]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/kernel/traps.c
[POWERPC] rheap - eliminates internal fragments caused by alignment
[mirror_ubuntu-artful-kernel.git] / arch / mips / kernel / traps.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
13 */
14 #include <linux/bug.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/kallsyms.h>
22 #include <linux/bootmem.h>
23 #include <linux/interrupt.h>
24
25 #include <asm/bootinfo.h>
26 #include <asm/branch.h>
27 #include <asm/break.h>
28 #include <asm/cpu.h>
29 #include <asm/dsp.h>
30 #include <asm/fpu.h>
31 #include <asm/mipsregs.h>
32 #include <asm/mipsmtregs.h>
33 #include <asm/module.h>
34 #include <asm/pgtable.h>
35 #include <asm/ptrace.h>
36 #include <asm/sections.h>
37 #include <asm/system.h>
38 #include <asm/tlbdebug.h>
39 #include <asm/traps.h>
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
42 #include <asm/watch.h>
43 #include <asm/types.h>
44 #include <asm/stacktrace.h>
45
46 extern asmlinkage void handle_int(void);
47 extern asmlinkage void handle_tlbm(void);
48 extern asmlinkage void handle_tlbl(void);
49 extern asmlinkage void handle_tlbs(void);
50 extern asmlinkage void handle_adel(void);
51 extern asmlinkage void handle_ades(void);
52 extern asmlinkage void handle_ibe(void);
53 extern asmlinkage void handle_dbe(void);
54 extern asmlinkage void handle_sys(void);
55 extern asmlinkage void handle_bp(void);
56 extern asmlinkage void handle_ri(void);
57 extern asmlinkage void handle_ri_rdhwr_vivt(void);
58 extern asmlinkage void handle_ri_rdhwr(void);
59 extern asmlinkage void handle_cpu(void);
60 extern asmlinkage void handle_ov(void);
61 extern asmlinkage void handle_tr(void);
62 extern asmlinkage void handle_fpe(void);
63 extern asmlinkage void handle_mdmx(void);
64 extern asmlinkage void handle_watch(void);
65 extern asmlinkage void handle_mt(void);
66 extern asmlinkage void handle_dsp(void);
67 extern asmlinkage void handle_mcheck(void);
68 extern asmlinkage void handle_reserved(void);
69
70 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
71 struct mips_fpu_struct *ctx, int has_fpu);
72
73 void (*board_be_init)(void);
74 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
75 void (*board_nmi_handler_setup)(void);
76 void (*board_ejtag_handler_setup)(void);
77 void (*board_bind_eic_interrupt)(int irq, int regset);
78
79
80 static void show_raw_backtrace(unsigned long reg29)
81 {
82 unsigned long *sp = (unsigned long *)reg29;
83 unsigned long addr;
84
85 printk("Call Trace:");
86 #ifdef CONFIG_KALLSYMS
87 printk("\n");
88 #endif
89 while (!kstack_end(sp)) {
90 addr = *sp++;
91 if (__kernel_text_address(addr))
92 print_ip_sym(addr);
93 }
94 printk("\n");
95 }
96
97 #ifdef CONFIG_KALLSYMS
98 int raw_show_trace;
99 static int __init set_raw_show_trace(char *str)
100 {
101 raw_show_trace = 1;
102 return 1;
103 }
104 __setup("raw_show_trace", set_raw_show_trace);
105 #endif
106
107 static void show_backtrace(struct task_struct *task, struct pt_regs *regs)
108 {
109 unsigned long sp = regs->regs[29];
110 unsigned long ra = regs->regs[31];
111 unsigned long pc = regs->cp0_epc;
112
113 if (raw_show_trace || !__kernel_text_address(pc)) {
114 show_raw_backtrace(sp);
115 return;
116 }
117 printk("Call Trace:\n");
118 do {
119 print_ip_sym(pc);
120 pc = unwind_stack(task, &sp, pc, &ra);
121 } while (pc);
122 printk("\n");
123 }
124
125 /*
126 * This routine abuses get_user()/put_user() to reference pointers
127 * with at least a bit of error checking ...
128 */
129 static void show_stacktrace(struct task_struct *task, struct pt_regs *regs)
130 {
131 const int field = 2 * sizeof(unsigned long);
132 long stackdata;
133 int i;
134 unsigned long *sp = (unsigned long *)regs->regs[29];
135
136 printk("Stack :");
137 i = 0;
138 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
139 if (i && ((i % (64 / field)) == 0))
140 printk("\n ");
141 if (i > 39) {
142 printk(" ...");
143 break;
144 }
145
146 if (__get_user(stackdata, sp++)) {
147 printk(" (Bad stack address)");
148 break;
149 }
150
151 printk(" %0*lx", field, stackdata);
152 i++;
153 }
154 printk("\n");
155 show_backtrace(task, regs);
156 }
157
158 void show_stack(struct task_struct *task, unsigned long *sp)
159 {
160 struct pt_regs regs;
161 if (sp) {
162 regs.regs[29] = (unsigned long)sp;
163 regs.regs[31] = 0;
164 regs.cp0_epc = 0;
165 } else {
166 if (task && task != current) {
167 regs.regs[29] = task->thread.reg29;
168 regs.regs[31] = 0;
169 regs.cp0_epc = task->thread.reg31;
170 } else {
171 prepare_frametrace(&regs);
172 }
173 }
174 show_stacktrace(task, &regs);
175 }
176
177 /*
178 * The architecture-independent dump_stack generator
179 */
180 void dump_stack(void)
181 {
182 struct pt_regs regs;
183
184 prepare_frametrace(&regs);
185 show_backtrace(current, &regs);
186 }
187
188 EXPORT_SYMBOL(dump_stack);
189
190 void show_code(unsigned int *pc)
191 {
192 long i;
193
194 printk("\nCode:");
195
196 for(i = -3 ; i < 6 ; i++) {
197 unsigned int insn;
198 if (__get_user(insn, pc + i)) {
199 printk(" (Bad address in epc)\n");
200 break;
201 }
202 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
203 }
204 }
205
206 void show_regs(struct pt_regs *regs)
207 {
208 const int field = 2 * sizeof(unsigned long);
209 unsigned int cause = regs->cp0_cause;
210 int i;
211
212 printk("Cpu %d\n", smp_processor_id());
213
214 /*
215 * Saved main processor registers
216 */
217 for (i = 0; i < 32; ) {
218 if ((i % 4) == 0)
219 printk("$%2d :", i);
220 if (i == 0)
221 printk(" %0*lx", field, 0UL);
222 else if (i == 26 || i == 27)
223 printk(" %*s", field, "");
224 else
225 printk(" %0*lx", field, regs->regs[i]);
226
227 i++;
228 if ((i % 4) == 0)
229 printk("\n");
230 }
231
232 #ifdef CONFIG_CPU_HAS_SMARTMIPS
233 printk("Acx : %0*lx\n", field, regs->acx);
234 #endif
235 printk("Hi : %0*lx\n", field, regs->hi);
236 printk("Lo : %0*lx\n", field, regs->lo);
237
238 /*
239 * Saved cp0 registers
240 */
241 printk("epc : %0*lx ", field, regs->cp0_epc);
242 print_symbol("%s ", regs->cp0_epc);
243 printk(" %s\n", print_tainted());
244 printk("ra : %0*lx ", field, regs->regs[31]);
245 print_symbol("%s\n", regs->regs[31]);
246
247 printk("Status: %08x ", (uint32_t) regs->cp0_status);
248
249 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
250 if (regs->cp0_status & ST0_KUO)
251 printk("KUo ");
252 if (regs->cp0_status & ST0_IEO)
253 printk("IEo ");
254 if (regs->cp0_status & ST0_KUP)
255 printk("KUp ");
256 if (regs->cp0_status & ST0_IEP)
257 printk("IEp ");
258 if (regs->cp0_status & ST0_KUC)
259 printk("KUc ");
260 if (regs->cp0_status & ST0_IEC)
261 printk("IEc ");
262 } else {
263 if (regs->cp0_status & ST0_KX)
264 printk("KX ");
265 if (regs->cp0_status & ST0_SX)
266 printk("SX ");
267 if (regs->cp0_status & ST0_UX)
268 printk("UX ");
269 switch (regs->cp0_status & ST0_KSU) {
270 case KSU_USER:
271 printk("USER ");
272 break;
273 case KSU_SUPERVISOR:
274 printk("SUPERVISOR ");
275 break;
276 case KSU_KERNEL:
277 printk("KERNEL ");
278 break;
279 default:
280 printk("BAD_MODE ");
281 break;
282 }
283 if (regs->cp0_status & ST0_ERL)
284 printk("ERL ");
285 if (regs->cp0_status & ST0_EXL)
286 printk("EXL ");
287 if (regs->cp0_status & ST0_IE)
288 printk("IE ");
289 }
290 printk("\n");
291
292 printk("Cause : %08x\n", cause);
293
294 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
295 if (1 <= cause && cause <= 5)
296 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
297
298 printk("PrId : %08x\n", read_c0_prid());
299 }
300
301 void show_registers(struct pt_regs *regs)
302 {
303 show_regs(regs);
304 print_modules();
305 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
306 current->comm, current->pid, current_thread_info(), current);
307 show_stacktrace(current, regs);
308 show_code((unsigned int *) regs->cp0_epc);
309 printk("\n");
310 }
311
312 static DEFINE_SPINLOCK(die_lock);
313
314 NORET_TYPE void ATTRIB_NORET die(const char * str, struct pt_regs * regs)
315 {
316 static int die_counter;
317 #ifdef CONFIG_MIPS_MT_SMTC
318 unsigned long dvpret = dvpe();
319 #endif /* CONFIG_MIPS_MT_SMTC */
320
321 console_verbose();
322 spin_lock_irq(&die_lock);
323 bust_spinlocks(1);
324 #ifdef CONFIG_MIPS_MT_SMTC
325 mips_mt_regdump(dvpret);
326 #endif /* CONFIG_MIPS_MT_SMTC */
327 printk("%s[#%d]:\n", str, ++die_counter);
328 show_registers(regs);
329 spin_unlock_irq(&die_lock);
330
331 if (in_interrupt())
332 panic("Fatal exception in interrupt");
333
334 if (panic_on_oops) {
335 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
336 ssleep(5);
337 panic("Fatal exception");
338 }
339
340 do_exit(SIGSEGV);
341 }
342
343 extern const struct exception_table_entry __start___dbe_table[];
344 extern const struct exception_table_entry __stop___dbe_table[];
345
346 __asm__(
347 " .section __dbe_table, \"a\"\n"
348 " .previous \n");
349
350 /* Given an address, look for it in the exception tables. */
351 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
352 {
353 const struct exception_table_entry *e;
354
355 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
356 if (!e)
357 e = search_module_dbetables(addr);
358 return e;
359 }
360
361 asmlinkage void do_be(struct pt_regs *regs)
362 {
363 const int field = 2 * sizeof(unsigned long);
364 const struct exception_table_entry *fixup = NULL;
365 int data = regs->cp0_cause & 4;
366 int action = MIPS_BE_FATAL;
367
368 /* XXX For now. Fixme, this searches the wrong table ... */
369 if (data && !user_mode(regs))
370 fixup = search_dbe_tables(exception_epc(regs));
371
372 if (fixup)
373 action = MIPS_BE_FIXUP;
374
375 if (board_be_handler)
376 action = board_be_handler(regs, fixup != 0);
377
378 switch (action) {
379 case MIPS_BE_DISCARD:
380 return;
381 case MIPS_BE_FIXUP:
382 if (fixup) {
383 regs->cp0_epc = fixup->nextinsn;
384 return;
385 }
386 break;
387 default:
388 break;
389 }
390
391 /*
392 * Assume it would be too dangerous to continue ...
393 */
394 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
395 data ? "Data" : "Instruction",
396 field, regs->cp0_epc, field, regs->regs[31]);
397 die_if_kernel("Oops", regs);
398 force_sig(SIGBUS, current);
399 }
400
401 /*
402 * ll/sc emulation
403 */
404
405 #define OPCODE 0xfc000000
406 #define BASE 0x03e00000
407 #define RT 0x001f0000
408 #define OFFSET 0x0000ffff
409 #define LL 0xc0000000
410 #define SC 0xe0000000
411 #define SPEC3 0x7c000000
412 #define RD 0x0000f800
413 #define FUNC 0x0000003f
414 #define RDHWR 0x0000003b
415
416 /*
417 * The ll_bit is cleared by r*_switch.S
418 */
419
420 unsigned long ll_bit;
421
422 static struct task_struct *ll_task = NULL;
423
424 static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
425 {
426 unsigned long value, __user *vaddr;
427 long offset;
428 int signal = 0;
429
430 /*
431 * analyse the ll instruction that just caused a ri exception
432 * and put the referenced address to addr.
433 */
434
435 /* sign extend offset */
436 offset = opcode & OFFSET;
437 offset <<= 16;
438 offset >>= 16;
439
440 vaddr = (unsigned long __user *)
441 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
442
443 if ((unsigned long)vaddr & 3) {
444 signal = SIGBUS;
445 goto sig;
446 }
447 if (get_user(value, vaddr)) {
448 signal = SIGSEGV;
449 goto sig;
450 }
451
452 preempt_disable();
453
454 if (ll_task == NULL || ll_task == current) {
455 ll_bit = 1;
456 } else {
457 ll_bit = 0;
458 }
459 ll_task = current;
460
461 preempt_enable();
462
463 compute_return_epc(regs);
464
465 regs->regs[(opcode & RT) >> 16] = value;
466
467 return;
468
469 sig:
470 force_sig(signal, current);
471 }
472
473 static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
474 {
475 unsigned long __user *vaddr;
476 unsigned long reg;
477 long offset;
478 int signal = 0;
479
480 /*
481 * analyse the sc instruction that just caused a ri exception
482 * and put the referenced address to addr.
483 */
484
485 /* sign extend offset */
486 offset = opcode & OFFSET;
487 offset <<= 16;
488 offset >>= 16;
489
490 vaddr = (unsigned long __user *)
491 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
492 reg = (opcode & RT) >> 16;
493
494 if ((unsigned long)vaddr & 3) {
495 signal = SIGBUS;
496 goto sig;
497 }
498
499 preempt_disable();
500
501 if (ll_bit == 0 || ll_task != current) {
502 compute_return_epc(regs);
503 regs->regs[reg] = 0;
504 preempt_enable();
505 return;
506 }
507
508 preempt_enable();
509
510 if (put_user(regs->regs[reg], vaddr)) {
511 signal = SIGSEGV;
512 goto sig;
513 }
514
515 compute_return_epc(regs);
516 regs->regs[reg] = 1;
517
518 return;
519
520 sig:
521 force_sig(signal, current);
522 }
523
524 /*
525 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
526 * opcodes are supposed to result in coprocessor unusable exceptions if
527 * executed on ll/sc-less processors. That's the theory. In practice a
528 * few processors such as NEC's VR4100 throw reserved instruction exceptions
529 * instead, so we're doing the emulation thing in both exception handlers.
530 */
531 static inline int simulate_llsc(struct pt_regs *regs)
532 {
533 unsigned int opcode;
534
535 if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
536 goto out_sigsegv;
537
538 if ((opcode & OPCODE) == LL) {
539 simulate_ll(regs, opcode);
540 return 0;
541 }
542 if ((opcode & OPCODE) == SC) {
543 simulate_sc(regs, opcode);
544 return 0;
545 }
546
547 return -EFAULT; /* Strange things going on ... */
548
549 out_sigsegv:
550 force_sig(SIGSEGV, current);
551 return -EFAULT;
552 }
553
554 /*
555 * Simulate trapping 'rdhwr' instructions to provide user accessible
556 * registers not implemented in hardware. The only current use of this
557 * is the thread area pointer.
558 */
559 static inline int simulate_rdhwr(struct pt_regs *regs)
560 {
561 struct thread_info *ti = task_thread_info(current);
562 unsigned int opcode;
563
564 if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
565 goto out_sigsegv;
566
567 if (unlikely(compute_return_epc(regs)))
568 return -EFAULT;
569
570 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
571 int rd = (opcode & RD) >> 11;
572 int rt = (opcode & RT) >> 16;
573 switch (rd) {
574 case 29:
575 regs->regs[rt] = ti->tp_value;
576 return 0;
577 default:
578 return -EFAULT;
579 }
580 }
581
582 /* Not ours. */
583 return -EFAULT;
584
585 out_sigsegv:
586 force_sig(SIGSEGV, current);
587 return -EFAULT;
588 }
589
590 asmlinkage void do_ov(struct pt_regs *regs)
591 {
592 siginfo_t info;
593
594 die_if_kernel("Integer overflow", regs);
595
596 info.si_code = FPE_INTOVF;
597 info.si_signo = SIGFPE;
598 info.si_errno = 0;
599 info.si_addr = (void __user *) regs->cp0_epc;
600 force_sig_info(SIGFPE, &info, current);
601 }
602
603 /*
604 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
605 */
606 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
607 {
608 die_if_kernel("FP exception in kernel code", regs);
609
610 if (fcr31 & FPU_CSR_UNI_X) {
611 int sig;
612
613 /*
614 * Unimplemented operation exception. If we've got the full
615 * software emulator on-board, let's use it...
616 *
617 * Force FPU to dump state into task/thread context. We're
618 * moving a lot of data here for what is probably a single
619 * instruction, but the alternative is to pre-decode the FP
620 * register operands before invoking the emulator, which seems
621 * a bit extreme for what should be an infrequent event.
622 */
623 /* Ensure 'resume' not overwrite saved fp context again. */
624 lose_fpu(1);
625
626 /* Run the emulator */
627 sig = fpu_emulator_cop1Handler (regs, &current->thread.fpu, 1);
628
629 /*
630 * We can't allow the emulated instruction to leave any of
631 * the cause bit set in $fcr31.
632 */
633 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
634
635 /* Restore the hardware register state */
636 own_fpu(1); /* Using the FPU again. */
637
638 /* If something went wrong, signal */
639 if (sig)
640 force_sig(sig, current);
641
642 return;
643 }
644
645 force_sig(SIGFPE, current);
646 }
647
648 asmlinkage void do_bp(struct pt_regs *regs)
649 {
650 unsigned int opcode, bcode;
651 siginfo_t info;
652
653 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
654 goto out_sigsegv;
655
656 /*
657 * There is the ancient bug in the MIPS assemblers that the break
658 * code starts left to bit 16 instead to bit 6 in the opcode.
659 * Gas is bug-compatible, but not always, grrr...
660 * We handle both cases with a simple heuristics. --macro
661 */
662 bcode = ((opcode >> 6) & ((1 << 20) - 1));
663 if (bcode < (1 << 10))
664 bcode <<= 10;
665
666 /*
667 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
668 * insns, even for break codes that indicate arithmetic failures.
669 * Weird ...)
670 * But should we continue the brokenness??? --macro
671 */
672 switch (bcode) {
673 case BRK_OVERFLOW << 10:
674 case BRK_DIVZERO << 10:
675 die_if_kernel("Break instruction in kernel code", regs);
676 if (bcode == (BRK_DIVZERO << 10))
677 info.si_code = FPE_INTDIV;
678 else
679 info.si_code = FPE_INTOVF;
680 info.si_signo = SIGFPE;
681 info.si_errno = 0;
682 info.si_addr = (void __user *) regs->cp0_epc;
683 force_sig_info(SIGFPE, &info, current);
684 break;
685 case BRK_BUG:
686 die("Kernel bug detected", regs);
687 break;
688 default:
689 die_if_kernel("Break instruction in kernel code", regs);
690 force_sig(SIGTRAP, current);
691 }
692 return;
693
694 out_sigsegv:
695 force_sig(SIGSEGV, current);
696 }
697
698 asmlinkage void do_tr(struct pt_regs *regs)
699 {
700 unsigned int opcode, tcode = 0;
701 siginfo_t info;
702
703 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
704 goto out_sigsegv;
705
706 /* Immediate versions don't provide a code. */
707 if (!(opcode & OPCODE))
708 tcode = ((opcode >> 6) & ((1 << 10) - 1));
709
710 /*
711 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
712 * insns, even for trap codes that indicate arithmetic failures.
713 * Weird ...)
714 * But should we continue the brokenness??? --macro
715 */
716 switch (tcode) {
717 case BRK_OVERFLOW:
718 case BRK_DIVZERO:
719 die_if_kernel("Trap instruction in kernel code", regs);
720 if (tcode == BRK_DIVZERO)
721 info.si_code = FPE_INTDIV;
722 else
723 info.si_code = FPE_INTOVF;
724 info.si_signo = SIGFPE;
725 info.si_errno = 0;
726 info.si_addr = (void __user *) regs->cp0_epc;
727 force_sig_info(SIGFPE, &info, current);
728 break;
729 case BRK_BUG:
730 die("Kernel bug detected", regs);
731 break;
732 default:
733 die_if_kernel("Trap instruction in kernel code", regs);
734 force_sig(SIGTRAP, current);
735 }
736 return;
737
738 out_sigsegv:
739 force_sig(SIGSEGV, current);
740 }
741
742 asmlinkage void do_ri(struct pt_regs *regs)
743 {
744 die_if_kernel("Reserved instruction in kernel code", regs);
745
746 if (!cpu_has_llsc)
747 if (!simulate_llsc(regs))
748 return;
749
750 if (!simulate_rdhwr(regs))
751 return;
752
753 force_sig(SIGILL, current);
754 }
755
756 asmlinkage void do_cpu(struct pt_regs *regs)
757 {
758 unsigned int cpid;
759
760 die_if_kernel("do_cpu invoked from kernel context!", regs);
761
762 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
763
764 switch (cpid) {
765 case 0:
766 if (!cpu_has_llsc)
767 if (!simulate_llsc(regs))
768 return;
769
770 if (!simulate_rdhwr(regs))
771 return;
772
773 break;
774
775 case 1:
776 if (used_math()) /* Using the FPU again. */
777 own_fpu(1);
778 else { /* First time FPU user. */
779 init_fpu();
780 set_used_math();
781 }
782
783 if (!raw_cpu_has_fpu) {
784 int sig;
785 sig = fpu_emulator_cop1Handler(regs,
786 &current->thread.fpu, 0);
787 if (sig)
788 force_sig(sig, current);
789 #ifdef CONFIG_MIPS_MT_FPAFF
790 else {
791 /*
792 * MIPS MT processors may have fewer FPU contexts
793 * than CPU threads. If we've emulated more than
794 * some threshold number of instructions, force
795 * migration to a "CPU" that has FP support.
796 */
797 if(mt_fpemul_threshold > 0
798 && ((current->thread.emulated_fp++
799 > mt_fpemul_threshold))) {
800 /*
801 * If there's no FPU present, or if the
802 * application has already restricted
803 * the allowed set to exclude any CPUs
804 * with FPUs, we'll skip the procedure.
805 */
806 if (cpus_intersects(current->cpus_allowed,
807 mt_fpu_cpumask)) {
808 cpumask_t tmask;
809
810 cpus_and(tmask,
811 current->thread.user_cpus_allowed,
812 mt_fpu_cpumask);
813 set_cpus_allowed(current, tmask);
814 current->thread.mflags |= MF_FPUBOUND;
815 }
816 }
817 }
818 #endif /* CONFIG_MIPS_MT_FPAFF */
819 }
820
821 return;
822
823 case 2:
824 case 3:
825 break;
826 }
827
828 force_sig(SIGILL, current);
829 }
830
831 asmlinkage void do_mdmx(struct pt_regs *regs)
832 {
833 force_sig(SIGILL, current);
834 }
835
836 asmlinkage void do_watch(struct pt_regs *regs)
837 {
838 /*
839 * We use the watch exception where available to detect stack
840 * overflows.
841 */
842 dump_tlb_all();
843 show_regs(regs);
844 panic("Caught WATCH exception - probably caused by stack overflow.");
845 }
846
847 asmlinkage void do_mcheck(struct pt_regs *regs)
848 {
849 const int field = 2 * sizeof(unsigned long);
850 int multi_match = regs->cp0_status & ST0_TS;
851
852 show_regs(regs);
853
854 if (multi_match) {
855 printk("Index : %0x\n", read_c0_index());
856 printk("Pagemask: %0x\n", read_c0_pagemask());
857 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
858 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
859 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
860 printk("\n");
861 dump_tlb_all();
862 }
863
864 show_code((unsigned int *) regs->cp0_epc);
865
866 /*
867 * Some chips may have other causes of machine check (e.g. SB1
868 * graduation timer)
869 */
870 panic("Caught Machine Check exception - %scaused by multiple "
871 "matching entries in the TLB.",
872 (multi_match) ? "" : "not ");
873 }
874
875 asmlinkage void do_mt(struct pt_regs *regs)
876 {
877 int subcode;
878
879 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
880 >> VPECONTROL_EXCPT_SHIFT;
881 switch (subcode) {
882 case 0:
883 printk(KERN_DEBUG "Thread Underflow\n");
884 break;
885 case 1:
886 printk(KERN_DEBUG "Thread Overflow\n");
887 break;
888 case 2:
889 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
890 break;
891 case 3:
892 printk(KERN_DEBUG "Gating Storage Exception\n");
893 break;
894 case 4:
895 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
896 break;
897 case 5:
898 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
899 break;
900 default:
901 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
902 subcode);
903 break;
904 }
905 die_if_kernel("MIPS MT Thread exception in kernel", regs);
906
907 force_sig(SIGILL, current);
908 }
909
910
911 asmlinkage void do_dsp(struct pt_regs *regs)
912 {
913 if (cpu_has_dsp)
914 panic("Unexpected DSP exception\n");
915
916 force_sig(SIGILL, current);
917 }
918
919 asmlinkage void do_reserved(struct pt_regs *regs)
920 {
921 /*
922 * Game over - no way to handle this if it ever occurs. Most probably
923 * caused by a new unknown cpu type or after another deadly
924 * hard/software error.
925 */
926 show_regs(regs);
927 panic("Caught reserved exception %ld - should not happen.",
928 (regs->cp0_cause & 0x7f) >> 2);
929 }
930
931 /*
932 * Some MIPS CPUs can enable/disable for cache parity detection, but do
933 * it different ways.
934 */
935 static inline void parity_protection_init(void)
936 {
937 switch (current_cpu_data.cputype) {
938 case CPU_24K:
939 case CPU_34K:
940 case CPU_5KC:
941 write_c0_ecc(0x80000000);
942 back_to_back_c0_hazard();
943 /* Set the PE bit (bit 31) in the c0_errctl register. */
944 printk(KERN_INFO "Cache parity protection %sabled\n",
945 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
946 break;
947 case CPU_20KC:
948 case CPU_25KF:
949 /* Clear the DE bit (bit 16) in the c0_status register. */
950 printk(KERN_INFO "Enable cache parity protection for "
951 "MIPS 20KC/25KF CPUs.\n");
952 clear_c0_status(ST0_DE);
953 break;
954 default:
955 break;
956 }
957 }
958
959 asmlinkage void cache_parity_error(void)
960 {
961 const int field = 2 * sizeof(unsigned long);
962 unsigned int reg_val;
963
964 /* For the moment, report the problem and hang. */
965 printk("Cache error exception:\n");
966 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
967 reg_val = read_c0_cacheerr();
968 printk("c0_cacheerr == %08x\n", reg_val);
969
970 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
971 reg_val & (1<<30) ? "secondary" : "primary",
972 reg_val & (1<<31) ? "data" : "insn");
973 printk("Error bits: %s%s%s%s%s%s%s\n",
974 reg_val & (1<<29) ? "ED " : "",
975 reg_val & (1<<28) ? "ET " : "",
976 reg_val & (1<<26) ? "EE " : "",
977 reg_val & (1<<25) ? "EB " : "",
978 reg_val & (1<<24) ? "EI " : "",
979 reg_val & (1<<23) ? "E1 " : "",
980 reg_val & (1<<22) ? "E0 " : "");
981 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
982
983 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
984 if (reg_val & (1<<22))
985 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
986
987 if (reg_val & (1<<23))
988 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
989 #endif
990
991 panic("Can't handle the cache error!");
992 }
993
994 /*
995 * SDBBP EJTAG debug exception handler.
996 * We skip the instruction and return to the next instruction.
997 */
998 void ejtag_exception_handler(struct pt_regs *regs)
999 {
1000 const int field = 2 * sizeof(unsigned long);
1001 unsigned long depc, old_epc;
1002 unsigned int debug;
1003
1004 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1005 depc = read_c0_depc();
1006 debug = read_c0_debug();
1007 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1008 if (debug & 0x80000000) {
1009 /*
1010 * In branch delay slot.
1011 * We cheat a little bit here and use EPC to calculate the
1012 * debug return address (DEPC). EPC is restored after the
1013 * calculation.
1014 */
1015 old_epc = regs->cp0_epc;
1016 regs->cp0_epc = depc;
1017 __compute_return_epc(regs);
1018 depc = regs->cp0_epc;
1019 regs->cp0_epc = old_epc;
1020 } else
1021 depc += 4;
1022 write_c0_depc(depc);
1023
1024 #if 0
1025 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1026 write_c0_debug(debug | 0x100);
1027 #endif
1028 }
1029
1030 /*
1031 * NMI exception handler.
1032 */
1033 void nmi_exception_handler(struct pt_regs *regs)
1034 {
1035 #ifdef CONFIG_MIPS_MT_SMTC
1036 unsigned long dvpret = dvpe();
1037 bust_spinlocks(1);
1038 printk("NMI taken!!!!\n");
1039 mips_mt_regdump(dvpret);
1040 #else
1041 bust_spinlocks(1);
1042 printk("NMI taken!!!!\n");
1043 #endif /* CONFIG_MIPS_MT_SMTC */
1044 die("NMI", regs);
1045 while(1) ;
1046 }
1047
1048 #define VECTORSPACING 0x100 /* for EI/VI mode */
1049
1050 unsigned long ebase;
1051 unsigned long exception_handlers[32];
1052 unsigned long vi_handlers[64];
1053
1054 /*
1055 * As a side effect of the way this is implemented we're limited
1056 * to interrupt handlers in the address range from
1057 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1058 */
1059 void *set_except_vector(int n, void *addr)
1060 {
1061 unsigned long handler = (unsigned long) addr;
1062 unsigned long old_handler = exception_handlers[n];
1063
1064 exception_handlers[n] = handler;
1065 if (n == 0 && cpu_has_divec) {
1066 *(volatile u32 *)(ebase + 0x200) = 0x08000000 |
1067 (0x03ffffff & (handler >> 2));
1068 flush_icache_range(ebase + 0x200, ebase + 0x204);
1069 }
1070 return (void *)old_handler;
1071 }
1072
1073 #ifdef CONFIG_CPU_MIPSR2_SRS
1074 /*
1075 * MIPSR2 shadow register set allocation
1076 * FIXME: SMP...
1077 */
1078
1079 static struct shadow_registers {
1080 /*
1081 * Number of shadow register sets supported
1082 */
1083 unsigned long sr_supported;
1084 /*
1085 * Bitmap of allocated shadow registers
1086 */
1087 unsigned long sr_allocated;
1088 } shadow_registers;
1089
1090 static void mips_srs_init(void)
1091 {
1092 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
1093 printk(KERN_INFO "%ld MIPSR2 register sets available\n",
1094 shadow_registers.sr_supported);
1095 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
1096 }
1097
1098 int mips_srs_max(void)
1099 {
1100 return shadow_registers.sr_supported;
1101 }
1102
1103 int mips_srs_alloc(void)
1104 {
1105 struct shadow_registers *sr = &shadow_registers;
1106 int set;
1107
1108 again:
1109 set = find_first_zero_bit(&sr->sr_allocated, sr->sr_supported);
1110 if (set >= sr->sr_supported)
1111 return -1;
1112
1113 if (test_and_set_bit(set, &sr->sr_allocated))
1114 goto again;
1115
1116 return set;
1117 }
1118
1119 void mips_srs_free(int set)
1120 {
1121 struct shadow_registers *sr = &shadow_registers;
1122
1123 clear_bit(set, &sr->sr_allocated);
1124 }
1125
1126 static asmlinkage void do_default_vi(void)
1127 {
1128 show_regs(get_irq_regs());
1129 panic("Caught unexpected vectored interrupt.");
1130 }
1131
1132 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1133 {
1134 unsigned long handler;
1135 unsigned long old_handler = vi_handlers[n];
1136 u32 *w;
1137 unsigned char *b;
1138
1139 if (!cpu_has_veic && !cpu_has_vint)
1140 BUG();
1141
1142 if (addr == NULL) {
1143 handler = (unsigned long) do_default_vi;
1144 srs = 0;
1145 } else
1146 handler = (unsigned long) addr;
1147 vi_handlers[n] = (unsigned long) addr;
1148
1149 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1150
1151 if (srs >= mips_srs_max())
1152 panic("Shadow register set %d not supported", srs);
1153
1154 if (cpu_has_veic) {
1155 if (board_bind_eic_interrupt)
1156 board_bind_eic_interrupt (n, srs);
1157 } else if (cpu_has_vint) {
1158 /* SRSMap is only defined if shadow sets are implemented */
1159 if (mips_srs_max() > 1)
1160 change_c0_srsmap (0xf << n*4, srs << n*4);
1161 }
1162
1163 if (srs == 0) {
1164 /*
1165 * If no shadow set is selected then use the default handler
1166 * that does normal register saving and a standard interrupt exit
1167 */
1168
1169 extern char except_vec_vi, except_vec_vi_lui;
1170 extern char except_vec_vi_ori, except_vec_vi_end;
1171 #ifdef CONFIG_MIPS_MT_SMTC
1172 /*
1173 * We need to provide the SMTC vectored interrupt handler
1174 * not only with the address of the handler, but with the
1175 * Status.IM bit to be masked before going there.
1176 */
1177 extern char except_vec_vi_mori;
1178 const int mori_offset = &except_vec_vi_mori - &except_vec_vi;
1179 #endif /* CONFIG_MIPS_MT_SMTC */
1180 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1181 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1182 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1183
1184 if (handler_len > VECTORSPACING) {
1185 /*
1186 * Sigh... panicing won't help as the console
1187 * is probably not configured :(
1188 */
1189 panic ("VECTORSPACING too small");
1190 }
1191
1192 memcpy (b, &except_vec_vi, handler_len);
1193 #ifdef CONFIG_MIPS_MT_SMTC
1194 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1195
1196 w = (u32 *)(b + mori_offset);
1197 *w = (*w & 0xffff0000) | (0x100 << n);
1198 #endif /* CONFIG_MIPS_MT_SMTC */
1199 w = (u32 *)(b + lui_offset);
1200 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1201 w = (u32 *)(b + ori_offset);
1202 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1203 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1204 }
1205 else {
1206 /*
1207 * In other cases jump directly to the interrupt handler
1208 *
1209 * It is the handlers responsibility to save registers if required
1210 * (eg hi/lo) and return from the exception using "eret"
1211 */
1212 w = (u32 *)b;
1213 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1214 *w = 0;
1215 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1216 }
1217
1218 return (void *)old_handler;
1219 }
1220
1221 void *set_vi_handler(int n, vi_handler_t addr)
1222 {
1223 return set_vi_srs_handler(n, addr, 0);
1224 }
1225
1226 #else
1227
1228 static inline void mips_srs_init(void)
1229 {
1230 }
1231
1232 #endif /* CONFIG_CPU_MIPSR2_SRS */
1233
1234 /*
1235 * This is used by native signal handling
1236 */
1237 asmlinkage int (*save_fp_context)(struct sigcontext __user *sc);
1238 asmlinkage int (*restore_fp_context)(struct sigcontext __user *sc);
1239
1240 extern asmlinkage int _save_fp_context(struct sigcontext __user *sc);
1241 extern asmlinkage int _restore_fp_context(struct sigcontext __user *sc);
1242
1243 extern asmlinkage int fpu_emulator_save_context(struct sigcontext __user *sc);
1244 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext __user *sc);
1245
1246 #ifdef CONFIG_SMP
1247 static int smp_save_fp_context(struct sigcontext __user *sc)
1248 {
1249 return raw_cpu_has_fpu
1250 ? _save_fp_context(sc)
1251 : fpu_emulator_save_context(sc);
1252 }
1253
1254 static int smp_restore_fp_context(struct sigcontext __user *sc)
1255 {
1256 return raw_cpu_has_fpu
1257 ? _restore_fp_context(sc)
1258 : fpu_emulator_restore_context(sc);
1259 }
1260 #endif
1261
1262 static inline void signal_init(void)
1263 {
1264 #ifdef CONFIG_SMP
1265 /* For now just do the cpu_has_fpu check when the functions are invoked */
1266 save_fp_context = smp_save_fp_context;
1267 restore_fp_context = smp_restore_fp_context;
1268 #else
1269 if (cpu_has_fpu) {
1270 save_fp_context = _save_fp_context;
1271 restore_fp_context = _restore_fp_context;
1272 } else {
1273 save_fp_context = fpu_emulator_save_context;
1274 restore_fp_context = fpu_emulator_restore_context;
1275 }
1276 #endif
1277 }
1278
1279 #ifdef CONFIG_MIPS32_COMPAT
1280
1281 /*
1282 * This is used by 32-bit signal stuff on the 64-bit kernel
1283 */
1284 asmlinkage int (*save_fp_context32)(struct sigcontext32 __user *sc);
1285 asmlinkage int (*restore_fp_context32)(struct sigcontext32 __user *sc);
1286
1287 extern asmlinkage int _save_fp_context32(struct sigcontext32 __user *sc);
1288 extern asmlinkage int _restore_fp_context32(struct sigcontext32 __user *sc);
1289
1290 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 __user *sc);
1291 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 __user *sc);
1292
1293 static inline void signal32_init(void)
1294 {
1295 if (cpu_has_fpu) {
1296 save_fp_context32 = _save_fp_context32;
1297 restore_fp_context32 = _restore_fp_context32;
1298 } else {
1299 save_fp_context32 = fpu_emulator_save_context32;
1300 restore_fp_context32 = fpu_emulator_restore_context32;
1301 }
1302 }
1303 #endif
1304
1305 extern void cpu_cache_init(void);
1306 extern void tlb_init(void);
1307 extern void flush_tlb_handlers(void);
1308
1309 void __init per_cpu_trap_init(void)
1310 {
1311 unsigned int cpu = smp_processor_id();
1312 unsigned int status_set = ST0_CU0;
1313 #ifdef CONFIG_MIPS_MT_SMTC
1314 int secondaryTC = 0;
1315 int bootTC = (cpu == 0);
1316
1317 /*
1318 * Only do per_cpu_trap_init() for first TC of Each VPE.
1319 * Note that this hack assumes that the SMTC init code
1320 * assigns TCs consecutively and in ascending order.
1321 */
1322
1323 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1324 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1325 secondaryTC = 1;
1326 #endif /* CONFIG_MIPS_MT_SMTC */
1327
1328 /*
1329 * Disable coprocessors and select 32-bit or 64-bit addressing
1330 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1331 * flag that some firmware may have left set and the TS bit (for
1332 * IP27). Set XX for ISA IV code to work.
1333 */
1334 #ifdef CONFIG_64BIT
1335 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1336 #endif
1337 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1338 status_set |= ST0_XX;
1339 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1340 status_set);
1341
1342 if (cpu_has_dsp)
1343 set_c0_status(ST0_MX);
1344
1345 #ifdef CONFIG_CPU_MIPSR2
1346 write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */
1347 #endif
1348
1349 #ifdef CONFIG_MIPS_MT_SMTC
1350 if (!secondaryTC) {
1351 #endif /* CONFIG_MIPS_MT_SMTC */
1352
1353 /*
1354 * Interrupt handling.
1355 */
1356 if (cpu_has_veic || cpu_has_vint) {
1357 write_c0_ebase (ebase);
1358 /* Setting vector spacing enables EI/VI mode */
1359 change_c0_intctl (0x3e0, VECTORSPACING);
1360 }
1361 if (cpu_has_divec) {
1362 if (cpu_has_mipsmt) {
1363 unsigned int vpflags = dvpe();
1364 set_c0_cause(CAUSEF_IV);
1365 evpe(vpflags);
1366 } else
1367 set_c0_cause(CAUSEF_IV);
1368 }
1369 #ifdef CONFIG_MIPS_MT_SMTC
1370 }
1371 #endif /* CONFIG_MIPS_MT_SMTC */
1372
1373 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1374 TLBMISS_HANDLER_SETUP();
1375
1376 atomic_inc(&init_mm.mm_count);
1377 current->active_mm = &init_mm;
1378 BUG_ON(current->mm);
1379 enter_lazy_tlb(&init_mm, current);
1380
1381 #ifdef CONFIG_MIPS_MT_SMTC
1382 if (bootTC) {
1383 #endif /* CONFIG_MIPS_MT_SMTC */
1384 cpu_cache_init();
1385 tlb_init();
1386 #ifdef CONFIG_MIPS_MT_SMTC
1387 } else if (!secondaryTC) {
1388 /*
1389 * First TC in non-boot VPE must do subset of tlb_init()
1390 * for MMU countrol registers.
1391 */
1392 write_c0_pagemask(PM_DEFAULT_MASK);
1393 write_c0_wired(0);
1394 }
1395 #endif /* CONFIG_MIPS_MT_SMTC */
1396 }
1397
1398 /* Install CPU exception handler */
1399 void __init set_handler (unsigned long offset, void *addr, unsigned long size)
1400 {
1401 memcpy((void *)(ebase + offset), addr, size);
1402 flush_icache_range(ebase + offset, ebase + offset + size);
1403 }
1404
1405 /* Install uncached CPU exception handler */
1406 void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
1407 {
1408 #ifdef CONFIG_32BIT
1409 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1410 #endif
1411 #ifdef CONFIG_64BIT
1412 unsigned long uncached_ebase = TO_UNCAC(ebase);
1413 #endif
1414
1415 memcpy((void *)(uncached_ebase + offset), addr, size);
1416 }
1417
1418 static int __initdata rdhwr_noopt;
1419 static int __init set_rdhwr_noopt(char *str)
1420 {
1421 rdhwr_noopt = 1;
1422 return 1;
1423 }
1424
1425 __setup("rdhwr_noopt", set_rdhwr_noopt);
1426
1427 void __init trap_init(void)
1428 {
1429 extern char except_vec3_generic, except_vec3_r4000;
1430 extern char except_vec4;
1431 unsigned long i;
1432
1433 if (cpu_has_veic || cpu_has_vint)
1434 ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
1435 else
1436 ebase = CAC_BASE;
1437
1438 mips_srs_init();
1439
1440 per_cpu_trap_init();
1441
1442 /*
1443 * Copy the generic exception handlers to their final destination.
1444 * This will be overriden later as suitable for a particular
1445 * configuration.
1446 */
1447 set_handler(0x180, &except_vec3_generic, 0x80);
1448
1449 /*
1450 * Setup default vectors
1451 */
1452 for (i = 0; i <= 31; i++)
1453 set_except_vector(i, handle_reserved);
1454
1455 /*
1456 * Copy the EJTAG debug exception vector handler code to it's final
1457 * destination.
1458 */
1459 if (cpu_has_ejtag && board_ejtag_handler_setup)
1460 board_ejtag_handler_setup ();
1461
1462 /*
1463 * Only some CPUs have the watch exceptions.
1464 */
1465 if (cpu_has_watch)
1466 set_except_vector(23, handle_watch);
1467
1468 /*
1469 * Initialise interrupt handlers
1470 */
1471 if (cpu_has_veic || cpu_has_vint) {
1472 int nvec = cpu_has_veic ? 64 : 8;
1473 for (i = 0; i < nvec; i++)
1474 set_vi_handler(i, NULL);
1475 }
1476 else if (cpu_has_divec)
1477 set_handler(0x200, &except_vec4, 0x8);
1478
1479 /*
1480 * Some CPUs can enable/disable for cache parity detection, but does
1481 * it different ways.
1482 */
1483 parity_protection_init();
1484
1485 /*
1486 * The Data Bus Errors / Instruction Bus Errors are signaled
1487 * by external hardware. Therefore these two exceptions
1488 * may have board specific handlers.
1489 */
1490 if (board_be_init)
1491 board_be_init();
1492
1493 set_except_vector(0, handle_int);
1494 set_except_vector(1, handle_tlbm);
1495 set_except_vector(2, handle_tlbl);
1496 set_except_vector(3, handle_tlbs);
1497
1498 set_except_vector(4, handle_adel);
1499 set_except_vector(5, handle_ades);
1500
1501 set_except_vector(6, handle_ibe);
1502 set_except_vector(7, handle_dbe);
1503
1504 set_except_vector(8, handle_sys);
1505 set_except_vector(9, handle_bp);
1506 set_except_vector(10, rdhwr_noopt ? handle_ri :
1507 (cpu_has_vtag_icache ?
1508 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1509 set_except_vector(11, handle_cpu);
1510 set_except_vector(12, handle_ov);
1511 set_except_vector(13, handle_tr);
1512
1513 if (current_cpu_data.cputype == CPU_R6000 ||
1514 current_cpu_data.cputype == CPU_R6000A) {
1515 /*
1516 * The R6000 is the only R-series CPU that features a machine
1517 * check exception (similar to the R4000 cache error) and
1518 * unaligned ldc1/sdc1 exception. The handlers have not been
1519 * written yet. Well, anyway there is no R6000 machine on the
1520 * current list of targets for Linux/MIPS.
1521 * (Duh, crap, there is someone with a triple R6k machine)
1522 */
1523 //set_except_vector(14, handle_mc);
1524 //set_except_vector(15, handle_ndc);
1525 }
1526
1527
1528 if (board_nmi_handler_setup)
1529 board_nmi_handler_setup();
1530
1531 if (cpu_has_fpu && !cpu_has_nofpuex)
1532 set_except_vector(15, handle_fpe);
1533
1534 set_except_vector(22, handle_mdmx);
1535
1536 if (cpu_has_mcheck)
1537 set_except_vector(24, handle_mcheck);
1538
1539 if (cpu_has_mipsmt)
1540 set_except_vector(25, handle_mt);
1541
1542 set_except_vector(26, handle_dsp);
1543
1544 if (cpu_has_vce)
1545 /* Special exception: R4[04]00 uses also the divec space. */
1546 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1547 else if (cpu_has_4kex)
1548 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1549 else
1550 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1551
1552 signal_init();
1553 #ifdef CONFIG_MIPS32_COMPAT
1554 signal32_init();
1555 #endif
1556
1557 flush_icache_range(ebase, ebase + 0x400);
1558 flush_tlb_handlers();
1559 }