTIFY_STOP)
1131 goto out;
1132
1133 die_if_kernel("Reserved instruction in kernel code", regs);
1134
1135 if (unlikely(compute_return_epc(regs) < 0))
1136 goto out;
1137
1138 if (!get_isa16_mode(regs->cp0_epc)) {
1139 if (unlikely(get_user(opcode, epc) < 0))
1140 status = SIGSEGV;
1141
1142 if (!cpu_has_llsc && status < 0)
1143 status = simulate_llsc(regs, opcode);
1144
1145 if (status < 0)
1146 status = simulate_rdhwr_normal(regs, opcode);
1147
1148 if (status < 0)
1149 status = simulate_sync(regs, opcode);
1150
1151 if (status < 0)
1152 status = simulate_fp(regs, opcode, old_epc, old31);
1153 } else if (cpu_has_mmips) {
1154 unsigned short mmop[2] = { 0 };
1155
1156 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1157 status = SIGSEGV;
1158 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1159 status = SIGSEGV;
1160 opcode = mmop[0];
1161 opcode = (opcode << 16) | mmop[1];
1162
1163 if (status < 0)
1164 status = simulate_rdhwr_mm(regs, opcode);
1165 }
1166
1167 if (status < 0)
1168 status = SIGILL;
1169
1170 if (unlikely(status > 0)) {
1171 regs->cp0_epc = old_epc; /* Undo skip-over. */
1172 regs->regs[31] = old31;
1173 force_sig(status, current);
1174 }
1175
1176 out:
1177 exception_exit(prev_state);
1178 }
1179
1180 /*
1181 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1182 * emulated more than some threshold number of instructions, force migration to
1183 * a "CPU" that has FP support.
1184 */
1185 static void mt_ase_fp_affinity(void)
1186 {
1187 #ifdef CONFIG_MIPS_MT_FPAFF
1188 if (mt_fpemul_threshold > 0 &&
1189 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1190 /*
1191 * If there's no FPU present, or if the application has already
1192 * restricted the allowed set to exclude any CPUs with FPUs,
1193 * we'll skip the procedure.
1194 */
1195 if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1196 cpumask_t tmask;
1197
1198 current->thread.user_cpus_allowed
1199 = current->cpus_allowed;
1200 cpumask_and(&tmask, &current->cpus_allowed,
1201 &mt_fpu_cpumask);
1202 set_cpus_allowed_ptr(current, &tmask);
1203 set_thread_flag(TIF_FPUBOUND);
1204 }
1205 }
1206 #endif /* CONFIG_MIPS_MT_FPAFF */
1207 }
1208
1209 /*
1210 * No lock; only written during early bootup by CPU 0.
1211 */
1212 static RAW_NOTIFIER_HEAD(cu2_chain);
1213
1214 int __ref register_cu2_notifier(struct notifier_block *nb)
1215 {
1216 return raw_notifier_chain_register(&cu2_chain, nb);
1217 }
1218
1219 int cu2_notifier_call_chain(unsigned long val, void *v)
1220 {
1221 return raw_notifier_call_chain(&cu2_chain, val, v);
1222 }
1223
1224 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1225 void *data)
1226 {
1227 struct pt_regs *regs = data;
1228
1229 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1230 "instruction", regs);
1231 force_sig(SIGILL, current);
1232
1233 return NOTIFY_OK;
1234 }
1235
1236 static int wait_on_fp_mode_switch(atomic_t *p)
1237 {
1238 /*
1239 * The FP mode for this task is currently being switched. That may
1240 * involve modifications to the format of this tasks FP context which
1241 * make it unsafe to proceed with execution for the moment. Instead,
1242 * schedule some other task.
1243 */
1244 schedule();
1245 return 0;
1246 }
1247
1248 static int enable_restore_fp_context(int msa)
1249 {
1250 int err, was_fpu_owner, prior_msa;
1251
1252 /*
1253 * If an FP mode switch is currently underway, wait for it to
1254 * complete before proceeding.
1255 */
1256 wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1257 wait_on_fp_mode_switch, TASK_KILLABLE);
1258
1259 if (!used_math()) {
1260 /* First time FP context user. */
1261 preempt_disable();
1262 err = init_fpu();
1263 if (msa && !err) {
1264 enable_msa();
1265 init_msa_upper();
1266 set_thread_flag(TIF_USEDMSA);
1267 set_thread_flag(TIF_MSA_CTX_LIVE);
1268 }
1269 preempt_enable();
1270 if (!err)
1271 set_used_math();
1272 return err;
1273 }
1274
1275 /*
1276 * This task has formerly used the FP context.
1277 *
1278 * If this thread has no live MSA vector context then we can simply
1279 * restore the scalar FP context. If it has live MSA vector context
1280 * (that is, it has or may have used MSA since last performing a
1281 * function call) then we'll need to restore the vector context. This
1282 * applies even if we're currently only executing a scalar FP
1283 * instruction. This is because if we were to later execute an MSA
1284 * instruction then we'd either have to:
1285 *
1286 * - Restore the vector context & clobber any registers modified by
1287 * scalar FP instructions between now & then.
1288 *
1289 * or
1290 *
1291 * - Not restore the vector context & lose the most significant bits
1292 * of all vector registers.
1293 *
1294 * Neither of those options is acceptable. We cannot restore the least
1295 * significant bits of the registers now & only restore the most
1296 * significant bits later because the most significant bits of any
1297 * vector registers whose aliased FP register is modified now will have
1298 * been zeroed. We'd have no way to know that when restoring the vector
1299 * context & thus may load an outdated value for the most significant
1300 * bits of a vector register.
1301 */
1302 if (!msa && !thread_msa_context_live())
1303 return own_fpu(1);
1304
1305 /*
1306 * This task is using or has previously used MSA. Thus we require
1307 * that Status.FR == 1.
1308 */
1309 preempt_disable();
1310 was_fpu_owner = is_fpu_owner();
1311 err = own_fpu_inatomic(0);
1312 if (err)
1313 goto out;
1314
1315 enable_msa();
1316 write_msa_csr(current->thread.fpu.msacsr);
1317 set_thread_flag(TIF_USEDMSA);
1318
1319 /*
1320 * If this is the first time that the task is using MSA and it has
1321 * previously used scalar FP in this time slice then we already nave
1322 * FP context which we shouldn't clobber. We do however need to clear
1323 * the upper 64b of each vector register so that this task has no
1324 * opportunity to see data left behind by another.
1325 */
1326 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1327 if (!prior_msa && was_fpu_owner) {
1328 init_msa_upper();
1329
1330 goto out;
1331 }
1332
1333 if (!prior_msa) {
1334 /*
1335 * Restore the least significant 64b of each vector register
1336 * from the existing scalar FP context.
1337 */
1338 _restore_fp(current);
1339
1340 /*
1341 * The task has not formerly used MSA, so clear the upper 64b
1342 * of each vector register such that it cannot see data left
1343 * behind by another task.
1344 */
1345 init_msa_upper();
1346 } else {
1347 /* We need to restore the vector context. */
1348 restore_msa(current);
1349
1350 /* Restore the scalar FP control & status register */
1351 if (!was_fpu_owner)
1352 write_32bit_cp1_register(CP1_STATUS,
1353 current->thread.fpu.fcr31);
1354 }
1355
1356 out:
1357 preempt_enable();
1358
1359 return 0;
1360 }
1361
1362 asmlinkage void do_cpu(struct pt_regs *regs)
1363 {
1364 enum ctx_state prev_state;
1365 unsigned int __user *epc;
1366 unsigned long old_epc, old31;
1367 void __user *fault_addr;
1368 unsigned int opcode;
1369 unsigned long fcr31;
1370 unsigned int cpid;
1371 int status, err;
1372 int sig;
1373
1374 prev_state = exception_enter();
1375 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1376
1377 if (cpid != 2)
1378 die_if_kernel("do_cpu invoked from kernel context!", regs);
1379
1380 switch (cpid) {
1381 case 0:
1382 epc = (unsigned int __user *)exception_epc(regs);
1383 old_epc = regs->cp0_epc;
1384 old31 = regs->regs[31];
1385 opcode = 0;
1386 status = -1;
1387
1388 if (unlikely(compute_return_epc(regs) < 0))
1389 break;
1390
1391 if (!get_isa16_mode(regs->cp0_epc)) {
1392 if (unlikely(get_user(opcode, epc) < 0))
1393 status = SIGSEGV;
1394
1395 if (!cpu_has_llsc && status < 0)
1396 status = simulate_llsc(regs, opcode);
1397 }
1398
1399 if (status < 0)
1400 status = SIGILL;
1401
1402 if (unlikely(status > 0)) {
1403 regs->cp0_epc = old_epc; /* Undo skip-over. */
1404 regs->regs[31] = old31;
1405 force_sig(status, current);
1406 }
1407
1408 break;
1409
1410 case 3:
1411 /*
1412 * The COP3 opcode space and consequently the CP0.Status.CU3
1413 * bit and the CP0.Cause.CE=3 encoding have been removed as
1414 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1415 * up the space has been reused for COP1X instructions, that
1416 * are enabled by the CP0.Status.CU1 bit and consequently
1417 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1418 * exceptions. Some FPU-less processors that implement one
1419 * of these ISAs however use this code erroneously for COP1X
1420 * instructions. Therefore we redirect this trap to the FP
1421 * emulator too.
1422 */
1423 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1424 force_sig(SIGILL, current);
1425 break;
1426 }
1427 /* Fall through. */
1428
1429 case 1:
1430 err = enable_restore_fp_context(0);
1431
1432 if (raw_cpu_has_fpu && !err)
1433 break;
1434
1435 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1436 &fault_addr);
1437
1438 /*
1439 * We can't allow the emulated instruction to leave
1440 * any enabled Cause bits set in $fcr31.
1441 */
1442 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1443 current->thread.fpu.fcr31 &= ~fcr31;
1444
1445 /* Send a signal if required. */
1446 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1447 mt_ase_fp_affinity();
1448
1449 break;
1450
1451 case 2:
1452 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1453 break;
1454 }
1455
1456 exception_exit(prev_state);
1457 }
1458
1459 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1460 {
1461 enum ctx_state prev_state;
1462
1463 prev_state = exception_enter();
1464 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1465 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1466 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1467 goto out;
1468
1469 /* Clear MSACSR.Cause before enabling interrupts */
1470 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1471 local_irq_enable();
1472
1473 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1474 force_sig(SIGFPE, current);
1475 out:
1476 exception_exit(prev_state);
1477 }
1478
1479 asmlinkage void do_msa(struct pt_regs *regs)
1480 {
1481 enum ctx_state prev_state;
1482 int err;
1483
1484 prev_state = exception_enter();
1485
1486 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1487 force_sig(SIGILL, current);
1488 goto out;
1489 }
1490
1491 die_if_kernel("do_msa invoked from kernel context!", regs);
1492
1493 err = enable_restore_fp_context(1);
1494 if (err)
1495 force_sig(SIGILL, current);
1496 out:
1497 exception_exit(prev_state);
1498 }
1499
1500 asmlinkage void do_mdmx(struct pt_regs *regs)
1501 {
1502 enum ctx_state prev_state;
1503
1504 prev_state = exception_enter();
1505 force_sig(SIGILL, current);
1506 exception_exit(prev_state);
1507 }
1508
1509 /*
1510 * Called with interrupts disabled.
1511 */
1512 asmlinkage void do_watch(struct pt_regs *regs)
1513 {
1514 siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1515 enum ctx_state prev_state;
1516
1517 prev_state = exception_enter();
1518 /*
1519 * Clear WP (bit 22) bit of cause register so we don't loop
1520 * forever.
1521 */
1522 clear_c0_cause(CAUSEF_WP);
1523
1524 /*
1525 * If the current thread has the watch registers loaded, save
1526 * their values and send SIGTRAP. Otherwise another thread
1527 * left the registers set, clear them and continue.
1528 */
1529 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1530 mips_read_watch_registers();
1531 local_irq_enable();
1532 force_sig_info(SIGTRAP, &info, current);
1533 } else {
1534 mips_clear_watch_registers();
1535 local_irq_enable();
1536 }
1537 exception_exit(prev_state);
1538 }
1539
1540 asmlinkage void do_mcheck(struct pt_regs *regs)
1541 {
1542 int multi_match = regs->cp0_status & ST0_TS;
1543 enum ctx_state prev_state;
1544 mm_segment_t old_fs = get_fs();
1545
1546 prev_state = exception_enter();
1547 show_regs(regs);
1548
1549 if (multi_match) {
1550 dump_tlb_regs();
1551 pr_info("\n");
1552 dump_tlb_all();
1553 }
1554
1555 if (!user_mode(regs))
1556 set_fs(KERNEL_DS);
1557
1558 show_code((unsigned int __user *) regs->cp0_epc);
1559
1560 set_fs(old_fs);
1561
1562 /*
1563 * Some chips may have other causes of machine check (e.g. SB1
1564 * graduation timer)
1565 */
1566 panic("Caught Machine Check exception - %scaused by multiple "
1567 "matching entries in the TLB.",
1568 (multi_match) ? "" : "not ");
1569 }
1570
1571 asmlinkage void do_mt(struct pt_regs *regs)
1572 {
1573 int subcode;
1574
1575 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1576 >> VPECONTROL_EXCPT_SHIFT;
1577 switch (subcode) {
1578 case 0:
1579 printk(KERN_DEBUG "Thread Underflow\n");
1580 break;
1581 case 1:
1582 printk(KERN_DEBUG "Thread Overflow\n");
1583 break;
1584 case 2:
1585 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1586 break;
1587 case 3:
1588 printk(KERN_DEBUG "Gating Storage Exception\n");
1589 break;
1590 case 4:
1591 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1592 break;
1593 case 5:
1594 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1595 break;
1596 default:
1597 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1598 subcode);
1599 break;
1600 }
1601 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1602
1603 force_sig(SIGILL, current);
1604 }
1605
1606
1607 asmlinkage void do_dsp(struct pt_regs *regs)
1608 {
1609 if (cpu_has_dsp)
1610 panic("Unexpected DSP exception");
1611
1612 force_sig(SIGILL, current);
1613 }
1614
1615 asmlinkage void do_reserved(struct pt_regs *regs)
1616 {
1617 /*
1618 * Game over - no way to handle this if it ever occurs. Most probably
1619 * caused by a new unknown cpu type or after another deadly
1620 * hard/software error.
1621 */
1622 show_regs(regs);
1623 panic("Caught reserved exception %ld - should not happen.",
1624 (regs->cp0_cause & 0x7f) >> 2);
1625 }
1626
1627 static int __initdata l1parity = 1;
1628 static int __init nol1parity(char *s)
1629 {
1630 l1parity = 0;
1631 return 1;
1632 }
1633 __setup("nol1par", nol1parity);
1634 static int __initdata l2parity = 1;
1635 static int __init nol2parity(char *s)
1636 {
1637 l2parity = 0;
1638 return 1;
1639 }
1640 __setup("nol2par", nol2parity);
1641
1642 /*
1643 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1644 * it different ways.
1645 */
1646 static inline void parity_protection_init(void)
1647 {
1648 #define ERRCTL_PE 0x80000000
1649 #define ERRCTL_L2P 0x00800000
1650
1651 if (mips_cm_revision() >= CM_REV_CM3) {
1652 ulong gcr_ectl, cp0_ectl;
1653
1654 /*
1655 * With CM3 systems we need to ensure that the L1 & L2
1656 * parity enables are set to the same value, since this
1657 * is presumed by the hardware engineers.
1658 *
1659 * If the user disabled either of L1 or L2 ECC checking,
1660 * disable both.
1661 */
1662 l1parity &= l2parity;
1663 l2parity &= l1parity;
1664
1665 /* Probe L1 ECC support */
1666 cp0_ectl = read_c0_ecc();
1667 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1668 back_to_back_c0_hazard();
1669 cp0_ectl = read_c0_ecc();
1670
1671 /* Probe L2 ECC support */
1672 gcr_ectl = read_gcr_err_control();
1673
1674 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1675 !(cp0_ectl & ERRCTL_PE)) {
1676 /*
1677 * One of L1 or L2 ECC checking isn't supported,
1678 * so we cannot enable either.
1679 */
1680 l1parity = l2parity = 0;
1681 }
1682
1683 /* Configure L1 ECC checking */
1684 if (l1parity)
1685 cp0_ectl |= ERRCTL_PE;
1686 else
1687 cp0_ectl &= ~ERRCTL_PE;
1688 write_c0_ecc(cp0_ectl);
1689 back_to_back_c0_hazard();
1690 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1691
1692 /* Configure L2 ECC checking */
1693 if (l2parity)
1694 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1695 else
1696 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1697 write_gcr_err_control(gcr_ectl);
1698 gcr_ectl = read_gcr_err_control();
1699 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1700 WARN_ON(!!gcr_ectl != l2parity);
1701
1702 pr_info("Cache parity protection %sabled\n",
1703 l1parity ? "en" : "dis");
1704 return;
1705 }
1706
1707 switch (current_cpu_type()) {
1708 case CPU_24K:
1709 case CPU_34K:
1710 case CPU_74K:
1711 case CPU_1004K:
1712 case CPU_1074K:
1713 case CPU_INTERAPTIV:
1714 case CPU_PROAPTIV:
1715 case CPU_P5600:
1716 case CPU_QEMU_GENERIC:
1717 case CPU_P6600:
1718 {
1719 unsigned long errctl;
1720 unsigned int l1parity_present, l2parity_present;
1721
1722 errctl = read_c0_ecc();
1723 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1724
1725 /* probe L1 parity support */
1726 write_c0_ecc(errctl | ERRCTL_PE);
1727 back_to_back_c0_hazard();
1728 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1729
1730 /* probe L2 parity support */
1731 write_c0_ecc(errctl|ERRCTL_L2P);
1732 back_to_back_c0_hazard();
1733 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1734
1735 if (l1parity_present && l2parity_present) {
1736 if (l1parity)
1737 errctl |= ERRCTL_PE;
1738 if (l1parity ^ l2parity)
1739 errctl |= ERRCTL_L2P;
1740 } else if (l1parity_present) {
1741 if (l1parity)
1742 errctl |= ERRCTL_PE;
1743 } else if (l2parity_present) {
1744 if (l2parity)
1745 errctl |= ERRCTL_L2P;
1746 } else {
1747 /* No parity available */
1748 }
1749
1750 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1751
1752 write_c0_ecc(errctl);
1753 back_to_back_c0_hazard();
1754 errctl = read_c0_ecc();
1755 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1756
1757 if (l1parity_present)
1758 printk(KERN_INFO "Cache parity protection %sabled\n",
1759 (errctl & ERRCTL_PE) ? "en" : "dis");
1760
1761 if (l2parity_present) {
1762 if (l1parity_present && l1parity)
1763 errctl ^= ERRCTL_L2P;
1764 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1765 (errctl & ERRCTL_L2P) ? "en" : "dis");
1766 }
1767 }
1768 break;
1769
1770 case CPU_5KC:
1771 case CPU_5KE:
1772 case CPU_LOONGSON1:
1773 write_c0_ecc(0x80000000);
1774 back_to_back_c0_hazard();
1775 /* Set the PE bit (bit 31) in the c0_errctl register. */
1776 printk(KERN_INFO "Cache parity protection %sabled\n",
1777 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1778 break;
1779 case CPU_20KC:
1780 case CPU_25KF:
1781 /* Clear the DE bit (bit 16) in the c0_status register. */
1782 printk(KERN_INFO "Enable cache parity protection for "
1783 "MIPS 20KC/25KF CPUs.\n");
1784 clear_c0_status(ST0_DE);
1785 break;
1786 default:
1787 break;
1788 }
1789 }
1790
1791 asmlinkage void cache_parity_error(void)
1792 {
1793 const int field = 2 * sizeof(unsigned long);
1794 unsigned int reg_val;
1795
1796 /* For the moment, report the problem and hang. */
1797 printk("Cache error exception:\n");
1798 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1799 reg_val = read_c0_cacheerr();
1800 printk("c0_cacheerr == %08x\n", reg_val);
1801
1802 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1803 reg_val & (1<<30) ? "secondary" : "primary",
1804 reg_val & (1<<31) ? "data" : "insn");
1805 if ((cpu_has_mips_r2_r6) &&
1806 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1807 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1808 reg_val & (1<<29) ? "ED " : "",
1809 reg_val & (1<<28) ? "ET " : "",
1810 reg_val & (1<<27) ? "ES " : "",
1811 reg_val & (1<<26) ? "EE " : "",
1812 reg_val & (1<<25) ? "EB " : "",
1813 reg_val & (1<<24) ? "EI " : "",
1814 reg_val & (1<<23) ? "E1 " : "",
1815 reg_val & (1<<22) ? "E0 " : "");
1816 } else {
1817 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1818 reg_val & (1<<29) ? "ED " : "",
1819 reg_val & (1<<28) ? "ET " : "",
1820 reg_val & (1<<26) ? "EE " : "",
1821 reg_val & (1<<25) ? "EB " : "",
1822 reg_val & (1<<24) ? "EI " : "",
1823 reg_val & (1<<23) ? "E1 " : "",
1824 reg_val & (1<<22) ? "E0 " : "");
1825 }
1826 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1827
1828 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1829 if (reg_val & (1<<22))
1830 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1831
1832 if (reg_val & (1<<23))
1833 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1834 #endif
1835
1836 panic("Can't handle the cache error!");
1837 }
1838
1839 asmlinkage void do_ftlb(void)
1840 {
1841 const int field = 2 * sizeof(unsigned long);
1842 unsigned int reg_val;
1843
1844 /* For the moment, report the problem and hang. */
1845 if ((cpu_has_mips_r2_r6) &&
1846 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1847 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1848 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1849 read_c0_ecc());
1850 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1851 reg_val = read_c0_cacheerr();
1852 pr_err("c0_cacheerr == %08x\n", reg_val);
1853
1854 if ((reg_val & 0xc0000000) == 0xc0000000) {
1855 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1856 } else {
1857 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1858 reg_val & (1<<30) ? "secondary" : "primary",
1859 reg_val & (1<<31) ? "data" : "insn");
1860 }
1861 } else {
1862 pr_err("FTLB error exception\n");
1863 }
1864 /* Just print the cacheerr bits for now */
1865 cache_parity_error();
1866 }
1867
1868 /*
1869 * SDBBP EJTAG debug exception handler.
1870 * We skip the instruction and return to the next instruction.
1871 */
1872 void ejtag_exception_handler(struct pt_regs *regs)
1873 {
1874 const int field = 2 * sizeof(unsigned long);
1875 unsigned long depc, old_epc, old_ra;
1876 unsigned int debug;
1877
1878 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1879 depc = read_c0_depc();
1880 debug = read_c0_debug();
1881 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1882 if (debug & 0x80000000) {
1883 /*
1884 * In branch delay slot.
1885 * We cheat a little bit here and use EPC to calculate the
1886 * debug return address (DEPC). EPC is restored after the
1887 * calculation.
1888 */
1889 old_epc = regs->cp0_epc;
1890 old_ra = regs->regs[31];
1891 regs->cp0_epc = depc;
1892 compute_return_epc(regs);
1893 depc = regs->cp0_epc;
1894 regs->cp0_epc = old_epc;
1895 regs->regs[31] = old_ra;
1896 } else
1897 depc += 4;
1898 write_c0_depc(depc);
1899
1900 #if 0
1901 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1902 write_c0_debug(debug | 0x100);
1903 #endif
1904 }
1905
1906 /*
1907 * NMI exception handler.
1908 * No lock; only written during early bootup by CPU 0.
1909 */
1910 static RAW_NOTIFIER_HEAD(nmi_chain);
1911
1912 int register_nmi_notifier(struct notifier_block *nb)
1913 {
1914 return raw_notifier_chain_register(&nmi_chain, nb);
1915 }
1916
1917 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1918 {
1919 char str[100];
1920
1921 nmi_enter();
1922 raw_notifier_call_chain(&nmi_chain, 0, regs);
1923 bust_spinlocks(1);
1924 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1925 smp_processor_id(), regs->cp0_epc);
1926 regs->cp0_epc = read_c0_errorepc();
1927 die(str, regs);
1928 nmi_exit();
1929 }
1930
1931 #define VECTORSPACING 0x100 /* for EI/VI mode */
1932
1933 unsigned long ebase;
1934 EXPORT_SYMBOL_GPL(ebase);
1935 unsigned long exception_handlers[32];
1936 unsigned long vi_handlers[64];
1937
1938 void __init *set_except_vector(int n, void *addr)
1939 {
1940 unsigned long handler = (unsigned long) addr;
1941 unsigned long old_handler;
1942
1943 #ifdef CONFIG_CPU_MICROMIPS
1944 /*
1945 * Only the TLB handlers are cache aligned with an even
1946 * address. All other handlers are on an odd address and
1947 * require no modification. Otherwise, MIPS32 mode will
1948 * be entered when handling any TLB exceptions. That
1949 * would be bad...since we must stay in microMIPS mode.
1950 */
1951 if (!(handler & 0x1))
1952 handler |= 1;
1953 #endif
1954 old_handler = xchg(&exception_handlers[n], handler);
1955
1956 if (n == 0 && cpu_has_divec) {
1957 #ifdef CONFIG_CPU_MICROMIPS
1958 unsigned long jump_mask = ~((1 << 27) - 1);
1959 #else
1960 unsigned long jump_mask = ~((1 << 28) - 1);
1961 #endif
1962 u32 *buf = (u32 *)(ebase + 0x200);
1963 unsigned int k0 = 26;
1964 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1965 uasm_i_j(&buf, handler & ~jump_mask);
1966 uasm_i_nop(&buf);
1967 } else {
1968 UASM_i_LA(&buf, k0, handler);
1969 uasm_i_jr(&buf, k0);
1970 uasm_i_nop(&buf);
1971 }
1972 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1973 }
1974 return (void *)old_handler;
1975 }
1976
1977 static void do_default_vi(void)
1978 {
1979 show_regs(get_irq_regs());
1980 panic("Caught unexpected vectored interrupt.");
1981 }
1982
1983 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1984 {
1985 unsigned long handler;
1986 unsigned long old_handler = vi_handlers[n];
1987 int srssets = current_cpu_data.srsets;
1988 u16 *h;
1989 unsigned char *b;
1990
1991 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1992
1993 if (addr == NULL) {
1994 handler = (unsigned long) do_default_vi;
1995 srs = 0;
1996 } else
1997 handler = (unsigned long) addr;
1998 vi_handlers[n] = handler;
1999
2000 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2001
2002 if (srs >= srssets)
2003 panic("Shadow register set %d not supported", srs);
2004
2005 if (cpu_has_veic) {
2006 if (board_bind_eic_interrupt)
2007 board_bind_eic_interrupt(n, srs);
2008 } else if (cpu_has_vint) {
2009 /* SRSMap is only defined if shadow sets are implemented */
2010 if (srssets > 1)
2011 change_c0_srsmap(0xf << n*4, srs << n*4);
2012 }
2013
2014 if (srs == 0) {
2015 /*
2016 * If no shadow set is selected then use the default handler
2017 * that does normal register saving and standard interrupt exit
2018 */
2019 extern char except_vec_vi, except_vec_vi_lui;
2020 extern char except_vec_vi_ori, except_vec_vi_end;
2021 extern char rollback_except_vec_vi;
2022 char *vec_start = using_rollback_handler() ?
2023 &rollback_except_vec_vi : &except_vec_vi;
2024 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2025 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2026 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2027 #else
2028 const int lui_offset = &except_vec_vi_lui - vec_start;
2029 const int ori_offset = &except_vec_vi_ori - vec_start;
2030 #endif
2031 const int handler_len = &except_vec_vi_end - vec_start;
2032
2033 if (handler_len > VECTORSPACING) {
2034 /*
2035 * Sigh... panicing won't help as the console
2036 * is probably not configured :(
2037 */
2038 panic("VECTORSPACING too small");
2039 }
2040
2041 set_handler(((unsigned long)b - ebase), vec_start,
2042 #ifdef CONFIG_CPU_MICROMIPS
2043 (handler_len - 1));
2044 #else
2045 handler_len);
2046 #endif
2047 h = (u16 *)(b + lui_offset);
2048 *h = (handler >> 16) & 0xffff;
2049 h = (u16 *)(b + ori_offset);
2050 *h = (handler & 0xffff);
2051 local_flush_icache_range((unsigned long)b,
2052 (unsigned long)(b+handler_len));
2053 }
2054 else {
2055 /*
2056 * In other cases jump directly to the interrupt handler. It
2057 * is the handler's responsibility to save registers if required
2058 * (eg hi/lo) and return from the exception using "eret".
2059 */
2060 u32 insn;
2061
2062 h = (u16 *)b;
2063 /* j handler */
2064 #ifdef CONFIG_CPU_MICROMIPS
2065 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2066 #else
2067 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2068 #endif
2069 h[0] = (insn >> 16) & 0xffff;
2070 h[1] = insn & 0xffff;
2071 h[2] = 0;
2072 h[3] = 0;
2073 local_flush_icache_range((unsigned long)b,
2074 (unsigned long)(b+8));
2075 }
2076
2077 return (void *)old_handler;
2078 }
2079
2080 void *set_vi_handler(int n, vi_handler_t addr)
2081 {
2082 return set_vi_srs_handler(n, addr, 0);
2083 }
2084
2085 extern void tlb_init(void);
2086
2087 /*
2088 * Timer interrupt
2089 */
2090 int cp0_compare_irq;
2091 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2092 int cp0_compare_irq_shift;
2093
2094 /*
2095 * Performance counter IRQ or -1 if shared with timer
2096 */
2097 int cp0_perfcount_irq;
2098 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2099
2100 /*
2101 * Fast debug channel IRQ or -1 if not present
2102 */
2103 int cp0_fdc_irq;
2104 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2105
2106 static int noulri;
2107
2108 static int __init ulri_disable(char *s)
2109 {
2110 pr_info("Disabling ulri\n");
2111 noulri = 1;
2112
2113 return 1;
2114 }
2115 __setup("noulri", ulri_disable);
2116
2117 /* configure STATUS register */
2118 static void configure_status(void)
2119 {
2120 /*
2121 * Disable coprocessors and select 32-bit or 64-bit addressing
2122 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2123 * flag that some firmware may have left set and the TS bit (for
2124 * IP27). Set XX for ISA IV code to work.
2125 */
2126 unsigned int status_set = ST0_CU0;
2127 #ifdef CONFIG_64BIT
2128 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2129 #endif
2130 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2131 status_set |= ST0_XX;
2132 if (cpu_has_dsp)
2133 status_set |= ST0_MX;
2134
2135 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2136 status_set);
2137 }
2138
2139 unsigned int hwrena;
2140 EXPORT_SYMBOL_GPL(hwrena);
2141
2142 /* configure HWRENA register */
2143 static void configure_hwrena(void)
2144 {
2145 hwrena = cpu_hwrena_impl_bits;
2146
2147 if (cpu_has_mips_r2_r6)
2148 hwrena |= MIPS_HWRENA_CPUNUM |
2149 MIPS_HWRENA_SYNCISTEP |
2150 MIPS_HWRENA_CC |
2151 MIPS_HWRENA_CCRES;
2152
2153 if (!noulri && cpu_has_userlocal)
2154 hwrena |= MIPS_HWRENA_ULR;
2155
2156 if (hwrena)
2157 write_c0_hwrena(hwrena);
2158 }
2159
2160 static void configure_exception_vector(void)
2161 {
2162 if (cpu_has_veic || cpu_has_vint) {
2163 unsigned long sr = set_c0_status(ST0_BEV);
2164 /* If available, use WG to set top bits of EBASE */
2165 if (cpu_has_ebase_wg) {
2166 #ifdef CONFIG_64BIT
2167 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2168 #else
2169 write_c0_ebase(ebase | MIPS_EBASE_WG);
2170 #endif
2171 }
2172 write_c0_ebase(ebase);
2173 write_c0_status(sr);
2174 /* Setting vector spacing enables EI/VI mode */
2175 change_c0_intctl(0x3e0, VECTORSPACING);
2176 }
2177 if (cpu_has_divec) {
2178 if (cpu_has_mipsmt) {
2179 unsigned int vpflags = dvpe();
2180 set_c0_cause(CAUSEF_IV);
2181 evpe(vpflags);
2182 } else
2183 set_c0_cause(CAUSEF_IV);
2184 }
2185 }
2186
2187 void per_cpu_trap_init(bool is_boot_cpu)
2188 {
2189 unsigned int cpu = smp_processor_id();
2190
2191 configure_status();
2192 configure_hwrena();
2193
2194 configure_exception_vector();
2195
2196 /*
2197 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2198 *
2199 * o read IntCtl.IPTI to determine the timer interrupt
2200 * o read IntCtl.IPPCI to determine the performance counter interrupt
2201 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2202 */
2203 if (cpu_has_mips_r2_r6) {
2204 /*
2205 * We shouldn't trust a secondary core has a sane EBASE register
2206 * so use the one calculated by the boot CPU.
2207 */
2208 if (!is_boot_cpu) {
2209 /* If available, use WG to set top bits of EBASE */
2210 if (cpu_has_ebase_wg) {
2211 #ifdef CONFIG_64BIT
2212 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2213 #else
2214 write_c0_ebase(ebase | MIPS_EBASE_WG);
2215 #endif
2216 }
2217 write_c0_ebase(ebase);
2218 }
2219
2220 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2221 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2222 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2223 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2224 if (!cp0_fdc_irq)
2225 cp0_fdc_irq = -1;
2226
2227 } else {
2228 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2229 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2230 cp0_perfcount_irq = -1;
2231 cp0_fdc_irq = -1;
2232 }
2233
2234 if (!cpu_data[cpu].asid_cache)
2235 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2236
2237 mmgrab(&init_mm);
2238 current->active_mm = &init_mm;
2239 BUG_ON(current->mm);
2240 enter_lazy_tlb(&init_mm, current);
2241
2242 /* Boot CPU's cache setup in setup_arch(). */
2243 if (!is_boot_cpu)
2244 cpu_cache_init();
2245 tlb_init();
2246 TLBMISS_HANDLER_SETUP();
2247 }
2248
2249 /* Install CPU exception handler */
2250 void set_handler(unsigned long offset, void *addr, unsigned long size)
2251 {
2252 #ifdef CONFIG_CPU_MICROMIPS
2253 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2254 #else
2255 memcpy((void *)(ebase + offset), addr, size);
2256 #endif
2257 local_flush_icache_range(ebase + offset, ebase + offset + size);
2258 }
2259
2260 static const char panic_null_cerr[] =
2261 "Trying to set NULL cache error exception handler\n";
2262
2263 /*
2264 * Install uncached CPU exception handler.
2265 * This is suitable only for the cache error exception which is the only
2266 * exception handler that is being run uncached.
2267 */
2268 void set_uncached_handler(unsigned long offset, void *addr,
2269 unsigned long size)
2270 {
2271 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2272
2273 if (!addr)
2274 panic(panic_null_cerr);
2275
2276 memcpy((void *)(uncached_ebase + offset), addr, size);
2277 }
2278
2279 static int __initdata rdhwr_noopt;
2280 static int __init set_rdhwr_noopt(char *str)
2281 {
2282 rdhwr_noopt = 1;
2283 return 1;
2284 }
2285
2286 __setup("rdhwr_noopt", set_rdhwr_noopt);
2287
2288 void __init trap_init(void)
2289 {
2290 extern char except_vec3_generic;
2291 extern char except_vec4;
2292 extern char except_vec3_r4000;
2293 unsigned long i;
2294
2295 check_wait();
2296
2297 if (cpu_has_veic || cpu_has_vint) {
2298 unsigned long size = 0x200 + VECTORSPACING*64;
2299 phys_addr_t ebase_pa;
2300
2301 ebase = (unsigned long)
2302 __alloc_bootmem(size, 1 << fls(size), 0);
2303
2304 /*
2305 * Try to ensure ebase resides in KSeg0 if possible.
2306 *
2307 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2308 * hitting a poorly defined exception base for Cache Errors.
2309 * The allocation is likely to be in the low 512MB of physical,
2310 * in which case we should be able to convert to KSeg0.
2311 *
2312 * EVA is special though as it allows segments to be rearranged
2313 * and to become uncached during cache error handling.
2314 */
2315 ebase_pa = __pa(ebase);
2316 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2317 ebase = CKSEG0ADDR(ebase_pa);
2318 } else {
2319 ebase = CAC_BASE;
2320
2321 if (cpu_has_mips_r2_r6) {
2322 if (cpu_has_ebase_wg) {
2323 #ifdef CONFIG_64BIT
2324 ebase = (read_c0_ebase_64() & ~0xfff);
2325 #else
2326 ebase = (read_c0_ebase() & ~0xfff);
2327 #endif
2328 } else {
2329 ebase += (read_c0_ebase() & 0x3ffff000);
2330 }
2331 }
2332 }
2333
2334 if (cpu_has_mmips) {
2335 unsigned int config3 = read_c0_config3();
2336
2337 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2338 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2339 else
2340 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2341 }
2342
2343 if (board_ebase_setup)
2344 board_ebase_setup();
2345 per_cpu_trap_init(true);
2346
2347 /*
2348 * Copy the generic exception handlers to their final destination.
2349 * This will be overridden later as suitable for a particular
2350 * configuration.
2351 */
2352 set_handler(0x180, &except_vec3_generic, 0x80);
2353
2354 /*
2355 * Setup default vectors
2356 */
2357 for (i = 0; i <= 31; i++)
2358 set_except_vector(i, handle_reserved);
2359
2360 /*
2361 * Copy the EJTAG debug exception vector handler code to it's final
2362 * destination.
2363 */
2364 if (cpu_has_ejtag && board_ejtag_handler_setup)
2365 board_ejtag_handler_setup();
2366
2367 /*
2368 * Only some CPUs have the watch exceptions.
2369 */
2370 if (cpu_has_watch)
2371 set_except_vector(EXCCODE_WATCH, handle_watch);
2372
2373 /*
2374 * Initialise interrupt handlers
2375 */
2376 if (cpu_has_veic || cpu_has_vint) {
2377 int nvec = cpu_has_veic ? 64 : 8;
2378 for (i = 0; i < nvec; i++)
2379 set_vi_handler(i, NULL);
2380 }
2381 else if (cpu_has_divec)
2382 set_handler(0x200, &except_vec4, 0x8);
2383
2384 /*
2385 * Some CPUs can enable/disable for cache parity detection, but does
2386 * it different ways.
2387 */
2388 parity_protection_init();
2389
2390 /*
2391 * The Data Bus Errors / Instruction Bus Errors are signaled
2392 * by external hardware. Therefore these two exceptions
2393 * may have board specific handlers.
2394 */
2395 if (board_be_init)
2396 board_be_init();
2397
2398 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2399 rollback_handle_int : handle_int);
2400 set_except_vector(EXCCODE_MOD, handle_tlbm);
2401 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2402 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2403
2404 set_except_vector(EXCCODE_ADEL, handle_adel);
2405 set_except_vector(EXCCODE_ADES, handle_ades);
2406
2407 set_except_vector(EXCCODE_IBE, handle_ibe);
2408 set_except_vector(EXCCODE_DBE, handle_dbe);
2409
2410 set_except_vector(EXCCODE_SYS, handle_sys);
2411 set_except_vector(EXCCODE_BP, handle_bp);
2412
2413 if (rdhwr_noopt)
2414 set_except_vector(EXCCODE_RI, handle_ri);
2415 else {
2416 if (cpu_has_vtag_icache)
2417 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2418 else if (current_cpu_type() == CPU_LOONGSON3)
2419 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2420 else
2421 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2422 }
2423
2424 set_except_vector(EXCCODE_CPU, handle_cpu);
2425 set_except_vector(EXCCODE_OV, handle_ov);
2426 set_except_vector(EXCCODE_TR, handle_tr);
2427 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2428
2429 if (board_nmi_handler_setup)
2430 board_nmi_handler_setup();
2431
2432 if (cpu_has_fpu && !cpu_has_nofpuex)
2433 set_except_vector(EXCCODE_FPE, handle_fpe);
2434
2435 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2436
2437 if (cpu_has_rixiex) {
2438 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2439 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2440 }
2441
2442 set_except_vector(EXCCODE_MSADIS, handle_msa);
2443 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2444
2445 if (cpu_has_mcheck)
2446 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2447
2448 if (cpu_has_mipsmt)
2449 set_except_vector(EXCCODE_THREAD, handle_mt);
2450
2451 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2452
2453 if (board_cache_error_setup)
2454 board_cache_error_setup();
2455
2456 if (cpu_has_vce)
2457 /* Special exception: R4[04]00 uses also the divec space. */
2458 set_handler(0x180, &except_vec3_r4000, 0x100);
2459 else if (cpu_has_4kex)
2460 set_handler(0x180, &except_vec3_generic, 0x80);
2461 else
2462 set_handler(0x080, &except_vec3_generic, 0x80);
2463
2464 local_flush_icache_range(ebase, ebase + 0x400);
2465
2466 sort_extable(__start___dbe_table, __stop___dbe_table);
2467
2468 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2469 }
2470
2471 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2472 void *v)
2473 {
2474 switch (cmd) {
2475 case CPU_PM_ENTER_FAILED:
2476 case CPU_PM_EXIT:
2477 configure_status();
2478 configure_hwrena();
2479 configure_exception_vector();
2480
2481 /* Restore register with CPU number for TLB handlers */
2482 TLBMISS_HANDLER_RESTORE();
2483
2484 break;
2485 }
2486
2487 return NOTIFY_OK;
2488 }
2489
2490 static struct notifier_block trap_pm_notifier_block = {
2491 .notifier_call = trap_pm_notifier,
2492 };
2493
2494 static int __init trap_pm_init(void)
2495 {
2496 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2497 }
2498 arch_initcall(trap_pm_init);