]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/mips/kernel/traps.c
Merge remote-tracking branches 'spi/topic/devprop', 'spi/topic/fsl', 'spi/topic/fsl...
[mirror_ubuntu-bionic-kernel.git] / arch / mips / kernel / traps.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/bootmem.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/mips-cm.h>
54 #include <asm/mips-r2-to-r6-emul.h>
55 #include <asm/mips-cm.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
59 #include <asm/msa.h>
60 #include <asm/pgtable.h>
61 #include <asm/ptrace.h>
62 #include <asm/sections.h>
63 #include <asm/siginfo.h>
64 #include <asm/tlbdebug.h>
65 #include <asm/traps.h>
66 #include <linux/uaccess.h>
67 #include <asm/watch.h>
68 #include <asm/mmu_context.h>
69 #include <asm/types.h>
70 #include <asm/stacktrace.h>
71 #include <asm/uasm.h>
72
73 extern void check_wait(void);
74 extern asmlinkage void rollback_handle_int(void);
75 extern asmlinkage void handle_int(void);
76 extern u32 handle_tlbl[];
77 extern u32 handle_tlbs[];
78 extern u32 handle_tlbm[];
79 extern asmlinkage void handle_adel(void);
80 extern asmlinkage void handle_ades(void);
81 extern asmlinkage void handle_ibe(void);
82 extern asmlinkage void handle_dbe(void);
83 extern asmlinkage void handle_sys(void);
84 extern asmlinkage void handle_bp(void);
85 extern asmlinkage void handle_ri(void);
86 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
87 extern asmlinkage void handle_ri_rdhwr(void);
88 extern asmlinkage void handle_cpu(void);
89 extern asmlinkage void handle_ov(void);
90 extern asmlinkage void handle_tr(void);
91 extern asmlinkage void handle_msa_fpe(void);
92 extern asmlinkage void handle_fpe(void);
93 extern asmlinkage void handle_ftlb(void);
94 extern asmlinkage void handle_msa(void);
95 extern asmlinkage void handle_mdmx(void);
96 extern asmlinkage void handle_watch(void);
97 extern asmlinkage void handle_mt(void);
98 extern asmlinkage void handle_dsp(void);
99 extern asmlinkage void handle_mcheck(void);
100 extern asmlinkage void handle_reserved(void);
101 extern void tlb_do_page_fault_0(void);
102
103 void (*board_be_init)(void);
104 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
105 void (*board_nmi_handler_setup)(void);
106 void (*board_ejtag_handler_setup)(void);
107 void (*board_bind_eic_interrupt)(int irq, int regset);
108 void (*board_ebase_setup)(void);
109 void(*board_cache_error_setup)(void);
110
111 static void show_raw_backtrace(unsigned long reg29)
112 {
113 unsigned long *sp = (unsigned long *)(reg29 & ~3);
114 unsigned long addr;
115
116 printk("Call Trace:");
117 #ifdef CONFIG_KALLSYMS
118 printk("\n");
119 #endif
120 while (!kstack_end(sp)) {
121 unsigned long __user *p =
122 (unsigned long __user *)(unsigned long)sp++;
123 if (__get_user(addr, p)) {
124 printk(" (Bad stack address)");
125 break;
126 }
127 if (__kernel_text_address(addr))
128 print_ip_sym(addr);
129 }
130 printk("\n");
131 }
132
133 #ifdef CONFIG_KALLSYMS
134 int raw_show_trace;
135 static int __init set_raw_show_trace(char *str)
136 {
137 raw_show_trace = 1;
138 return 1;
139 }
140 __setup("raw_show_trace", set_raw_show_trace);
141 #endif
142
143 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
144 {
145 unsigned long sp = regs->regs[29];
146 unsigned long ra = regs->regs[31];
147 unsigned long pc = regs->cp0_epc;
148
149 if (!task)
150 task = current;
151
152 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
153 show_raw_backtrace(sp);
154 return;
155 }
156 printk("Call Trace:\n");
157 do {
158 print_ip_sym(pc);
159 pc = unwind_stack(task, &sp, pc, &ra);
160 } while (pc);
161 pr_cont("\n");
162 }
163
164 /*
165 * This routine abuses get_user()/put_user() to reference pointers
166 * with at least a bit of error checking ...
167 */
168 static void show_stacktrace(struct task_struct *task,
169 const struct pt_regs *regs)
170 {
171 const int field = 2 * sizeof(unsigned long);
172 long stackdata;
173 int i;
174 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
175
176 printk("Stack :");
177 i = 0;
178 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
179 if (i && ((i % (64 / field)) == 0)) {
180 pr_cont("\n");
181 printk(" ");
182 }
183 if (i > 39) {
184 pr_cont(" ...");
185 break;
186 }
187
188 if (__get_user(stackdata, sp++)) {
189 pr_cont(" (Bad stack address)");
190 break;
191 }
192
193 pr_cont(" %0*lx", field, stackdata);
194 i++;
195 }
196 pr_cont("\n");
197 show_backtrace(task, regs);
198 }
199
200 void show_stack(struct task_struct *task, unsigned long *sp)
201 {
202 struct pt_regs regs;
203 mm_segment_t old_fs = get_fs();
204 if (sp) {
205 regs.regs[29] = (unsigned long)sp;
206 regs.regs[31] = 0;
207 regs.cp0_epc = 0;
208 } else {
209 if (task && task != current) {
210 regs.regs[29] = task->thread.reg29;
211 regs.regs[31] = 0;
212 regs.cp0_epc = task->thread.reg31;
213 #ifdef CONFIG_KGDB_KDB
214 } else if (atomic_read(&kgdb_active) != -1 &&
215 kdb_current_regs) {
216 memcpy(&regs, kdb_current_regs, sizeof(regs));
217 #endif /* CONFIG_KGDB_KDB */
218 } else {
219 prepare_frametrace(&regs);
220 }
221 }
222 /*
223 * show_stack() deals exclusively with kernel mode, so be sure to access
224 * the stack in the kernel (not user) address space.
225 */
226 set_fs(KERNEL_DS);
227 show_stacktrace(task, &regs);
228 set_fs(old_fs);
229 }
230
231 static void show_code(unsigned int __user *pc)
232 {
233 long i;
234 unsigned short __user *pc16 = NULL;
235
236 printk("Code:");
237
238 if ((unsigned long)pc & 1)
239 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
240 for(i = -3 ; i < 6 ; i++) {
241 unsigned int insn;
242 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
243 pr_cont(" (Bad address in epc)\n");
244 break;
245 }
246 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
247 }
248 pr_cont("\n");
249 }
250
251 static void __show_regs(const struct pt_regs *regs)
252 {
253 const int field = 2 * sizeof(unsigned long);
254 unsigned int cause = regs->cp0_cause;
255 unsigned int exccode;
256 int i;
257
258 show_regs_print_info(KERN_DEFAULT);
259
260 /*
261 * Saved main processor registers
262 */
263 for (i = 0; i < 32; ) {
264 if ((i % 4) == 0)
265 printk("$%2d :", i);
266 if (i == 0)
267 pr_cont(" %0*lx", field, 0UL);
268 else if (i == 26 || i == 27)
269 pr_cont(" %*s", field, "");
270 else
271 pr_cont(" %0*lx", field, regs->regs[i]);
272
273 i++;
274 if ((i % 4) == 0)
275 pr_cont("\n");
276 }
277
278 #ifdef CONFIG_CPU_HAS_SMARTMIPS
279 printk("Acx : %0*lx\n", field, regs->acx);
280 #endif
281 printk("Hi : %0*lx\n", field, regs->hi);
282 printk("Lo : %0*lx\n", field, regs->lo);
283
284 /*
285 * Saved cp0 registers
286 */
287 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
288 (void *) regs->cp0_epc);
289 printk("ra : %0*lx %pS\n", field, regs->regs[31],
290 (void *) regs->regs[31]);
291
292 printk("Status: %08x ", (uint32_t) regs->cp0_status);
293
294 if (cpu_has_3kex) {
295 if (regs->cp0_status & ST0_KUO)
296 pr_cont("KUo ");
297 if (regs->cp0_status & ST0_IEO)
298 pr_cont("IEo ");
299 if (regs->cp0_status & ST0_KUP)
300 pr_cont("KUp ");
301 if (regs->cp0_status & ST0_IEP)
302 pr_cont("IEp ");
303 if (regs->cp0_status & ST0_KUC)
304 pr_cont("KUc ");
305 if (regs->cp0_status & ST0_IEC)
306 pr_cont("IEc ");
307 } else if (cpu_has_4kex) {
308 if (regs->cp0_status & ST0_KX)
309 pr_cont("KX ");
310 if (regs->cp0_status & ST0_SX)
311 pr_cont("SX ");
312 if (regs->cp0_status & ST0_UX)
313 pr_cont("UX ");
314 switch (regs->cp0_status & ST0_KSU) {
315 case KSU_USER:
316 pr_cont("USER ");
317 break;
318 case KSU_SUPERVISOR:
319 pr_cont("SUPERVISOR ");
320 break;
321 case KSU_KERNEL:
322 pr_cont("KERNEL ");
323 break;
324 default:
325 pr_cont("BAD_MODE ");
326 break;
327 }
328 if (regs->cp0_status & ST0_ERL)
329 pr_cont("ERL ");
330 if (regs->cp0_status & ST0_EXL)
331 pr_cont("EXL ");
332 if (regs->cp0_status & ST0_IE)
333 pr_cont("IE ");
334 }
335 pr_cont("\n");
336
337 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
338 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
339
340 if (1 <= exccode && exccode <= 5)
341 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
342
343 printk("PrId : %08x (%s)\n", read_c0_prid(),
344 cpu_name_string());
345 }
346
347 /*
348 * FIXME: really the generic show_regs should take a const pointer argument.
349 */
350 void show_regs(struct pt_regs *regs)
351 {
352 __show_regs((struct pt_regs *)regs);
353 }
354
355 void show_registers(struct pt_regs *regs)
356 {
357 const int field = 2 * sizeof(unsigned long);
358 mm_segment_t old_fs = get_fs();
359
360 __show_regs(regs);
361 print_modules();
362 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
363 current->comm, current->pid, current_thread_info(), current,
364 field, current_thread_info()->tp_value);
365 if (cpu_has_userlocal) {
366 unsigned long tls;
367
368 tls = read_c0_userlocal();
369 if (tls != current_thread_info()->tp_value)
370 printk("*HwTLS: %0*lx\n", field, tls);
371 }
372
373 if (!user_mode(regs))
374 /* Necessary for getting the correct stack content */
375 set_fs(KERNEL_DS);
376 show_stacktrace(current, regs);
377 show_code((unsigned int __user *) regs->cp0_epc);
378 printk("\n");
379 set_fs(old_fs);
380 }
381
382 static DEFINE_RAW_SPINLOCK(die_lock);
383
384 void __noreturn die(const char *str, struct pt_regs *regs)
385 {
386 static int die_counter;
387 int sig = SIGSEGV;
388
389 oops_enter();
390
391 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
392 SIGSEGV) == NOTIFY_STOP)
393 sig = 0;
394
395 console_verbose();
396 raw_spin_lock_irq(&die_lock);
397 bust_spinlocks(1);
398
399 printk("%s[#%d]:\n", str, ++die_counter);
400 show_registers(regs);
401 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
402 raw_spin_unlock_irq(&die_lock);
403
404 oops_exit();
405
406 if (in_interrupt())
407 panic("Fatal exception in interrupt");
408
409 if (panic_on_oops)
410 panic("Fatal exception");
411
412 if (regs && kexec_should_crash(current))
413 crash_kexec(regs);
414
415 do_exit(sig);
416 }
417
418 extern struct exception_table_entry __start___dbe_table[];
419 extern struct exception_table_entry __stop___dbe_table[];
420
421 __asm__(
422 " .section __dbe_table, \"a\"\n"
423 " .previous \n");
424
425 /* Given an address, look for it in the exception tables. */
426 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
427 {
428 const struct exception_table_entry *e;
429
430 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
431 if (!e)
432 e = search_module_dbetables(addr);
433 return e;
434 }
435
436 asmlinkage void do_be(struct pt_regs *regs)
437 {
438 const int field = 2 * sizeof(unsigned long);
439 const struct exception_table_entry *fixup = NULL;
440 int data = regs->cp0_cause & 4;
441 int action = MIPS_BE_FATAL;
442 enum ctx_state prev_state;
443
444 prev_state = exception_enter();
445 /* XXX For now. Fixme, this searches the wrong table ... */
446 if (data && !user_mode(regs))
447 fixup = search_dbe_tables(exception_epc(regs));
448
449 if (fixup)
450 action = MIPS_BE_FIXUP;
451
452 if (board_be_handler)
453 action = board_be_handler(regs, fixup != NULL);
454 else
455 mips_cm_error_report();
456
457 switch (action) {
458 case MIPS_BE_DISCARD:
459 goto out;
460 case MIPS_BE_FIXUP:
461 if (fixup) {
462 regs->cp0_epc = fixup->nextinsn;
463 goto out;
464 }
465 break;
466 default:
467 break;
468 }
469
470 /*
471 * Assume it would be too dangerous to continue ...
472 */
473 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
474 data ? "Data" : "Instruction",
475 field, regs->cp0_epc, field, regs->regs[31]);
476 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
477 SIGBUS) == NOTIFY_STOP)
478 goto out;
479
480 die_if_kernel("Oops", regs);
481 force_sig(SIGBUS, current);
482
483 out:
484 exception_exit(prev_state);
485 }
486
487 /*
488 * ll/sc, rdhwr, sync emulation
489 */
490
491 #define OPCODE 0xfc000000
492 #define BASE 0x03e00000
493 #define RT 0x001f0000
494 #define OFFSET 0x0000ffff
495 #define LL 0xc0000000
496 #define SC 0xe0000000
497 #define SPEC0 0x00000000
498 #define SPEC3 0x7c000000
499 #define RD 0x0000f800
500 #define FUNC 0x0000003f
501 #define SYNC 0x0000000f
502 #define RDHWR 0x0000003b
503
504 /* microMIPS definitions */
505 #define MM_POOL32A_FUNC 0xfc00ffff
506 #define MM_RDHWR 0x00006b3c
507 #define MM_RS 0x001f0000
508 #define MM_RT 0x03e00000
509
510 /*
511 * The ll_bit is cleared by r*_switch.S
512 */
513
514 unsigned int ll_bit;
515 struct task_struct *ll_task;
516
517 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
518 {
519 unsigned long value, __user *vaddr;
520 long offset;
521
522 /*
523 * analyse the ll instruction that just caused a ri exception
524 * and put the referenced address to addr.
525 */
526
527 /* sign extend offset */
528 offset = opcode & OFFSET;
529 offset <<= 16;
530 offset >>= 16;
531
532 vaddr = (unsigned long __user *)
533 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
534
535 if ((unsigned long)vaddr & 3)
536 return SIGBUS;
537 if (get_user(value, vaddr))
538 return SIGSEGV;
539
540 preempt_disable();
541
542 if (ll_task == NULL || ll_task == current) {
543 ll_bit = 1;
544 } else {
545 ll_bit = 0;
546 }
547 ll_task = current;
548
549 preempt_enable();
550
551 regs->regs[(opcode & RT) >> 16] = value;
552
553 return 0;
554 }
555
556 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
557 {
558 unsigned long __user *vaddr;
559 unsigned long reg;
560 long offset;
561
562 /*
563 * analyse the sc instruction that just caused a ri exception
564 * and put the referenced address to addr.
565 */
566
567 /* sign extend offset */
568 offset = opcode & OFFSET;
569 offset <<= 16;
570 offset >>= 16;
571
572 vaddr = (unsigned long __user *)
573 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
574 reg = (opcode & RT) >> 16;
575
576 if ((unsigned long)vaddr & 3)
577 return SIGBUS;
578
579 preempt_disable();
580
581 if (ll_bit == 0 || ll_task != current) {
582 regs->regs[reg] = 0;
583 preempt_enable();
584 return 0;
585 }
586
587 preempt_enable();
588
589 if (put_user(regs->regs[reg], vaddr))
590 return SIGSEGV;
591
592 regs->regs[reg] = 1;
593
594 return 0;
595 }
596
597 /*
598 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
599 * opcodes are supposed to result in coprocessor unusable exceptions if
600 * executed on ll/sc-less processors. That's the theory. In practice a
601 * few processors such as NEC's VR4100 throw reserved instruction exceptions
602 * instead, so we're doing the emulation thing in both exception handlers.
603 */
604 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
605 {
606 if ((opcode & OPCODE) == LL) {
607 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
608 1, regs, 0);
609 return simulate_ll(regs, opcode);
610 }
611 if ((opcode & OPCODE) == SC) {
612 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
613 1, regs, 0);
614 return simulate_sc(regs, opcode);
615 }
616
617 return -1; /* Must be something else ... */
618 }
619
620 /*
621 * Simulate trapping 'rdhwr' instructions to provide user accessible
622 * registers not implemented in hardware.
623 */
624 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
625 {
626 struct thread_info *ti = task_thread_info(current);
627
628 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
629 1, regs, 0);
630 switch (rd) {
631 case MIPS_HWR_CPUNUM: /* CPU number */
632 regs->regs[rt] = smp_processor_id();
633 return 0;
634 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
635 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
636 current_cpu_data.icache.linesz);
637 return 0;
638 case MIPS_HWR_CC: /* Read count register */
639 regs->regs[rt] = read_c0_count();
640 return 0;
641 case MIPS_HWR_CCRES: /* Count register resolution */
642 switch (current_cpu_type()) {
643 case CPU_20KC:
644 case CPU_25KF:
645 regs->regs[rt] = 1;
646 break;
647 default:
648 regs->regs[rt] = 2;
649 }
650 return 0;
651 case MIPS_HWR_ULR: /* Read UserLocal register */
652 regs->regs[rt] = ti->tp_value;
653 return 0;
654 default:
655 return -1;
656 }
657 }
658
659 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
660 {
661 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
662 int rd = (opcode & RD) >> 11;
663 int rt = (opcode & RT) >> 16;
664
665 simulate_rdhwr(regs, rd, rt);
666 return 0;
667 }
668
669 /* Not ours. */
670 return -1;
671 }
672
673 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
674 {
675 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
676 int rd = (opcode & MM_RS) >> 16;
677 int rt = (opcode & MM_RT) >> 21;
678 simulate_rdhwr(regs, rd, rt);
679 return 0;
680 }
681
682 /* Not ours. */
683 return -1;
684 }
685
686 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
687 {
688 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
689 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
690 1, regs, 0);
691 return 0;
692 }
693
694 return -1; /* Must be something else ... */
695 }
696
697 asmlinkage void do_ov(struct pt_regs *regs)
698 {
699 enum ctx_state prev_state;
700 siginfo_t info = {
701 .si_signo = SIGFPE,
702 .si_code = FPE_INTOVF,
703 .si_addr = (void __user *)regs->cp0_epc,
704 };
705
706 prev_state = exception_enter();
707 die_if_kernel("Integer overflow", regs);
708
709 force_sig_info(SIGFPE, &info, current);
710 exception_exit(prev_state);
711 }
712
713 /*
714 * Send SIGFPE according to FCSR Cause bits, which must have already
715 * been masked against Enable bits. This is impotant as Inexact can
716 * happen together with Overflow or Underflow, and `ptrace' can set
717 * any bits.
718 */
719 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
720 struct task_struct *tsk)
721 {
722 struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE };
723
724 if (fcr31 & FPU_CSR_INV_X)
725 si.si_code = FPE_FLTINV;
726 else if (fcr31 & FPU_CSR_DIV_X)
727 si.si_code = FPE_FLTDIV;
728 else if (fcr31 & FPU_CSR_OVF_X)
729 si.si_code = FPE_FLTOVF;
730 else if (fcr31 & FPU_CSR_UDF_X)
731 si.si_code = FPE_FLTUND;
732 else if (fcr31 & FPU_CSR_INE_X)
733 si.si_code = FPE_FLTRES;
734 else
735 si.si_code = __SI_FAULT;
736 force_sig_info(SIGFPE, &si, tsk);
737 }
738
739 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
740 {
741 struct siginfo si = { 0 };
742 struct vm_area_struct *vma;
743
744 switch (sig) {
745 case 0:
746 return 0;
747
748 case SIGFPE:
749 force_fcr31_sig(fcr31, fault_addr, current);
750 return 1;
751
752 case SIGBUS:
753 si.si_addr = fault_addr;
754 si.si_signo = sig;
755 si.si_code = BUS_ADRERR;
756 force_sig_info(sig, &si, current);
757 return 1;
758
759 case SIGSEGV:
760 si.si_addr = fault_addr;
761 si.si_signo = sig;
762 down_read(&current->mm->mmap_sem);
763 vma = find_vma(current->mm, (unsigned long)fault_addr);
764 if (vma && (vma->vm_start <= (unsigned long)fault_addr))
765 si.si_code = SEGV_ACCERR;
766 else
767 si.si_code = SEGV_MAPERR;
768 up_read(&current->mm->mmap_sem);
769 force_sig_info(sig, &si, current);
770 return 1;
771
772 default:
773 force_sig(sig, current);
774 return 1;
775 }
776 }
777
778 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
779 unsigned long old_epc, unsigned long old_ra)
780 {
781 union mips_instruction inst = { .word = opcode };
782 void __user *fault_addr;
783 unsigned long fcr31;
784 int sig;
785
786 /* If it's obviously not an FP instruction, skip it */
787 switch (inst.i_format.opcode) {
788 case cop1_op:
789 case cop1x_op:
790 case lwc1_op:
791 case ldc1_op:
792 case swc1_op:
793 case sdc1_op:
794 break;
795
796 default:
797 return -1;
798 }
799
800 /*
801 * do_ri skipped over the instruction via compute_return_epc, undo
802 * that for the FPU emulator.
803 */
804 regs->cp0_epc = old_epc;
805 regs->regs[31] = old_ra;
806
807 /* Save the FP context to struct thread_struct */
808 lose_fpu(1);
809
810 /* Run the emulator */
811 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
812 &fault_addr);
813
814 /*
815 * We can't allow the emulated instruction to leave any
816 * enabled Cause bits set in $fcr31.
817 */
818 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
819 current->thread.fpu.fcr31 &= ~fcr31;
820
821 /* Restore the hardware register state */
822 own_fpu(1);
823
824 /* Send a signal if required. */
825 process_fpemu_return(sig, fault_addr, fcr31);
826
827 return 0;
828 }
829
830 /*
831 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
832 */
833 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
834 {
835 enum ctx_state prev_state;
836 void __user *fault_addr;
837 int sig;
838
839 prev_state = exception_enter();
840 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
841 SIGFPE) == NOTIFY_STOP)
842 goto out;
843
844 /* Clear FCSR.Cause before enabling interrupts */
845 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
846 local_irq_enable();
847
848 die_if_kernel("FP exception in kernel code", regs);
849
850 if (fcr31 & FPU_CSR_UNI_X) {
851 /*
852 * Unimplemented operation exception. If we've got the full
853 * software emulator on-board, let's use it...
854 *
855 * Force FPU to dump state into task/thread context. We're
856 * moving a lot of data here for what is probably a single
857 * instruction, but the alternative is to pre-decode the FP
858 * register operands before invoking the emulator, which seems
859 * a bit extreme for what should be an infrequent event.
860 */
861 /* Ensure 'resume' not overwrite saved fp context again. */
862 lose_fpu(1);
863
864 /* Run the emulator */
865 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
866 &fault_addr);
867
868 /*
869 * We can't allow the emulated instruction to leave any
870 * enabled Cause bits set in $fcr31.
871 */
872 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
873 current->thread.fpu.fcr31 &= ~fcr31;
874
875 /* Restore the hardware register state */
876 own_fpu(1); /* Using the FPU again. */
877 } else {
878 sig = SIGFPE;
879 fault_addr = (void __user *) regs->cp0_epc;
880 }
881
882 /* Send a signal if required. */
883 process_fpemu_return(sig, fault_addr, fcr31);
884
885 out:
886 exception_exit(prev_state);
887 }
888
889 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
890 const char *str)
891 {
892 siginfo_t info = { 0 };
893 char b[40];
894
895 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
896 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
897 SIGTRAP) == NOTIFY_STOP)
898 return;
899 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
900
901 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
902 SIGTRAP) == NOTIFY_STOP)
903 return;
904
905 /*
906 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
907 * insns, even for trap and break codes that indicate arithmetic
908 * failures. Weird ...
909 * But should we continue the brokenness??? --macro
910 */
911 switch (code) {
912 case BRK_OVERFLOW:
913 case BRK_DIVZERO:
914 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
915 die_if_kernel(b, regs);
916 if (code == BRK_DIVZERO)
917 info.si_code = FPE_INTDIV;
918 else
919 info.si_code = FPE_INTOVF;
920 info.si_signo = SIGFPE;
921 info.si_addr = (void __user *) regs->cp0_epc;
922 force_sig_info(SIGFPE, &info, current);
923 break;
924 case BRK_BUG:
925 die_if_kernel("Kernel bug detected", regs);
926 force_sig(SIGTRAP, current);
927 break;
928 case BRK_MEMU:
929 /*
930 * This breakpoint code is used by the FPU emulator to retake
931 * control of the CPU after executing the instruction from the
932 * delay slot of an emulated branch.
933 *
934 * Terminate if exception was recognized as a delay slot return
935 * otherwise handle as normal.
936 */
937 if (do_dsemulret(regs))
938 return;
939
940 die_if_kernel("Math emu break/trap", regs);
941 force_sig(SIGTRAP, current);
942 break;
943 default:
944 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
945 die_if_kernel(b, regs);
946 if (si_code) {
947 info.si_signo = SIGTRAP;
948 info.si_code = si_code;
949 force_sig_info(SIGTRAP, &info, current);
950 } else {
951 force_sig(SIGTRAP, current);
952 }
953 }
954 }
955
956 asmlinkage void do_bp(struct pt_regs *regs)
957 {
958 unsigned long epc = msk_isa16_mode(exception_epc(regs));
959 unsigned int opcode, bcode;
960 enum ctx_state prev_state;
961 mm_segment_t seg;
962
963 seg = get_fs();
964 if (!user_mode(regs))
965 set_fs(KERNEL_DS);
966
967 prev_state = exception_enter();
968 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
969 if (get_isa16_mode(regs->cp0_epc)) {
970 u16 instr[2];
971
972 if (__get_user(instr[0], (u16 __user *)epc))
973 goto out_sigsegv;
974
975 if (!cpu_has_mmips) {
976 /* MIPS16e mode */
977 bcode = (instr[0] >> 5) & 0x3f;
978 } else if (mm_insn_16bit(instr[0])) {
979 /* 16-bit microMIPS BREAK */
980 bcode = instr[0] & 0xf;
981 } else {
982 /* 32-bit microMIPS BREAK */
983 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
984 goto out_sigsegv;
985 opcode = (instr[0] << 16) | instr[1];
986 bcode = (opcode >> 6) & ((1 << 20) - 1);
987 }
988 } else {
989 if (__get_user(opcode, (unsigned int __user *)epc))
990 goto out_sigsegv;
991 bcode = (opcode >> 6) & ((1 << 20) - 1);
992 }
993
994 /*
995 * There is the ancient bug in the MIPS assemblers that the break
996 * code starts left to bit 16 instead to bit 6 in the opcode.
997 * Gas is bug-compatible, but not always, grrr...
998 * We handle both cases with a simple heuristics. --macro
999 */
1000 if (bcode >= (1 << 10))
1001 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1002
1003 /*
1004 * notify the kprobe handlers, if instruction is likely to
1005 * pertain to them.
1006 */
1007 switch (bcode) {
1008 case BRK_UPROBE:
1009 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1010 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1011 goto out;
1012 else
1013 break;
1014 case BRK_UPROBE_XOL:
1015 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1016 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1017 goto out;
1018 else
1019 break;
1020 case BRK_KPROBE_BP:
1021 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1022 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1023 goto out;
1024 else
1025 break;
1026 case BRK_KPROBE_SSTEPBP:
1027 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1028 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1029 goto out;
1030 else
1031 break;
1032 default:
1033 break;
1034 }
1035
1036 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1037
1038 out:
1039 set_fs(seg);
1040 exception_exit(prev_state);
1041 return;
1042
1043 out_sigsegv:
1044 force_sig(SIGSEGV, current);
1045 goto out;
1046 }
1047
1048 asmlinkage void do_tr(struct pt_regs *regs)
1049 {
1050 u32 opcode, tcode = 0;
1051 enum ctx_state prev_state;
1052 u16 instr[2];
1053 mm_segment_t seg;
1054 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1055
1056 seg = get_fs();
1057 if (!user_mode(regs))
1058 set_fs(get_ds());
1059
1060 prev_state = exception_enter();
1061 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1062 if (get_isa16_mode(regs->cp0_epc)) {
1063 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1064 __get_user(instr[1], (u16 __user *)(epc + 2)))
1065 goto out_sigsegv;
1066 opcode = (instr[0] << 16) | instr[1];
1067 /* Immediate versions don't provide a code. */
1068 if (!(opcode & OPCODE))
1069 tcode = (opcode >> 12) & ((1 << 4) - 1);
1070 } else {
1071 if (__get_user(opcode, (u32 __user *)epc))
1072 goto out_sigsegv;
1073 /* Immediate versions don't provide a code. */
1074 if (!(opcode & OPCODE))
1075 tcode = (opcode >> 6) & ((1 << 10) - 1);
1076 }
1077
1078 do_trap_or_bp(regs, tcode, 0, "Trap");
1079
1080 out:
1081 set_fs(seg);
1082 exception_exit(prev_state);
1083 return;
1084
1085 out_sigsegv:
1086 force_sig(SIGSEGV, current);
1087 goto out;
1088 }
1089
1090 asmlinkage void do_ri(struct pt_regs *regs)
1091 {
1092 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1093 unsigned long old_epc = regs->cp0_epc;
1094 unsigned long old31 = regs->regs[31];
1095 enum ctx_state prev_state;
1096 unsigned int opcode = 0;
1097 int status = -1;
1098
1099 /*
1100 * Avoid any kernel code. Just emulate the R2 instruction
1101 * as quickly as possible.
1102 */
1103 if (mipsr2_emulation && cpu_has_mips_r6 &&
1104 likely(user_mode(regs)) &&
1105 likely(get_user(opcode, epc) >= 0)) {
1106 unsigned long fcr31 = 0;
1107
1108 status = mipsr2_decoder(regs, opcode, &fcr31);
1109 switch (status) {
1110 case 0:
1111 case SIGEMT:
1112 return;
1113 case SIGILL:
1114 goto no_r2_instr;
1115 default:
1116 process_fpemu_return(status,
1117 &current->thread.cp0_baduaddr,
1118 fcr31);
1119 return;
1120 }
1121 }
1122
1123 no_r2_instr:
1124
1125 prev_state = exception_enter();
1126 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1127
1128 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1129 SIGILL) == NOTIFY_STOP)
1130 goto out;
1131
1132 die_if_kernel("Reserved instruction in kernel code", regs);
1133
1134 if (unlikely(compute_return_epc(regs) < 0))
1135 goto out;
1136
1137 if (!get_isa16_mode(regs->cp0_epc)) {
1138 if (unlikely(get_user(opcode, epc) < 0))
1139 status = SIGSEGV;
1140
1141 if (!cpu_has_llsc && status < 0)
1142 status = simulate_llsc(regs, opcode);
1143
1144 if (status < 0)
1145 status = simulate_rdhwr_normal(regs, opcode);
1146
1147 if (status < 0)
1148 status = simulate_sync(regs, opcode);
1149
1150 if (status < 0)
1151 status = simulate_fp(regs, opcode, old_epc, old31);
1152 } else if (cpu_has_mmips) {
1153 unsigned short mmop[2] = { 0 };
1154
1155 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1156 status = SIGSEGV;
1157 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1158 status = SIGSEGV;
1159 opcode = mmop[0];
1160 opcode = (opcode << 16) | mmop[1];
1161
1162 if (status < 0)
1163 status = simulate_rdhwr_mm(regs, opcode);
1164 }
1165
1166 if (status < 0)
1167 status = SIGILL;
1168
1169 if (unlikely(status > 0)) {
1170 regs->cp0_epc = old_epc; /* Undo skip-over. */
1171 regs->regs[31] = old31;
1172 force_sig(status, current);
1173 }
1174
1175 out:
1176 exception_exit(prev_state);
1177 }
1178
1179 /*
1180 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1181 * emulated more than some threshold number of instructions, force migration to
1182 * a "CPU" that has FP support.
1183 */
1184 static void mt_ase_fp_affinity(void)
1185 {
1186 #ifdef CONFIG_MIPS_MT_FPAFF
1187 if (mt_fpemul_threshold > 0 &&
1188 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1189 /*
1190 * If there's no FPU present, or if the application has already
1191 * restricted the allowed set to exclude any CPUs with FPUs,
1192 * we'll skip the procedure.
1193 */
1194 if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1195 cpumask_t tmask;
1196
1197 current->thread.user_cpus_allowed
1198 = current->cpus_allowed;
1199 cpumask_and(&tmask, &current->cpus_allowed,
1200 &mt_fpu_cpumask);
1201 set_cpus_allowed_ptr(current, &tmask);
1202 set_thread_flag(TIF_FPUBOUND);
1203 }
1204 }
1205 #endif /* CONFIG_MIPS_MT_FPAFF */
1206 }
1207
1208 /*
1209 * No lock; only written during early bootup by CPU 0.
1210 */
1211 static RAW_NOTIFIER_HEAD(cu2_chain);
1212
1213 int __ref register_cu2_notifier(struct notifier_block *nb)
1214 {
1215 return raw_notifier_chain_register(&cu2_chain, nb);
1216 }
1217
1218 int cu2_notifier_call_chain(unsigned long val, void *v)
1219 {
1220 return raw_notifier_call_chain(&cu2_chain, val, v);
1221 }
1222
1223 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1224 void *data)
1225 {
1226 struct pt_regs *regs = data;
1227
1228 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1229 "instruction", regs);
1230 force_sig(SIGILL, current);
1231
1232 return NOTIFY_OK;
1233 }
1234
1235 static int wait_on_fp_mode_switch(atomic_t *p)
1236 {
1237 /*
1238 * The FP mode for this task is currently being switched. That may
1239 * involve modifications to the format of this tasks FP context which
1240 * make it unsafe to proceed with execution for the moment. Instead,
1241 * schedule some other task.
1242 */
1243 schedule();
1244 return 0;
1245 }
1246
1247 static int enable_restore_fp_context(int msa)
1248 {
1249 int err, was_fpu_owner, prior_msa;
1250
1251 /*
1252 * If an FP mode switch is currently underway, wait for it to
1253 * complete before proceeding.
1254 */
1255 wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1256 wait_on_fp_mode_switch, TASK_KILLABLE);
1257
1258 if (!used_math()) {
1259 /* First time FP context user. */
1260 preempt_disable();
1261 err = init_fpu();
1262 if (msa && !err) {
1263 enable_msa();
1264 init_msa_upper();
1265 set_thread_flag(TIF_USEDMSA);
1266 set_thread_flag(TIF_MSA_CTX_LIVE);
1267 }
1268 preempt_enable();
1269 if (!err)
1270 set_used_math();
1271 return err;
1272 }
1273
1274 /*
1275 * This task has formerly used the FP context.
1276 *
1277 * If this thread has no live MSA vector context then we can simply
1278 * restore the scalar FP context. If it has live MSA vector context
1279 * (that is, it has or may have used MSA since last performing a
1280 * function call) then we'll need to restore the vector context. This
1281 * applies even if we're currently only executing a scalar FP
1282 * instruction. This is because if we were to later execute an MSA
1283 * instruction then we'd either have to:
1284 *
1285 * - Restore the vector context & clobber any registers modified by
1286 * scalar FP instructions between now & then.
1287 *
1288 * or
1289 *
1290 * - Not restore the vector context & lose the most significant bits
1291 * of all vector registers.
1292 *
1293 * Neither of those options is acceptable. We cannot restore the least
1294 * significant bits of the registers now & only restore the most
1295 * significant bits later because the most significant bits of any
1296 * vector registers whose aliased FP register is modified now will have
1297 * been zeroed. We'd have no way to know that when restoring the vector
1298 * context & thus may load an outdated value for the most significant
1299 * bits of a vector register.
1300 */
1301 if (!msa && !thread_msa_context_live())
1302 return own_fpu(1);
1303
1304 /*
1305 * This task is using or has previously used MSA. Thus we require
1306 * that Status.FR == 1.
1307 */
1308 preempt_disable();
1309 was_fpu_owner = is_fpu_owner();
1310 err = own_fpu_inatomic(0);
1311 if (err)
1312 goto out;
1313
1314 enable_msa();
1315 write_msa_csr(current->thread.fpu.msacsr);
1316 set_thread_flag(TIF_USEDMSA);
1317
1318 /*
1319 * If this is the first time that the task is using MSA and it has
1320 * previously used scalar FP in this time slice then we already nave
1321 * FP context which we shouldn't clobber. We do however need to clear
1322 * the upper 64b of each vector register so that this task has no
1323 * opportunity to see data left behind by another.
1324 */
1325 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1326 if (!prior_msa && was_fpu_owner) {
1327 init_msa_upper();
1328
1329 goto out;
1330 }
1331
1332 if (!prior_msa) {
1333 /*
1334 * Restore the least significant 64b of each vector register
1335 * from the existing scalar FP context.
1336 */
1337 _restore_fp(current);
1338
1339 /*
1340 * The task has not formerly used MSA, so clear the upper 64b
1341 * of each vector register such that it cannot see data left
1342 * behind by another task.
1343 */
1344 init_msa_upper();
1345 } else {
1346 /* We need to restore the vector context. */
1347 restore_msa(current);
1348
1349 /* Restore the scalar FP control & status register */
1350 if (!was_fpu_owner)
1351 write_32bit_cp1_register(CP1_STATUS,
1352 current->thread.fpu.fcr31);
1353 }
1354
1355 out:
1356 preempt_enable();
1357
1358 return 0;
1359 }
1360
1361 asmlinkage void do_cpu(struct pt_regs *regs)
1362 {
1363 enum ctx_state prev_state;
1364 unsigned int __user *epc;
1365 unsigned long old_epc, old31;
1366 void __user *fault_addr;
1367 unsigned int opcode;
1368 unsigned long fcr31;
1369 unsigned int cpid;
1370 int status, err;
1371 int sig;
1372
1373 prev_state = exception_enter();
1374 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1375
1376 if (cpid != 2)
1377 die_if_kernel("do_cpu invoked from kernel context!", regs);
1378
1379 switch (cpid) {
1380 case 0:
1381 epc = (unsigned int __user *)exception_epc(regs);
1382 old_epc = regs->cp0_epc;
1383 old31 = regs->regs[31];
1384 opcode = 0;
1385 status = -1;
1386
1387 if (unlikely(compute_return_epc(regs) < 0))
1388 break;
1389
1390 if (!get_isa16_mode(regs->cp0_epc)) {
1391 if (unlikely(get_user(opcode, epc) < 0))
1392 status = SIGSEGV;
1393
1394 if (!cpu_has_llsc && status < 0)
1395 status = simulate_llsc(regs, opcode);
1396 }
1397
1398 if (status < 0)
1399 status = SIGILL;
1400
1401 if (unlikely(status > 0)) {
1402 regs->cp0_epc = old_epc; /* Undo skip-over. */
1403 regs->regs[31] = old31;
1404 force_sig(status, current);
1405 }
1406
1407 break;
1408
1409 case 3:
1410 /*
1411 * The COP3 opcode space and consequently the CP0.Status.CU3
1412 * bit and the CP0.Cause.CE=3 encoding have been removed as
1413 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1414 * up the space has been reused for COP1X instructions, that
1415 * are enabled by the CP0.Status.CU1 bit and consequently
1416 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1417 * exceptions. Some FPU-less processors that implement one
1418 * of these ISAs however use this code erroneously for COP1X
1419 * instructions. Therefore we redirect this trap to the FP
1420 * emulator too.
1421 */
1422 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1423 force_sig(SIGILL, current);
1424 break;
1425 }
1426 /* Fall through. */
1427
1428 case 1:
1429 err = enable_restore_fp_context(0);
1430
1431 if (raw_cpu_has_fpu && !err)
1432 break;
1433
1434 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1435 &fault_addr);
1436
1437 /*
1438 * We can't allow the emulated instruction to leave
1439 * any enabled Cause bits set in $fcr31.
1440 */
1441 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1442 current->thread.fpu.fcr31 &= ~fcr31;
1443
1444 /* Send a signal if required. */
1445 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1446 mt_ase_fp_affinity();
1447
1448 break;
1449
1450 case 2:
1451 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1452 break;
1453 }
1454
1455 exception_exit(prev_state);
1456 }
1457
1458 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1459 {
1460 enum ctx_state prev_state;
1461
1462 prev_state = exception_enter();
1463 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1464 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1465 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1466 goto out;
1467
1468 /* Clear MSACSR.Cause before enabling interrupts */
1469 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1470 local_irq_enable();
1471
1472 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1473 force_sig(SIGFPE, current);
1474 out:
1475 exception_exit(prev_state);
1476 }
1477
1478 asmlinkage void do_msa(struct pt_regs *regs)
1479 {
1480 enum ctx_state prev_state;
1481 int err;
1482
1483 prev_state = exception_enter();
1484
1485 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1486 force_sig(SIGILL, current);
1487 goto out;
1488 }
1489
1490 die_if_kernel("do_msa invoked from kernel context!", regs);
1491
1492 err = enable_restore_fp_context(1);
1493 if (err)
1494 force_sig(SIGILL, current);
1495 out:
1496 exception_exit(prev_state);
1497 }
1498
1499 asmlinkage void do_mdmx(struct pt_regs *regs)
1500 {
1501 enum ctx_state prev_state;
1502
1503 prev_state = exception_enter();
1504 force_sig(SIGILL, current);
1505 exception_exit(prev_state);
1506 }
1507
1508 /*
1509 * Called with interrupts disabled.
1510 */
1511 asmlinkage void do_watch(struct pt_regs *regs)
1512 {
1513 siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1514 enum ctx_state prev_state;
1515
1516 prev_state = exception_enter();
1517 /*
1518 * Clear WP (bit 22) bit of cause register so we don't loop
1519 * forever.
1520 */
1521 clear_c0_cause(CAUSEF_WP);
1522
1523 /*
1524 * If the current thread has the watch registers loaded, save
1525 * their values and send SIGTRAP. Otherwise another thread
1526 * left the registers set, clear them and continue.
1527 */
1528 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1529 mips_read_watch_registers();
1530 local_irq_enable();
1531 force_sig_info(SIGTRAP, &info, current);
1532 } else {
1533 mips_clear_watch_registers();
1534 local_irq_enable();
1535 }
1536 exception_exit(prev_state);
1537 }
1538
1539 asmlinkage void do_mcheck(struct pt_regs *regs)
1540 {
1541 int multi_match = regs->cp0_status & ST0_TS;
1542 enum ctx_state prev_state;
1543 mm_segment_t old_fs = get_fs();
1544
1545 prev_state = exception_enter();
1546 show_regs(regs);
1547
1548 if (multi_match) {
1549 dump_tlb_regs();
1550 pr_info("\n");
1551 dump_tlb_all();
1552 }
1553
1554 if (!user_mode(regs))
1555 set_fs(KERNEL_DS);
1556
1557 show_code((unsigned int __user *) regs->cp0_epc);
1558
1559 set_fs(old_fs);
1560
1561 /*
1562 * Some chips may have other causes of machine check (e.g. SB1
1563 * graduation timer)
1564 */
1565 panic("Caught Machine Check exception - %scaused by multiple "
1566 "matching entries in the TLB.",
1567 (multi_match) ? "" : "not ");
1568 }
1569
1570 asmlinkage void do_mt(struct pt_regs *regs)
1571 {
1572 int subcode;
1573
1574 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1575 >> VPECONTROL_EXCPT_SHIFT;
1576 switch (subcode) {
1577 case 0:
1578 printk(KERN_DEBUG "Thread Underflow\n");
1579 break;
1580 case 1:
1581 printk(KERN_DEBUG "Thread Overflow\n");
1582 break;
1583 case 2:
1584 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1585 break;
1586 case 3:
1587 printk(KERN_DEBUG "Gating Storage Exception\n");
1588 break;
1589 case 4:
1590 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1591 break;
1592 case 5:
1593 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1594 break;
1595 default:
1596 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1597 subcode);
1598 break;
1599 }
1600 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1601
1602 force_sig(SIGILL, current);
1603 }
1604
1605
1606 asmlinkage void do_dsp(struct pt_regs *regs)
1607 {
1608 if (cpu_has_dsp)
1609 panic("Unexpected DSP exception");
1610
1611 force_sig(SIGILL, current);
1612 }
1613
1614 asmlinkage void do_reserved(struct pt_regs *regs)
1615 {
1616 /*
1617 * Game over - no way to handle this if it ever occurs. Most probably
1618 * caused by a new unknown cpu type or after another deadly
1619 * hard/software error.
1620 */
1621 show_regs(regs);
1622 panic("Caught reserved exception %ld - should not happen.",
1623 (regs->cp0_cause & 0x7f) >> 2);
1624 }
1625
1626 static int __initdata l1parity = 1;
1627 static int __init nol1parity(char *s)
1628 {
1629 l1parity = 0;
1630 return 1;
1631 }
1632 __setup("nol1par", nol1parity);
1633 static int __initdata l2parity = 1;
1634 static int __init nol2parity(char *s)
1635 {
1636 l2parity = 0;
1637 return 1;
1638 }
1639 __setup("nol2par", nol2parity);
1640
1641 /*
1642 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1643 * it different ways.
1644 */
1645 static inline void parity_protection_init(void)
1646 {
1647 #define ERRCTL_PE 0x80000000
1648 #define ERRCTL_L2P 0x00800000
1649
1650 if (mips_cm_revision() >= CM_REV_CM3) {
1651 ulong gcr_ectl, cp0_ectl;
1652
1653 /*
1654 * With CM3 systems we need to ensure that the L1 & L2
1655 * parity enables are set to the same value, since this
1656 * is presumed by the hardware engineers.
1657 *
1658 * If the user disabled either of L1 or L2 ECC checking,
1659 * disable both.
1660 */
1661 l1parity &= l2parity;
1662 l2parity &= l1parity;
1663
1664 /* Probe L1 ECC support */
1665 cp0_ectl = read_c0_ecc();
1666 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1667 back_to_back_c0_hazard();
1668 cp0_ectl = read_c0_ecc();
1669
1670 /* Probe L2 ECC support */
1671 gcr_ectl = read_gcr_err_control();
1672
1673 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT_MSK) ||
1674 !(cp0_ectl & ERRCTL_PE)) {
1675 /*
1676 * One of L1 or L2 ECC checking isn't supported,
1677 * so we cannot enable either.
1678 */
1679 l1parity = l2parity = 0;
1680 }
1681
1682 /* Configure L1 ECC checking */
1683 if (l1parity)
1684 cp0_ectl |= ERRCTL_PE;
1685 else
1686 cp0_ectl &= ~ERRCTL_PE;
1687 write_c0_ecc(cp0_ectl);
1688 back_to_back_c0_hazard();
1689 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1690
1691 /* Configure L2 ECC checking */
1692 if (l2parity)
1693 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1694 else
1695 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1696 write_gcr_err_control(gcr_ectl);
1697 gcr_ectl = read_gcr_err_control();
1698 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1699 WARN_ON(!!gcr_ectl != l2parity);
1700
1701 pr_info("Cache parity protection %sabled\n",
1702 l1parity ? "en" : "dis");
1703 return;
1704 }
1705
1706 switch (current_cpu_type()) {
1707 case CPU_24K:
1708 case CPU_34K:
1709 case CPU_74K:
1710 case CPU_1004K:
1711 case CPU_1074K:
1712 case CPU_INTERAPTIV:
1713 case CPU_PROAPTIV:
1714 case CPU_P5600:
1715 case CPU_QEMU_GENERIC:
1716 case CPU_P6600:
1717 {
1718 unsigned long errctl;
1719 unsigned int l1parity_present, l2parity_present;
1720
1721 errctl = read_c0_ecc();
1722 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1723
1724 /* probe L1 parity support */
1725 write_c0_ecc(errctl | ERRCTL_PE);
1726 back_to_back_c0_hazard();
1727 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1728
1729 /* probe L2 parity support */
1730 write_c0_ecc(errctl|ERRCTL_L2P);
1731 back_to_back_c0_hazard();
1732 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1733
1734 if (l1parity_present && l2parity_present) {
1735 if (l1parity)
1736 errctl |= ERRCTL_PE;
1737 if (l1parity ^ l2parity)
1738 errctl |= ERRCTL_L2P;
1739 } else if (l1parity_present) {
1740 if (l1parity)
1741 errctl |= ERRCTL_PE;
1742 } else if (l2parity_present) {
1743 if (l2parity)
1744 errctl |= ERRCTL_L2P;
1745 } else {
1746 /* No parity available */
1747 }
1748
1749 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1750
1751 write_c0_ecc(errctl);
1752 back_to_back_c0_hazard();
1753 errctl = read_c0_ecc();
1754 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1755
1756 if (l1parity_present)
1757 printk(KERN_INFO "Cache parity protection %sabled\n",
1758 (errctl & ERRCTL_PE) ? "en" : "dis");
1759
1760 if (l2parity_present) {
1761 if (l1parity_present && l1parity)
1762 errctl ^= ERRCTL_L2P;
1763 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1764 (errctl & ERRCTL_L2P) ? "en" : "dis");
1765 }
1766 }
1767 break;
1768
1769 case CPU_5KC:
1770 case CPU_5KE:
1771 case CPU_LOONGSON1:
1772 write_c0_ecc(0x80000000);
1773 back_to_back_c0_hazard();
1774 /* Set the PE bit (bit 31) in the c0_errctl register. */
1775 printk(KERN_INFO "Cache parity protection %sabled\n",
1776 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1777 break;
1778 case CPU_20KC:
1779 case CPU_25KF:
1780 /* Clear the DE bit (bit 16) in the c0_status register. */
1781 printk(KERN_INFO "Enable cache parity protection for "
1782 "MIPS 20KC/25KF CPUs.\n");
1783 clear_c0_status(ST0_DE);
1784 break;
1785 default:
1786 break;
1787 }
1788 }
1789
1790 asmlinkage void cache_parity_error(void)
1791 {
1792 const int field = 2 * sizeof(unsigned long);
1793 unsigned int reg_val;
1794
1795 /* For the moment, report the problem and hang. */
1796 printk("Cache error exception:\n");
1797 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1798 reg_val = read_c0_cacheerr();
1799 printk("c0_cacheerr == %08x\n", reg_val);
1800
1801 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1802 reg_val & (1<<30) ? "secondary" : "primary",
1803 reg_val & (1<<31) ? "data" : "insn");
1804 if ((cpu_has_mips_r2_r6) &&
1805 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1806 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1807 reg_val & (1<<29) ? "ED " : "",
1808 reg_val & (1<<28) ? "ET " : "",
1809 reg_val & (1<<27) ? "ES " : "",
1810 reg_val & (1<<26) ? "EE " : "",
1811 reg_val & (1<<25) ? "EB " : "",
1812 reg_val & (1<<24) ? "EI " : "",
1813 reg_val & (1<<23) ? "E1 " : "",
1814 reg_val & (1<<22) ? "E0 " : "");
1815 } else {
1816 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1817 reg_val & (1<<29) ? "ED " : "",
1818 reg_val & (1<<28) ? "ET " : "",
1819 reg_val & (1<<26) ? "EE " : "",
1820 reg_val & (1<<25) ? "EB " : "",
1821 reg_val & (1<<24) ? "EI " : "",
1822 reg_val & (1<<23) ? "E1 " : "",
1823 reg_val & (1<<22) ? "E0 " : "");
1824 }
1825 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1826
1827 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1828 if (reg_val & (1<<22))
1829 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1830
1831 if (reg_val & (1<<23))
1832 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1833 #endif
1834
1835 panic("Can't handle the cache error!");
1836 }
1837
1838 asmlinkage void do_ftlb(void)
1839 {
1840 const int field = 2 * sizeof(unsigned long);
1841 unsigned int reg_val;
1842
1843 /* For the moment, report the problem and hang. */
1844 if ((cpu_has_mips_r2_r6) &&
1845 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1846 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1847 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1848 read_c0_ecc());
1849 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1850 reg_val = read_c0_cacheerr();
1851 pr_err("c0_cacheerr == %08x\n", reg_val);
1852
1853 if ((reg_val & 0xc0000000) == 0xc0000000) {
1854 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1855 } else {
1856 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1857 reg_val & (1<<30) ? "secondary" : "primary",
1858 reg_val & (1<<31) ? "data" : "insn");
1859 }
1860 } else {
1861 pr_err("FTLB error exception\n");
1862 }
1863 /* Just print the cacheerr bits for now */
1864 cache_parity_error();
1865 }
1866
1867 /*
1868 * SDBBP EJTAG debug exception handler.
1869 * We skip the instruction and return to the next instruction.
1870 */
1871 void ejtag_exception_handler(struct pt_regs *regs)
1872 {
1873 const int field = 2 * sizeof(unsigned long);
1874 unsigned long depc, old_epc, old_ra;
1875 unsigned int debug;
1876
1877 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1878 depc = read_c0_depc();
1879 debug = read_c0_debug();
1880 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1881 if (debug & 0x80000000) {
1882 /*
1883 * In branch delay slot.
1884 * We cheat a little bit here and use EPC to calculate the
1885 * debug return address (DEPC). EPC is restored after the
1886 * calculation.
1887 */
1888 old_epc = regs->cp0_epc;
1889 old_ra = regs->regs[31];
1890 regs->cp0_epc = depc;
1891 compute_return_epc(regs);
1892 depc = regs->cp0_epc;
1893 regs->cp0_epc = old_epc;
1894 regs->regs[31] = old_ra;
1895 } else
1896 depc += 4;
1897 write_c0_depc(depc);
1898
1899 #if 0
1900 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1901 write_c0_debug(debug | 0x100);
1902 #endif
1903 }
1904
1905 /*
1906 * NMI exception handler.
1907 * No lock; only written during early bootup by CPU 0.
1908 */
1909 static RAW_NOTIFIER_HEAD(nmi_chain);
1910
1911 int register_nmi_notifier(struct notifier_block *nb)
1912 {
1913 return raw_notifier_chain_register(&nmi_chain, nb);
1914 }
1915
1916 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1917 {
1918 char str[100];
1919
1920 nmi_enter();
1921 raw_notifier_call_chain(&nmi_chain, 0, regs);
1922 bust_spinlocks(1);
1923 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1924 smp_processor_id(), regs->cp0_epc);
1925 regs->cp0_epc = read_c0_errorepc();
1926 die(str, regs);
1927 nmi_exit();
1928 }
1929
1930 #define VECTORSPACING 0x100 /* for EI/VI mode */
1931
1932 unsigned long ebase;
1933 EXPORT_SYMBOL_GPL(ebase);
1934 unsigned long exception_handlers[32];
1935 unsigned long vi_handlers[64];
1936
1937 void __init *set_except_vector(int n, void *addr)
1938 {
1939 unsigned long handler = (unsigned long) addr;
1940 unsigned long old_handler;
1941
1942 #ifdef CONFIG_CPU_MICROMIPS
1943 /*
1944 * Only the TLB handlers are cache aligned with an even
1945 * address. All other handlers are on an odd address and
1946 * require no modification. Otherwise, MIPS32 mode will
1947 * be entered when handling any TLB exceptions. That
1948 * would be bad...since we must stay in microMIPS mode.
1949 */
1950 if (!(handler & 0x1))
1951 handler |= 1;
1952 #endif
1953 old_handler = xchg(&exception_handlers[n], handler);
1954
1955 if (n == 0 && cpu_has_divec) {
1956 #ifdef CONFIG_CPU_MICROMIPS
1957 unsigned long jump_mask = ~((1 << 27) - 1);
1958 #else
1959 unsigned long jump_mask = ~((1 << 28) - 1);
1960 #endif
1961 u32 *buf = (u32 *)(ebase + 0x200);
1962 unsigned int k0 = 26;
1963 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1964 uasm_i_j(&buf, handler & ~jump_mask);
1965 uasm_i_nop(&buf);
1966 } else {
1967 UASM_i_LA(&buf, k0, handler);
1968 uasm_i_jr(&buf, k0);
1969 uasm_i_nop(&buf);
1970 }
1971 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1972 }
1973 return (void *)old_handler;
1974 }
1975
1976 static void do_default_vi(void)
1977 {
1978 show_regs(get_irq_regs());
1979 panic("Caught unexpected vectored interrupt.");
1980 }
1981
1982 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1983 {
1984 unsigned long handler;
1985 unsigned long old_handler = vi_handlers[n];
1986 int srssets = current_cpu_data.srsets;
1987 u16 *h;
1988 unsigned char *b;
1989
1990 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1991
1992 if (addr == NULL) {
1993 handler = (unsigned long) do_default_vi;
1994 srs = 0;
1995 } else
1996 handler = (unsigned long) addr;
1997 vi_handlers[n] = handler;
1998
1999 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2000
2001 if (srs >= srssets)
2002 panic("Shadow register set %d not supported", srs);
2003
2004 if (cpu_has_veic) {
2005 if (board_bind_eic_interrupt)
2006 board_bind_eic_interrupt(n, srs);
2007 } else if (cpu_has_vint) {
2008 /* SRSMap is only defined if shadow sets are implemented */
2009 if (srssets > 1)
2010 change_c0_srsmap(0xf << n*4, srs << n*4);
2011 }
2012
2013 if (srs == 0) {
2014 /*
2015 * If no shadow set is selected then use the default handler
2016 * that does normal register saving and standard interrupt exit
2017 */
2018 extern char except_vec_vi, except_vec_vi_lui;
2019 extern char except_vec_vi_ori, except_vec_vi_end;
2020 extern char rollback_except_vec_vi;
2021 char *vec_start = using_rollback_handler() ?
2022 &rollback_except_vec_vi : &except_vec_vi;
2023 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2024 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2025 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2026 #else
2027 const int lui_offset = &except_vec_vi_lui - vec_start;
2028 const int ori_offset = &except_vec_vi_ori - vec_start;
2029 #endif
2030 const int handler_len = &except_vec_vi_end - vec_start;
2031
2032 if (handler_len > VECTORSPACING) {
2033 /*
2034 * Sigh... panicing won't help as the console
2035 * is probably not configured :(
2036 */
2037 panic("VECTORSPACING too small");
2038 }
2039
2040 set_handler(((unsigned long)b - ebase), vec_start,
2041 #ifdef CONFIG_CPU_MICROMIPS
2042 (handler_len - 1));
2043 #else
2044 handler_len);
2045 #endif
2046 h = (u16 *)(b + lui_offset);
2047 *h = (handler >> 16) & 0xffff;
2048 h = (u16 *)(b + ori_offset);
2049 *h = (handler & 0xffff);
2050 local_flush_icache_range((unsigned long)b,
2051 (unsigned long)(b+handler_len));
2052 }
2053 else {
2054 /*
2055 * In other cases jump directly to the interrupt handler. It
2056 * is the handler's responsibility to save registers if required
2057 * (eg hi/lo) and return from the exception using "eret".
2058 */
2059 u32 insn;
2060
2061 h = (u16 *)b;
2062 /* j handler */
2063 #ifdef CONFIG_CPU_MICROMIPS
2064 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2065 #else
2066 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2067 #endif
2068 h[0] = (insn >> 16) & 0xffff;
2069 h[1] = insn & 0xffff;
2070 h[2] = 0;
2071 h[3] = 0;
2072 local_flush_icache_range((unsigned long)b,
2073 (unsigned long)(b+8));
2074 }
2075
2076 return (void *)old_handler;
2077 }
2078
2079 void *set_vi_handler(int n, vi_handler_t addr)
2080 {
2081 return set_vi_srs_handler(n, addr, 0);
2082 }
2083
2084 extern void tlb_init(void);
2085
2086 /*
2087 * Timer interrupt
2088 */
2089 int cp0_compare_irq;
2090 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2091 int cp0_compare_irq_shift;
2092
2093 /*
2094 * Performance counter IRQ or -1 if shared with timer
2095 */
2096 int cp0_perfcount_irq;
2097 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2098
2099 /*
2100 * Fast debug channel IRQ or -1 if not present
2101 */
2102 int cp0_fdc_irq;
2103 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2104
2105 static int noulri;
2106
2107 static int __init ulri_disable(char *s)
2108 {
2109 pr_info("Disabling ulri\n");
2110 noulri = 1;
2111
2112 return 1;
2113 }
2114 __setup("noulri", ulri_disable);
2115
2116 /* configure STATUS register */
2117 static void configure_status(void)
2118 {
2119 /*
2120 * Disable coprocessors and select 32-bit or 64-bit addressing
2121 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2122 * flag that some firmware may have left set and the TS bit (for
2123 * IP27). Set XX for ISA IV code to work.
2124 */
2125 unsigned int status_set = ST0_CU0;
2126 #ifdef CONFIG_64BIT
2127 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2128 #endif
2129 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2130 status_set |= ST0_XX;
2131 if (cpu_has_dsp)
2132 status_set |= ST0_MX;
2133
2134 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2135 status_set);
2136 }
2137
2138 unsigned int hwrena;
2139 EXPORT_SYMBOL_GPL(hwrena);
2140
2141 /* configure HWRENA register */
2142 static void configure_hwrena(void)
2143 {
2144 hwrena = cpu_hwrena_impl_bits;
2145
2146 if (cpu_has_mips_r2_r6)
2147 hwrena |= MIPS_HWRENA_CPUNUM |
2148 MIPS_HWRENA_SYNCISTEP |
2149 MIPS_HWRENA_CC |
2150 MIPS_HWRENA_CCRES;
2151
2152 if (!noulri && cpu_has_userlocal)
2153 hwrena |= MIPS_HWRENA_ULR;
2154
2155 if (hwrena)
2156 write_c0_hwrena(hwrena);
2157 }
2158
2159 static void configure_exception_vector(void)
2160 {
2161 if (cpu_has_veic || cpu_has_vint) {
2162 unsigned long sr = set_c0_status(ST0_BEV);
2163 /* If available, use WG to set top bits of EBASE */
2164 if (cpu_has_ebase_wg) {
2165 #ifdef CONFIG_64BIT
2166 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2167 #else
2168 write_c0_ebase(ebase | MIPS_EBASE_WG);
2169 #endif
2170 }
2171 write_c0_ebase(ebase);
2172 write_c0_status(sr);
2173 /* Setting vector spacing enables EI/VI mode */
2174 change_c0_intctl(0x3e0, VECTORSPACING);
2175 }
2176 if (cpu_has_divec) {
2177 if (cpu_has_mipsmt) {
2178 unsigned int vpflags = dvpe();
2179 set_c0_cause(CAUSEF_IV);
2180 evpe(vpflags);
2181 } else
2182 set_c0_cause(CAUSEF_IV);
2183 }
2184 }
2185
2186 void per_cpu_trap_init(bool is_boot_cpu)
2187 {
2188 unsigned int cpu = smp_processor_id();
2189
2190 configure_status();
2191 configure_hwrena();
2192
2193 configure_exception_vector();
2194
2195 /*
2196 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2197 *
2198 * o read IntCtl.IPTI to determine the timer interrupt
2199 * o read IntCtl.IPPCI to determine the performance counter interrupt
2200 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2201 */
2202 if (cpu_has_mips_r2_r6) {
2203 /*
2204 * We shouldn't trust a secondary core has a sane EBASE register
2205 * so use the one calculated by the boot CPU.
2206 */
2207 if (!is_boot_cpu) {
2208 /* If available, use WG to set top bits of EBASE */
2209 if (cpu_has_ebase_wg) {
2210 #ifdef CONFIG_64BIT
2211 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2212 #else
2213 write_c0_ebase(ebase | MIPS_EBASE_WG);
2214 #endif
2215 }
2216 write_c0_ebase(ebase);
2217 }
2218
2219 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2220 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2221 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2222 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2223 if (!cp0_fdc_irq)
2224 cp0_fdc_irq = -1;
2225
2226 } else {
2227 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2228 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2229 cp0_perfcount_irq = -1;
2230 cp0_fdc_irq = -1;
2231 }
2232
2233 if (!cpu_data[cpu].asid_cache)
2234 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2235
2236 mmgrab(&init_mm);
2237 current->active_mm = &init_mm;
2238 BUG_ON(current->mm);
2239 enter_lazy_tlb(&init_mm, current);
2240
2241 /* Boot CPU's cache setup in setup_arch(). */
2242 if (!is_boot_cpu)
2243 cpu_cache_init();
2244 tlb_init();
2245 TLBMISS_HANDLER_SETUP();
2246 }
2247
2248 /* Install CPU exception handler */
2249 void set_handler(unsigned long offset, void *addr, unsigned long size)
2250 {
2251 #ifdef CONFIG_CPU_MICROMIPS
2252 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2253 #else
2254 memcpy((void *)(ebase + offset), addr, size);
2255 #endif
2256 local_flush_icache_range(ebase + offset, ebase + offset + size);
2257 }
2258
2259 static char panic_null_cerr[] =
2260 "Trying to set NULL cache error exception handler";
2261
2262 /*
2263 * Install uncached CPU exception handler.
2264 * This is suitable only for the cache error exception which is the only
2265 * exception handler that is being run uncached.
2266 */
2267 void set_uncached_handler(unsigned long offset, void *addr,
2268 unsigned long size)
2269 {
2270 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2271
2272 if (!addr)
2273 panic(panic_null_cerr);
2274
2275 memcpy((void *)(uncached_ebase + offset), addr, size);
2276 }
2277
2278 static int __initdata rdhwr_noopt;
2279 static int __init set_rdhwr_noopt(char *str)
2280 {
2281 rdhwr_noopt = 1;
2282 return 1;
2283 }
2284
2285 __setup("rdhwr_noopt", set_rdhwr_noopt);
2286
2287 void __init trap_init(void)
2288 {
2289 extern char except_vec3_generic;
2290 extern char except_vec4;
2291 extern char except_vec3_r4000;
2292 unsigned long i;
2293
2294 check_wait();
2295
2296 if (cpu_has_veic || cpu_has_vint) {
2297 unsigned long size = 0x200 + VECTORSPACING*64;
2298 phys_addr_t ebase_pa;
2299
2300 ebase = (unsigned long)
2301 __alloc_bootmem(size, 1 << fls(size), 0);
2302
2303 /*
2304 * Try to ensure ebase resides in KSeg0 if possible.
2305 *
2306 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2307 * hitting a poorly defined exception base for Cache Errors.
2308 * The allocation is likely to be in the low 512MB of physical,
2309 * in which case we should be able to convert to KSeg0.
2310 *
2311 * EVA is special though as it allows segments to be rearranged
2312 * and to become uncached during cache error handling.
2313 */
2314 ebase_pa = __pa(ebase);
2315 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2316 ebase = CKSEG0ADDR(ebase_pa);
2317 } else {
2318 ebase = CAC_BASE;
2319
2320 if (cpu_has_mips_r2_r6) {
2321 if (cpu_has_ebase_wg) {
2322 #ifdef CONFIG_64BIT
2323 ebase = (read_c0_ebase_64() & ~0xfff);
2324 #else
2325 ebase = (read_c0_ebase() & ~0xfff);
2326 #endif
2327 } else {
2328 ebase += (read_c0_ebase() & 0x3ffff000);
2329 }
2330 }
2331 }
2332
2333 if (cpu_has_mmips) {
2334 unsigned int config3 = read_c0_config3();
2335
2336 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2337 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2338 else
2339 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2340 }
2341
2342 if (board_ebase_setup)
2343 board_ebase_setup();
2344 per_cpu_trap_init(true);
2345
2346 /*
2347 * Copy the generic exception handlers to their final destination.
2348 * This will be overridden later as suitable for a particular
2349 * configuration.
2350 */
2351 set_handler(0x180, &except_vec3_generic, 0x80);
2352
2353 /*
2354 * Setup default vectors
2355 */
2356 for (i = 0; i <= 31; i++)
2357 set_except_vector(i, handle_reserved);
2358
2359 /*
2360 * Copy the EJTAG debug exception vector handler code to it's final
2361 * destination.
2362 */
2363 if (cpu_has_ejtag && board_ejtag_handler_setup)
2364 board_ejtag_handler_setup();
2365
2366 /*
2367 * Only some CPUs have the watch exceptions.
2368 */
2369 if (cpu_has_watch)
2370 set_except_vector(EXCCODE_WATCH, handle_watch);
2371
2372 /*
2373 * Initialise interrupt handlers
2374 */
2375 if (cpu_has_veic || cpu_has_vint) {
2376 int nvec = cpu_has_veic ? 64 : 8;
2377 for (i = 0; i < nvec; i++)
2378 set_vi_handler(i, NULL);
2379 }
2380 else if (cpu_has_divec)
2381 set_handler(0x200, &except_vec4, 0x8);
2382
2383 /*
2384 * Some CPUs can enable/disable for cache parity detection, but does
2385 * it different ways.
2386 */
2387 parity_protection_init();
2388
2389 /*
2390 * The Data Bus Errors / Instruction Bus Errors are signaled
2391 * by external hardware. Therefore these two exceptions
2392 * may have board specific handlers.
2393 */
2394 if (board_be_init)
2395 board_be_init();
2396
2397 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2398 rollback_handle_int : handle_int);
2399 set_except_vector(EXCCODE_MOD, handle_tlbm);
2400 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2401 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2402
2403 set_except_vector(EXCCODE_ADEL, handle_adel);
2404 set_except_vector(EXCCODE_ADES, handle_ades);
2405
2406 set_except_vector(EXCCODE_IBE, handle_ibe);
2407 set_except_vector(EXCCODE_DBE, handle_dbe);
2408
2409 set_except_vector(EXCCODE_SYS, handle_sys);
2410 set_except_vector(EXCCODE_BP, handle_bp);
2411
2412 if (rdhwr_noopt)
2413 set_except_vector(EXCCODE_RI, handle_ri);
2414 else {
2415 if (cpu_has_vtag_icache)
2416 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2417 else if (current_cpu_type() == CPU_LOONGSON3)
2418 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2419 else
2420 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2421 }
2422
2423 set_except_vector(EXCCODE_CPU, handle_cpu);
2424 set_except_vector(EXCCODE_OV, handle_ov);
2425 set_except_vector(EXCCODE_TR, handle_tr);
2426 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2427
2428 if (current_cpu_type() == CPU_R6000 ||
2429 current_cpu_type() == CPU_R6000A) {
2430 /*
2431 * The R6000 is the only R-series CPU that features a machine
2432 * check exception (similar to the R4000 cache error) and
2433 * unaligned ldc1/sdc1 exception. The handlers have not been
2434 * written yet. Well, anyway there is no R6000 machine on the
2435 * current list of targets for Linux/MIPS.
2436 * (Duh, crap, there is someone with a triple R6k machine)
2437 */
2438 //set_except_vector(14, handle_mc);
2439 //set_except_vector(15, handle_ndc);
2440 }
2441
2442
2443 if (board_nmi_handler_setup)
2444 board_nmi_handler_setup();
2445
2446 if (cpu_has_fpu && !cpu_has_nofpuex)
2447 set_except_vector(EXCCODE_FPE, handle_fpe);
2448
2449 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2450
2451 if (cpu_has_rixiex) {
2452 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2453 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2454 }
2455
2456 set_except_vector(EXCCODE_MSADIS, handle_msa);
2457 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2458
2459 if (cpu_has_mcheck)
2460 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2461
2462 if (cpu_has_mipsmt)
2463 set_except_vector(EXCCODE_THREAD, handle_mt);
2464
2465 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2466
2467 if (board_cache_error_setup)
2468 board_cache_error_setup();
2469
2470 if (cpu_has_vce)
2471 /* Special exception: R4[04]00 uses also the divec space. */
2472 set_handler(0x180, &except_vec3_r4000, 0x100);
2473 else if (cpu_has_4kex)
2474 set_handler(0x180, &except_vec3_generic, 0x80);
2475 else
2476 set_handler(0x080, &except_vec3_generic, 0x80);
2477
2478 local_flush_icache_range(ebase, ebase + 0x400);
2479
2480 sort_extable(__start___dbe_table, __stop___dbe_table);
2481
2482 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2483 }
2484
2485 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2486 void *v)
2487 {
2488 switch (cmd) {
2489 case CPU_PM_ENTER_FAILED:
2490 case CPU_PM_EXIT:
2491 configure_status();
2492 configure_hwrena();
2493 configure_exception_vector();
2494
2495 /* Restore register with CPU number for TLB handlers */
2496 TLBMISS_HANDLER_RESTORE();
2497
2498 break;
2499 }
2500
2501 return NOTIFY_OK;
2502 }
2503
2504 static struct notifier_block trap_pm_notifier_block = {
2505 .notifier_call = trap_pm_notifier,
2506 };
2507
2508 static int __init trap_pm_init(void)
2509 {
2510 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2511 }
2512 arch_initcall(trap_pm_init);