]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/kernel/traps.c
Merge tag 'sound-4.1-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[mirror_ubuntu-artful-kernel.git] / arch / mips / kernel / traps.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/smp.h>
27 #include <linux/spinlock.h>
28 #include <linux/kallsyms.h>
29 #include <linux/bootmem.h>
30 #include <linux/interrupt.h>
31 #include <linux/ptrace.h>
32 #include <linux/kgdb.h>
33 #include <linux/kdebug.h>
34 #include <linux/kprobes.h>
35 #include <linux/notifier.h>
36 #include <linux/kdb.h>
37 #include <linux/irq.h>
38 #include <linux/perf_event.h>
39
40 #include <asm/bootinfo.h>
41 #include <asm/branch.h>
42 #include <asm/break.h>
43 #include <asm/cop2.h>
44 #include <asm/cpu.h>
45 #include <asm/cpu-type.h>
46 #include <asm/dsp.h>
47 #include <asm/fpu.h>
48 #include <asm/fpu_emulator.h>
49 #include <asm/idle.h>
50 #include <asm/mips-r2-to-r6-emul.h>
51 #include <asm/mipsregs.h>
52 #include <asm/mipsmtregs.h>
53 #include <asm/module.h>
54 #include <asm/msa.h>
55 #include <asm/pgtable.h>
56 #include <asm/ptrace.h>
57 #include <asm/sections.h>
58 #include <asm/tlbdebug.h>
59 #include <asm/traps.h>
60 #include <asm/uaccess.h>
61 #include <asm/watch.h>
62 #include <asm/mmu_context.h>
63 #include <asm/types.h>
64 #include <asm/stacktrace.h>
65 #include <asm/uasm.h>
66
67 extern void check_wait(void);
68 extern asmlinkage void rollback_handle_int(void);
69 extern asmlinkage void handle_int(void);
70 extern u32 handle_tlbl[];
71 extern u32 handle_tlbs[];
72 extern u32 handle_tlbm[];
73 extern asmlinkage void handle_adel(void);
74 extern asmlinkage void handle_ades(void);
75 extern asmlinkage void handle_ibe(void);
76 extern asmlinkage void handle_dbe(void);
77 extern asmlinkage void handle_sys(void);
78 extern asmlinkage void handle_bp(void);
79 extern asmlinkage void handle_ri(void);
80 extern asmlinkage void handle_ri_rdhwr_vivt(void);
81 extern asmlinkage void handle_ri_rdhwr(void);
82 extern asmlinkage void handle_cpu(void);
83 extern asmlinkage void handle_ov(void);
84 extern asmlinkage void handle_tr(void);
85 extern asmlinkage void handle_msa_fpe(void);
86 extern asmlinkage void handle_fpe(void);
87 extern asmlinkage void handle_ftlb(void);
88 extern asmlinkage void handle_msa(void);
89 extern asmlinkage void handle_mdmx(void);
90 extern asmlinkage void handle_watch(void);
91 extern asmlinkage void handle_mt(void);
92 extern asmlinkage void handle_dsp(void);
93 extern asmlinkage void handle_mcheck(void);
94 extern asmlinkage void handle_reserved(void);
95 extern void tlb_do_page_fault_0(void);
96
97 void (*board_be_init)(void);
98 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
99 void (*board_nmi_handler_setup)(void);
100 void (*board_ejtag_handler_setup)(void);
101 void (*board_bind_eic_interrupt)(int irq, int regset);
102 void (*board_ebase_setup)(void);
103 void(*board_cache_error_setup)(void);
104
105 static void show_raw_backtrace(unsigned long reg29)
106 {
107 unsigned long *sp = (unsigned long *)(reg29 & ~3);
108 unsigned long addr;
109
110 printk("Call Trace:");
111 #ifdef CONFIG_KALLSYMS
112 printk("\n");
113 #endif
114 while (!kstack_end(sp)) {
115 unsigned long __user *p =
116 (unsigned long __user *)(unsigned long)sp++;
117 if (__get_user(addr, p)) {
118 printk(" (Bad stack address)");
119 break;
120 }
121 if (__kernel_text_address(addr))
122 print_ip_sym(addr);
123 }
124 printk("\n");
125 }
126
127 #ifdef CONFIG_KALLSYMS
128 int raw_show_trace;
129 static int __init set_raw_show_trace(char *str)
130 {
131 raw_show_trace = 1;
132 return 1;
133 }
134 __setup("raw_show_trace", set_raw_show_trace);
135 #endif
136
137 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
138 {
139 unsigned long sp = regs->regs[29];
140 unsigned long ra = regs->regs[31];
141 unsigned long pc = regs->cp0_epc;
142
143 if (!task)
144 task = current;
145
146 if (raw_show_trace || !__kernel_text_address(pc)) {
147 show_raw_backtrace(sp);
148 return;
149 }
150 printk("Call Trace:\n");
151 do {
152 print_ip_sym(pc);
153 pc = unwind_stack(task, &sp, pc, &ra);
154 } while (pc);
155 printk("\n");
156 }
157
158 /*
159 * This routine abuses get_user()/put_user() to reference pointers
160 * with at least a bit of error checking ...
161 */
162 static void show_stacktrace(struct task_struct *task,
163 const struct pt_regs *regs)
164 {
165 const int field = 2 * sizeof(unsigned long);
166 long stackdata;
167 int i;
168 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
169
170 printk("Stack :");
171 i = 0;
172 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
173 if (i && ((i % (64 / field)) == 0))
174 printk("\n ");
175 if (i > 39) {
176 printk(" ...");
177 break;
178 }
179
180 if (__get_user(stackdata, sp++)) {
181 printk(" (Bad stack address)");
182 break;
183 }
184
185 printk(" %0*lx", field, stackdata);
186 i++;
187 }
188 printk("\n");
189 show_backtrace(task, regs);
190 }
191
192 void show_stack(struct task_struct *task, unsigned long *sp)
193 {
194 struct pt_regs regs;
195 if (sp) {
196 regs.regs[29] = (unsigned long)sp;
197 regs.regs[31] = 0;
198 regs.cp0_epc = 0;
199 } else {
200 if (task && task != current) {
201 regs.regs[29] = task->thread.reg29;
202 regs.regs[31] = 0;
203 regs.cp0_epc = task->thread.reg31;
204 #ifdef CONFIG_KGDB_KDB
205 } else if (atomic_read(&kgdb_active) != -1 &&
206 kdb_current_regs) {
207 memcpy(&regs, kdb_current_regs, sizeof(regs));
208 #endif /* CONFIG_KGDB_KDB */
209 } else {
210 prepare_frametrace(&regs);
211 }
212 }
213 show_stacktrace(task, &regs);
214 }
215
216 static void show_code(unsigned int __user *pc)
217 {
218 long i;
219 unsigned short __user *pc16 = NULL;
220
221 printk("\nCode:");
222
223 if ((unsigned long)pc & 1)
224 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
225 for(i = -3 ; i < 6 ; i++) {
226 unsigned int insn;
227 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
228 printk(" (Bad address in epc)\n");
229 break;
230 }
231 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
232 }
233 }
234
235 static void __show_regs(const struct pt_regs *regs)
236 {
237 const int field = 2 * sizeof(unsigned long);
238 unsigned int cause = regs->cp0_cause;
239 int i;
240
241 show_regs_print_info(KERN_DEFAULT);
242
243 /*
244 * Saved main processor registers
245 */
246 for (i = 0; i < 32; ) {
247 if ((i % 4) == 0)
248 printk("$%2d :", i);
249 if (i == 0)
250 printk(" %0*lx", field, 0UL);
251 else if (i == 26 || i == 27)
252 printk(" %*s", field, "");
253 else
254 printk(" %0*lx", field, regs->regs[i]);
255
256 i++;
257 if ((i % 4) == 0)
258 printk("\n");
259 }
260
261 #ifdef CONFIG_CPU_HAS_SMARTMIPS
262 printk("Acx : %0*lx\n", field, regs->acx);
263 #endif
264 printk("Hi : %0*lx\n", field, regs->hi);
265 printk("Lo : %0*lx\n", field, regs->lo);
266
267 /*
268 * Saved cp0 registers
269 */
270 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
271 (void *) regs->cp0_epc);
272 printk("ra : %0*lx %pS\n", field, regs->regs[31],
273 (void *) regs->regs[31]);
274
275 printk("Status: %08x ", (uint32_t) regs->cp0_status);
276
277 if (cpu_has_3kex) {
278 if (regs->cp0_status & ST0_KUO)
279 printk("KUo ");
280 if (regs->cp0_status & ST0_IEO)
281 printk("IEo ");
282 if (regs->cp0_status & ST0_KUP)
283 printk("KUp ");
284 if (regs->cp0_status & ST0_IEP)
285 printk("IEp ");
286 if (regs->cp0_status & ST0_KUC)
287 printk("KUc ");
288 if (regs->cp0_status & ST0_IEC)
289 printk("IEc ");
290 } else if (cpu_has_4kex) {
291 if (regs->cp0_status & ST0_KX)
292 printk("KX ");
293 if (regs->cp0_status & ST0_SX)
294 printk("SX ");
295 if (regs->cp0_status & ST0_UX)
296 printk("UX ");
297 switch (regs->cp0_status & ST0_KSU) {
298 case KSU_USER:
299 printk("USER ");
300 break;
301 case KSU_SUPERVISOR:
302 printk("SUPERVISOR ");
303 break;
304 case KSU_KERNEL:
305 printk("KERNEL ");
306 break;
307 default:
308 printk("BAD_MODE ");
309 break;
310 }
311 if (regs->cp0_status & ST0_ERL)
312 printk("ERL ");
313 if (regs->cp0_status & ST0_EXL)
314 printk("EXL ");
315 if (regs->cp0_status & ST0_IE)
316 printk("IE ");
317 }
318 printk("\n");
319
320 printk("Cause : %08x\n", cause);
321
322 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
323 if (1 <= cause && cause <= 5)
324 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
325
326 printk("PrId : %08x (%s)\n", read_c0_prid(),
327 cpu_name_string());
328 }
329
330 /*
331 * FIXME: really the generic show_regs should take a const pointer argument.
332 */
333 void show_regs(struct pt_regs *regs)
334 {
335 __show_regs((struct pt_regs *)regs);
336 }
337
338 void show_registers(struct pt_regs *regs)
339 {
340 const int field = 2 * sizeof(unsigned long);
341 mm_segment_t old_fs = get_fs();
342
343 __show_regs(regs);
344 print_modules();
345 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
346 current->comm, current->pid, current_thread_info(), current,
347 field, current_thread_info()->tp_value);
348 if (cpu_has_userlocal) {
349 unsigned long tls;
350
351 tls = read_c0_userlocal();
352 if (tls != current_thread_info()->tp_value)
353 printk("*HwTLS: %0*lx\n", field, tls);
354 }
355
356 if (!user_mode(regs))
357 /* Necessary for getting the correct stack content */
358 set_fs(KERNEL_DS);
359 show_stacktrace(current, regs);
360 show_code((unsigned int __user *) regs->cp0_epc);
361 printk("\n");
362 set_fs(old_fs);
363 }
364
365 static int regs_to_trapnr(struct pt_regs *regs)
366 {
367 return (regs->cp0_cause >> 2) & 0x1f;
368 }
369
370 static DEFINE_RAW_SPINLOCK(die_lock);
371
372 void __noreturn die(const char *str, struct pt_regs *regs)
373 {
374 static int die_counter;
375 int sig = SIGSEGV;
376
377 oops_enter();
378
379 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
380 SIGSEGV) == NOTIFY_STOP)
381 sig = 0;
382
383 console_verbose();
384 raw_spin_lock_irq(&die_lock);
385 bust_spinlocks(1);
386
387 printk("%s[#%d]:\n", str, ++die_counter);
388 show_registers(regs);
389 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
390 raw_spin_unlock_irq(&die_lock);
391
392 oops_exit();
393
394 if (in_interrupt())
395 panic("Fatal exception in interrupt");
396
397 if (panic_on_oops) {
398 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
399 ssleep(5);
400 panic("Fatal exception");
401 }
402
403 if (regs && kexec_should_crash(current))
404 crash_kexec(regs);
405
406 do_exit(sig);
407 }
408
409 extern struct exception_table_entry __start___dbe_table[];
410 extern struct exception_table_entry __stop___dbe_table[];
411
412 __asm__(
413 " .section __dbe_table, \"a\"\n"
414 " .previous \n");
415
416 /* Given an address, look for it in the exception tables. */
417 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
418 {
419 const struct exception_table_entry *e;
420
421 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
422 if (!e)
423 e = search_module_dbetables(addr);
424 return e;
425 }
426
427 asmlinkage void do_be(struct pt_regs *regs)
428 {
429 const int field = 2 * sizeof(unsigned long);
430 const struct exception_table_entry *fixup = NULL;
431 int data = regs->cp0_cause & 4;
432 int action = MIPS_BE_FATAL;
433 enum ctx_state prev_state;
434
435 prev_state = exception_enter();
436 /* XXX For now. Fixme, this searches the wrong table ... */
437 if (data && !user_mode(regs))
438 fixup = search_dbe_tables(exception_epc(regs));
439
440 if (fixup)
441 action = MIPS_BE_FIXUP;
442
443 if (board_be_handler)
444 action = board_be_handler(regs, fixup != NULL);
445
446 switch (action) {
447 case MIPS_BE_DISCARD:
448 goto out;
449 case MIPS_BE_FIXUP:
450 if (fixup) {
451 regs->cp0_epc = fixup->nextinsn;
452 goto out;
453 }
454 break;
455 default:
456 break;
457 }
458
459 /*
460 * Assume it would be too dangerous to continue ...
461 */
462 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
463 data ? "Data" : "Instruction",
464 field, regs->cp0_epc, field, regs->regs[31]);
465 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
466 SIGBUS) == NOTIFY_STOP)
467 goto out;
468
469 die_if_kernel("Oops", regs);
470 force_sig(SIGBUS, current);
471
472 out:
473 exception_exit(prev_state);
474 }
475
476 /*
477 * ll/sc, rdhwr, sync emulation
478 */
479
480 #define OPCODE 0xfc000000
481 #define BASE 0x03e00000
482 #define RT 0x001f0000
483 #define OFFSET 0x0000ffff
484 #define LL 0xc0000000
485 #define SC 0xe0000000
486 #define SPEC0 0x00000000
487 #define SPEC3 0x7c000000
488 #define RD 0x0000f800
489 #define FUNC 0x0000003f
490 #define SYNC 0x0000000f
491 #define RDHWR 0x0000003b
492
493 /* microMIPS definitions */
494 #define MM_POOL32A_FUNC 0xfc00ffff
495 #define MM_RDHWR 0x00006b3c
496 #define MM_RS 0x001f0000
497 #define MM_RT 0x03e00000
498
499 /*
500 * The ll_bit is cleared by r*_switch.S
501 */
502
503 unsigned int ll_bit;
504 struct task_struct *ll_task;
505
506 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
507 {
508 unsigned long value, __user *vaddr;
509 long offset;
510
511 /*
512 * analyse the ll instruction that just caused a ri exception
513 * and put the referenced address to addr.
514 */
515
516 /* sign extend offset */
517 offset = opcode & OFFSET;
518 offset <<= 16;
519 offset >>= 16;
520
521 vaddr = (unsigned long __user *)
522 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
523
524 if ((unsigned long)vaddr & 3)
525 return SIGBUS;
526 if (get_user(value, vaddr))
527 return SIGSEGV;
528
529 preempt_disable();
530
531 if (ll_task == NULL || ll_task == current) {
532 ll_bit = 1;
533 } else {
534 ll_bit = 0;
535 }
536 ll_task = current;
537
538 preempt_enable();
539
540 regs->regs[(opcode & RT) >> 16] = value;
541
542 return 0;
543 }
544
545 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
546 {
547 unsigned long __user *vaddr;
548 unsigned long reg;
549 long offset;
550
551 /*
552 * analyse the sc instruction that just caused a ri exception
553 * and put the referenced address to addr.
554 */
555
556 /* sign extend offset */
557 offset = opcode & OFFSET;
558 offset <<= 16;
559 offset >>= 16;
560
561 vaddr = (unsigned long __user *)
562 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
563 reg = (opcode & RT) >> 16;
564
565 if ((unsigned long)vaddr & 3)
566 return SIGBUS;
567
568 preempt_disable();
569
570 if (ll_bit == 0 || ll_task != current) {
571 regs->regs[reg] = 0;
572 preempt_enable();
573 return 0;
574 }
575
576 preempt_enable();
577
578 if (put_user(regs->regs[reg], vaddr))
579 return SIGSEGV;
580
581 regs->regs[reg] = 1;
582
583 return 0;
584 }
585
586 /*
587 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
588 * opcodes are supposed to result in coprocessor unusable exceptions if
589 * executed on ll/sc-less processors. That's the theory. In practice a
590 * few processors such as NEC's VR4100 throw reserved instruction exceptions
591 * instead, so we're doing the emulation thing in both exception handlers.
592 */
593 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
594 {
595 if ((opcode & OPCODE) == LL) {
596 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
597 1, regs, 0);
598 return simulate_ll(regs, opcode);
599 }
600 if ((opcode & OPCODE) == SC) {
601 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
602 1, regs, 0);
603 return simulate_sc(regs, opcode);
604 }
605
606 return -1; /* Must be something else ... */
607 }
608
609 /*
610 * Simulate trapping 'rdhwr' instructions to provide user accessible
611 * registers not implemented in hardware.
612 */
613 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
614 {
615 struct thread_info *ti = task_thread_info(current);
616
617 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
618 1, regs, 0);
619 switch (rd) {
620 case 0: /* CPU number */
621 regs->regs[rt] = smp_processor_id();
622 return 0;
623 case 1: /* SYNCI length */
624 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
625 current_cpu_data.icache.linesz);
626 return 0;
627 case 2: /* Read count register */
628 regs->regs[rt] = read_c0_count();
629 return 0;
630 case 3: /* Count register resolution */
631 switch (current_cpu_type()) {
632 case CPU_20KC:
633 case CPU_25KF:
634 regs->regs[rt] = 1;
635 break;
636 default:
637 regs->regs[rt] = 2;
638 }
639 return 0;
640 case 29:
641 regs->regs[rt] = ti->tp_value;
642 return 0;
643 default:
644 return -1;
645 }
646 }
647
648 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
649 {
650 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
651 int rd = (opcode & RD) >> 11;
652 int rt = (opcode & RT) >> 16;
653
654 simulate_rdhwr(regs, rd, rt);
655 return 0;
656 }
657
658 /* Not ours. */
659 return -1;
660 }
661
662 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
663 {
664 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
665 int rd = (opcode & MM_RS) >> 16;
666 int rt = (opcode & MM_RT) >> 21;
667 simulate_rdhwr(regs, rd, rt);
668 return 0;
669 }
670
671 /* Not ours. */
672 return -1;
673 }
674
675 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
676 {
677 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
678 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
679 1, regs, 0);
680 return 0;
681 }
682
683 return -1; /* Must be something else ... */
684 }
685
686 asmlinkage void do_ov(struct pt_regs *regs)
687 {
688 enum ctx_state prev_state;
689 siginfo_t info;
690
691 prev_state = exception_enter();
692 die_if_kernel("Integer overflow", regs);
693
694 info.si_code = FPE_INTOVF;
695 info.si_signo = SIGFPE;
696 info.si_errno = 0;
697 info.si_addr = (void __user *) regs->cp0_epc;
698 force_sig_info(SIGFPE, &info, current);
699 exception_exit(prev_state);
700 }
701
702 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
703 {
704 struct siginfo si = { 0 };
705
706 switch (sig) {
707 case 0:
708 return 0;
709
710 case SIGFPE:
711 si.si_addr = fault_addr;
712 si.si_signo = sig;
713 /*
714 * Inexact can happen together with Overflow or Underflow.
715 * Respect the mask to deliver the correct exception.
716 */
717 fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
718 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
719 if (fcr31 & FPU_CSR_INV_X)
720 si.si_code = FPE_FLTINV;
721 else if (fcr31 & FPU_CSR_DIV_X)
722 si.si_code = FPE_FLTDIV;
723 else if (fcr31 & FPU_CSR_OVF_X)
724 si.si_code = FPE_FLTOVF;
725 else if (fcr31 & FPU_CSR_UDF_X)
726 si.si_code = FPE_FLTUND;
727 else if (fcr31 & FPU_CSR_INE_X)
728 si.si_code = FPE_FLTRES;
729 else
730 si.si_code = __SI_FAULT;
731 force_sig_info(sig, &si, current);
732 return 1;
733
734 case SIGBUS:
735 si.si_addr = fault_addr;
736 si.si_signo = sig;
737 si.si_code = BUS_ADRERR;
738 force_sig_info(sig, &si, current);
739 return 1;
740
741 case SIGSEGV:
742 si.si_addr = fault_addr;
743 si.si_signo = sig;
744 down_read(&current->mm->mmap_sem);
745 if (find_vma(current->mm, (unsigned long)fault_addr))
746 si.si_code = SEGV_ACCERR;
747 else
748 si.si_code = SEGV_MAPERR;
749 up_read(&current->mm->mmap_sem);
750 force_sig_info(sig, &si, current);
751 return 1;
752
753 default:
754 force_sig(sig, current);
755 return 1;
756 }
757 }
758
759 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
760 unsigned long old_epc, unsigned long old_ra)
761 {
762 union mips_instruction inst = { .word = opcode };
763 void __user *fault_addr;
764 unsigned long fcr31;
765 int sig;
766
767 /* If it's obviously not an FP instruction, skip it */
768 switch (inst.i_format.opcode) {
769 case cop1_op:
770 case cop1x_op:
771 case lwc1_op:
772 case ldc1_op:
773 case swc1_op:
774 case sdc1_op:
775 break;
776
777 default:
778 return -1;
779 }
780
781 /*
782 * do_ri skipped over the instruction via compute_return_epc, undo
783 * that for the FPU emulator.
784 */
785 regs->cp0_epc = old_epc;
786 regs->regs[31] = old_ra;
787
788 /* Save the FP context to struct thread_struct */
789 lose_fpu(1);
790
791 /* Run the emulator */
792 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
793 &fault_addr);
794 fcr31 = current->thread.fpu.fcr31;
795
796 /*
797 * We can't allow the emulated instruction to leave any of
798 * the cause bits set in $fcr31.
799 */
800 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
801
802 /* Restore the hardware register state */
803 own_fpu(1);
804
805 /* Send a signal if required. */
806 process_fpemu_return(sig, fault_addr, fcr31);
807
808 return 0;
809 }
810
811 /*
812 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
813 */
814 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
815 {
816 enum ctx_state prev_state;
817 void __user *fault_addr;
818 int sig;
819
820 prev_state = exception_enter();
821 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
822 SIGFPE) == NOTIFY_STOP)
823 goto out;
824
825 /* Clear FCSR.Cause before enabling interrupts */
826 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
827 local_irq_enable();
828
829 die_if_kernel("FP exception in kernel code", regs);
830
831 if (fcr31 & FPU_CSR_UNI_X) {
832 /*
833 * Unimplemented operation exception. If we've got the full
834 * software emulator on-board, let's use it...
835 *
836 * Force FPU to dump state into task/thread context. We're
837 * moving a lot of data here for what is probably a single
838 * instruction, but the alternative is to pre-decode the FP
839 * register operands before invoking the emulator, which seems
840 * a bit extreme for what should be an infrequent event.
841 */
842 /* Ensure 'resume' not overwrite saved fp context again. */
843 lose_fpu(1);
844
845 /* Run the emulator */
846 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
847 &fault_addr);
848 fcr31 = current->thread.fpu.fcr31;
849
850 /*
851 * We can't allow the emulated instruction to leave any of
852 * the cause bits set in $fcr31.
853 */
854 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
855
856 /* Restore the hardware register state */
857 own_fpu(1); /* Using the FPU again. */
858 } else {
859 sig = SIGFPE;
860 fault_addr = (void __user *) regs->cp0_epc;
861 }
862
863 /* Send a signal if required. */
864 process_fpemu_return(sig, fault_addr, fcr31);
865
866 out:
867 exception_exit(prev_state);
868 }
869
870 void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
871 const char *str)
872 {
873 siginfo_t info;
874 char b[40];
875
876 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
877 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
878 return;
879 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
880
881 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
882 SIGTRAP) == NOTIFY_STOP)
883 return;
884
885 /*
886 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
887 * insns, even for trap and break codes that indicate arithmetic
888 * failures. Weird ...
889 * But should we continue the brokenness??? --macro
890 */
891 switch (code) {
892 case BRK_OVERFLOW:
893 case BRK_DIVZERO:
894 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
895 die_if_kernel(b, regs);
896 if (code == BRK_DIVZERO)
897 info.si_code = FPE_INTDIV;
898 else
899 info.si_code = FPE_INTOVF;
900 info.si_signo = SIGFPE;
901 info.si_errno = 0;
902 info.si_addr = (void __user *) regs->cp0_epc;
903 force_sig_info(SIGFPE, &info, current);
904 break;
905 case BRK_BUG:
906 die_if_kernel("Kernel bug detected", regs);
907 force_sig(SIGTRAP, current);
908 break;
909 case BRK_MEMU:
910 /*
911 * This breakpoint code is used by the FPU emulator to retake
912 * control of the CPU after executing the instruction from the
913 * delay slot of an emulated branch.
914 *
915 * Terminate if exception was recognized as a delay slot return
916 * otherwise handle as normal.
917 */
918 if (do_dsemulret(regs))
919 return;
920
921 die_if_kernel("Math emu break/trap", regs);
922 force_sig(SIGTRAP, current);
923 break;
924 default:
925 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
926 die_if_kernel(b, regs);
927 force_sig(SIGTRAP, current);
928 }
929 }
930
931 asmlinkage void do_bp(struct pt_regs *regs)
932 {
933 unsigned long epc = msk_isa16_mode(exception_epc(regs));
934 unsigned int opcode, bcode;
935 enum ctx_state prev_state;
936 mm_segment_t seg;
937
938 seg = get_fs();
939 if (!user_mode(regs))
940 set_fs(KERNEL_DS);
941
942 prev_state = exception_enter();
943 if (get_isa16_mode(regs->cp0_epc)) {
944 u16 instr[2];
945
946 if (__get_user(instr[0], (u16 __user *)epc))
947 goto out_sigsegv;
948
949 if (!cpu_has_mmips) {
950 /* MIPS16e mode */
951 bcode = (instr[0] >> 5) & 0x3f;
952 } else if (mm_insn_16bit(instr[0])) {
953 /* 16-bit microMIPS BREAK */
954 bcode = instr[0] & 0xf;
955 } else {
956 /* 32-bit microMIPS BREAK */
957 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
958 goto out_sigsegv;
959 opcode = (instr[0] << 16) | instr[1];
960 bcode = (opcode >> 6) & ((1 << 20) - 1);
961 }
962 } else {
963 if (__get_user(opcode, (unsigned int __user *)epc))
964 goto out_sigsegv;
965 bcode = (opcode >> 6) & ((1 << 20) - 1);
966 }
967
968 /*
969 * There is the ancient bug in the MIPS assemblers that the break
970 * code starts left to bit 16 instead to bit 6 in the opcode.
971 * Gas is bug-compatible, but not always, grrr...
972 * We handle both cases with a simple heuristics. --macro
973 */
974 if (bcode >= (1 << 10))
975 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
976
977 /*
978 * notify the kprobe handlers, if instruction is likely to
979 * pertain to them.
980 */
981 switch (bcode) {
982 case BRK_KPROBE_BP:
983 if (notify_die(DIE_BREAK, "debug", regs, bcode,
984 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
985 goto out;
986 else
987 break;
988 case BRK_KPROBE_SSTEPBP:
989 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
990 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
991 goto out;
992 else
993 break;
994 default:
995 break;
996 }
997
998 do_trap_or_bp(regs, bcode, "Break");
999
1000 out:
1001 set_fs(seg);
1002 exception_exit(prev_state);
1003 return;
1004
1005 out_sigsegv:
1006 force_sig(SIGSEGV, current);
1007 goto out;
1008 }
1009
1010 asmlinkage void do_tr(struct pt_regs *regs)
1011 {
1012 u32 opcode, tcode = 0;
1013 enum ctx_state prev_state;
1014 u16 instr[2];
1015 mm_segment_t seg;
1016 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1017
1018 seg = get_fs();
1019 if (!user_mode(regs))
1020 set_fs(get_ds());
1021
1022 prev_state = exception_enter();
1023 if (get_isa16_mode(regs->cp0_epc)) {
1024 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1025 __get_user(instr[1], (u16 __user *)(epc + 2)))
1026 goto out_sigsegv;
1027 opcode = (instr[0] << 16) | instr[1];
1028 /* Immediate versions don't provide a code. */
1029 if (!(opcode & OPCODE))
1030 tcode = (opcode >> 12) & ((1 << 4) - 1);
1031 } else {
1032 if (__get_user(opcode, (u32 __user *)epc))
1033 goto out_sigsegv;
1034 /* Immediate versions don't provide a code. */
1035 if (!(opcode & OPCODE))
1036 tcode = (opcode >> 6) & ((1 << 10) - 1);
1037 }
1038
1039 do_trap_or_bp(regs, tcode, "Trap");
1040
1041 out:
1042 set_fs(seg);
1043 exception_exit(prev_state);
1044 return;
1045
1046 out_sigsegv:
1047 force_sig(SIGSEGV, current);
1048 goto out;
1049 }
1050
1051 asmlinkage void do_ri(struct pt_regs *regs)
1052 {
1053 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1054 unsigned long old_epc = regs->cp0_epc;
1055 unsigned long old31 = regs->regs[31];
1056 enum ctx_state prev_state;
1057 unsigned int opcode = 0;
1058 int status = -1;
1059
1060 /*
1061 * Avoid any kernel code. Just emulate the R2 instruction
1062 * as quickly as possible.
1063 */
1064 if (mipsr2_emulation && cpu_has_mips_r6 &&
1065 likely(user_mode(regs)) &&
1066 likely(get_user(opcode, epc) >= 0)) {
1067 unsigned long fcr31 = 0;
1068
1069 status = mipsr2_decoder(regs, opcode, &fcr31);
1070 switch (status) {
1071 case 0:
1072 case SIGEMT:
1073 task_thread_info(current)->r2_emul_return = 1;
1074 return;
1075 case SIGILL:
1076 goto no_r2_instr;
1077 default:
1078 process_fpemu_return(status,
1079 &current->thread.cp0_baduaddr,
1080 fcr31);
1081 task_thread_info(current)->r2_emul_return = 1;
1082 return;
1083 }
1084 }
1085
1086 no_r2_instr:
1087
1088 prev_state = exception_enter();
1089
1090 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
1091 SIGILL) == NOTIFY_STOP)
1092 goto out;
1093
1094 die_if_kernel("Reserved instruction in kernel code", regs);
1095
1096 if (unlikely(compute_return_epc(regs) < 0))
1097 goto out;
1098
1099 if (get_isa16_mode(regs->cp0_epc)) {
1100 unsigned short mmop[2] = { 0 };
1101
1102 if (unlikely(get_user(mmop[0], epc) < 0))
1103 status = SIGSEGV;
1104 if (unlikely(get_user(mmop[1], epc) < 0))
1105 status = SIGSEGV;
1106 opcode = (mmop[0] << 16) | mmop[1];
1107
1108 if (status < 0)
1109 status = simulate_rdhwr_mm(regs, opcode);
1110 } else {
1111 if (unlikely(get_user(opcode, epc) < 0))
1112 status = SIGSEGV;
1113
1114 if (!cpu_has_llsc && status < 0)
1115 status = simulate_llsc(regs, opcode);
1116
1117 if (status < 0)
1118 status = simulate_rdhwr_normal(regs, opcode);
1119
1120 if (status < 0)
1121 status = simulate_sync(regs, opcode);
1122
1123 if (status < 0)
1124 status = simulate_fp(regs, opcode, old_epc, old31);
1125 }
1126
1127 if (status < 0)
1128 status = SIGILL;
1129
1130 if (unlikely(status > 0)) {
1131 regs->cp0_epc = old_epc; /* Undo skip-over. */
1132 regs->regs[31] = old31;
1133 force_sig(status, current);
1134 }
1135
1136 out:
1137 exception_exit(prev_state);
1138 }
1139
1140 /*
1141 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1142 * emulated more than some threshold number of instructions, force migration to
1143 * a "CPU" that has FP support.
1144 */
1145 static void mt_ase_fp_affinity(void)
1146 {
1147 #ifdef CONFIG_MIPS_MT_FPAFF
1148 if (mt_fpemul_threshold > 0 &&
1149 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1150 /*
1151 * If there's no FPU present, or if the application has already
1152 * restricted the allowed set to exclude any CPUs with FPUs,
1153 * we'll skip the procedure.
1154 */
1155 if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1156 cpumask_t tmask;
1157
1158 current->thread.user_cpus_allowed
1159 = current->cpus_allowed;
1160 cpumask_and(&tmask, &current->cpus_allowed,
1161 &mt_fpu_cpumask);
1162 set_cpus_allowed_ptr(current, &tmask);
1163 set_thread_flag(TIF_FPUBOUND);
1164 }
1165 }
1166 #endif /* CONFIG_MIPS_MT_FPAFF */
1167 }
1168
1169 /*
1170 * No lock; only written during early bootup by CPU 0.
1171 */
1172 static RAW_NOTIFIER_HEAD(cu2_chain);
1173
1174 int __ref register_cu2_notifier(struct notifier_block *nb)
1175 {
1176 return raw_notifier_chain_register(&cu2_chain, nb);
1177 }
1178
1179 int cu2_notifier_call_chain(unsigned long val, void *v)
1180 {
1181 return raw_notifier_call_chain(&cu2_chain, val, v);
1182 }
1183
1184 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1185 void *data)
1186 {
1187 struct pt_regs *regs = data;
1188
1189 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1190 "instruction", regs);
1191 force_sig(SIGILL, current);
1192
1193 return NOTIFY_OK;
1194 }
1195
1196 static int wait_on_fp_mode_switch(atomic_t *p)
1197 {
1198 /*
1199 * The FP mode for this task is currently being switched. That may
1200 * involve modifications to the format of this tasks FP context which
1201 * make it unsafe to proceed with execution for the moment. Instead,
1202 * schedule some other task.
1203 */
1204 schedule();
1205 return 0;
1206 }
1207
1208 static int enable_restore_fp_context(int msa)
1209 {
1210 int err, was_fpu_owner, prior_msa;
1211
1212 /*
1213 * If an FP mode switch is currently underway, wait for it to
1214 * complete before proceeding.
1215 */
1216 wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1217 wait_on_fp_mode_switch, TASK_KILLABLE);
1218
1219 if (!used_math()) {
1220 /* First time FP context user. */
1221 preempt_disable();
1222 err = init_fpu();
1223 if (msa && !err) {
1224 enable_msa();
1225 _init_msa_upper();
1226 set_thread_flag(TIF_USEDMSA);
1227 set_thread_flag(TIF_MSA_CTX_LIVE);
1228 }
1229 preempt_enable();
1230 if (!err)
1231 set_used_math();
1232 return err;
1233 }
1234
1235 /*
1236 * This task has formerly used the FP context.
1237 *
1238 * If this thread has no live MSA vector context then we can simply
1239 * restore the scalar FP context. If it has live MSA vector context
1240 * (that is, it has or may have used MSA since last performing a
1241 * function call) then we'll need to restore the vector context. This
1242 * applies even if we're currently only executing a scalar FP
1243 * instruction. This is because if we were to later execute an MSA
1244 * instruction then we'd either have to:
1245 *
1246 * - Restore the vector context & clobber any registers modified by
1247 * scalar FP instructions between now & then.
1248 *
1249 * or
1250 *
1251 * - Not restore the vector context & lose the most significant bits
1252 * of all vector registers.
1253 *
1254 * Neither of those options is acceptable. We cannot restore the least
1255 * significant bits of the registers now & only restore the most
1256 * significant bits later because the most significant bits of any
1257 * vector registers whose aliased FP register is modified now will have
1258 * been zeroed. We'd have no way to know that when restoring the vector
1259 * context & thus may load an outdated value for the most significant
1260 * bits of a vector register.
1261 */
1262 if (!msa && !thread_msa_context_live())
1263 return own_fpu(1);
1264
1265 /*
1266 * This task is using or has previously used MSA. Thus we require
1267 * that Status.FR == 1.
1268 */
1269 preempt_disable();
1270 was_fpu_owner = is_fpu_owner();
1271 err = own_fpu_inatomic(0);
1272 if (err)
1273 goto out;
1274
1275 enable_msa();
1276 write_msa_csr(current->thread.fpu.msacsr);
1277 set_thread_flag(TIF_USEDMSA);
1278
1279 /*
1280 * If this is the first time that the task is using MSA and it has
1281 * previously used scalar FP in this time slice then we already nave
1282 * FP context which we shouldn't clobber. We do however need to clear
1283 * the upper 64b of each vector register so that this task has no
1284 * opportunity to see data left behind by another.
1285 */
1286 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1287 if (!prior_msa && was_fpu_owner) {
1288 _init_msa_upper();
1289
1290 goto out;
1291 }
1292
1293 if (!prior_msa) {
1294 /*
1295 * Restore the least significant 64b of each vector register
1296 * from the existing scalar FP context.
1297 */
1298 _restore_fp(current);
1299
1300 /*
1301 * The task has not formerly used MSA, so clear the upper 64b
1302 * of each vector register such that it cannot see data left
1303 * behind by another task.
1304 */
1305 _init_msa_upper();
1306 } else {
1307 /* We need to restore the vector context. */
1308 restore_msa(current);
1309
1310 /* Restore the scalar FP control & status register */
1311 if (!was_fpu_owner)
1312 write_32bit_cp1_register(CP1_STATUS,
1313 current->thread.fpu.fcr31);
1314 }
1315
1316 out:
1317 preempt_enable();
1318
1319 return 0;
1320 }
1321
1322 asmlinkage void do_cpu(struct pt_regs *regs)
1323 {
1324 enum ctx_state prev_state;
1325 unsigned int __user *epc;
1326 unsigned long old_epc, old31;
1327 void __user *fault_addr;
1328 unsigned int opcode;
1329 unsigned long fcr31;
1330 unsigned int cpid;
1331 int status, err;
1332 unsigned long __maybe_unused flags;
1333 int sig;
1334
1335 prev_state = exception_enter();
1336 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1337
1338 if (cpid != 2)
1339 die_if_kernel("do_cpu invoked from kernel context!", regs);
1340
1341 switch (cpid) {
1342 case 0:
1343 epc = (unsigned int __user *)exception_epc(regs);
1344 old_epc = regs->cp0_epc;
1345 old31 = regs->regs[31];
1346 opcode = 0;
1347 status = -1;
1348
1349 if (unlikely(compute_return_epc(regs) < 0))
1350 break;
1351
1352 if (get_isa16_mode(regs->cp0_epc)) {
1353 unsigned short mmop[2] = { 0 };
1354
1355 if (unlikely(get_user(mmop[0], epc) < 0))
1356 status = SIGSEGV;
1357 if (unlikely(get_user(mmop[1], epc) < 0))
1358 status = SIGSEGV;
1359 opcode = (mmop[0] << 16) | mmop[1];
1360
1361 if (status < 0)
1362 status = simulate_rdhwr_mm(regs, opcode);
1363 } else {
1364 if (unlikely(get_user(opcode, epc) < 0))
1365 status = SIGSEGV;
1366
1367 if (!cpu_has_llsc && status < 0)
1368 status = simulate_llsc(regs, opcode);
1369
1370 if (status < 0)
1371 status = simulate_rdhwr_normal(regs, opcode);
1372 }
1373
1374 if (status < 0)
1375 status = SIGILL;
1376
1377 if (unlikely(status > 0)) {
1378 regs->cp0_epc = old_epc; /* Undo skip-over. */
1379 regs->regs[31] = old31;
1380 force_sig(status, current);
1381 }
1382
1383 break;
1384
1385 case 3:
1386 /*
1387 * The COP3 opcode space and consequently the CP0.Status.CU3
1388 * bit and the CP0.Cause.CE=3 encoding have been removed as
1389 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1390 * up the space has been reused for COP1X instructions, that
1391 * are enabled by the CP0.Status.CU1 bit and consequently
1392 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1393 * exceptions. Some FPU-less processors that implement one
1394 * of these ISAs however use this code erroneously for COP1X
1395 * instructions. Therefore we redirect this trap to the FP
1396 * emulator too.
1397 */
1398 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1399 force_sig(SIGILL, current);
1400 break;
1401 }
1402 /* Fall through. */
1403
1404 case 1:
1405 err = enable_restore_fp_context(0);
1406
1407 if (raw_cpu_has_fpu && !err)
1408 break;
1409
1410 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1411 &fault_addr);
1412 fcr31 = current->thread.fpu.fcr31;
1413
1414 /*
1415 * We can't allow the emulated instruction to leave
1416 * any of the cause bits set in $fcr31.
1417 */
1418 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1419
1420 /* Send a signal if required. */
1421 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1422 mt_ase_fp_affinity();
1423
1424 break;
1425
1426 case 2:
1427 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1428 break;
1429 }
1430
1431 exception_exit(prev_state);
1432 }
1433
1434 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1435 {
1436 enum ctx_state prev_state;
1437
1438 prev_state = exception_enter();
1439 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1440 regs_to_trapnr(regs), SIGFPE) == NOTIFY_STOP)
1441 goto out;
1442
1443 /* Clear MSACSR.Cause before enabling interrupts */
1444 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1445 local_irq_enable();
1446
1447 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1448 force_sig(SIGFPE, current);
1449 out:
1450 exception_exit(prev_state);
1451 }
1452
1453 asmlinkage void do_msa(struct pt_regs *regs)
1454 {
1455 enum ctx_state prev_state;
1456 int err;
1457
1458 prev_state = exception_enter();
1459
1460 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1461 force_sig(SIGILL, current);
1462 goto out;
1463 }
1464
1465 die_if_kernel("do_msa invoked from kernel context!", regs);
1466
1467 err = enable_restore_fp_context(1);
1468 if (err)
1469 force_sig(SIGILL, current);
1470 out:
1471 exception_exit(prev_state);
1472 }
1473
1474 asmlinkage void do_mdmx(struct pt_regs *regs)
1475 {
1476 enum ctx_state prev_state;
1477
1478 prev_state = exception_enter();
1479 force_sig(SIGILL, current);
1480 exception_exit(prev_state);
1481 }
1482
1483 /*
1484 * Called with interrupts disabled.
1485 */
1486 asmlinkage void do_watch(struct pt_regs *regs)
1487 {
1488 enum ctx_state prev_state;
1489 u32 cause;
1490
1491 prev_state = exception_enter();
1492 /*
1493 * Clear WP (bit 22) bit of cause register so we don't loop
1494 * forever.
1495 */
1496 cause = read_c0_cause();
1497 cause &= ~(1 << 22);
1498 write_c0_cause(cause);
1499
1500 /*
1501 * If the current thread has the watch registers loaded, save
1502 * their values and send SIGTRAP. Otherwise another thread
1503 * left the registers set, clear them and continue.
1504 */
1505 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1506 mips_read_watch_registers();
1507 local_irq_enable();
1508 force_sig(SIGTRAP, current);
1509 } else {
1510 mips_clear_watch_registers();
1511 local_irq_enable();
1512 }
1513 exception_exit(prev_state);
1514 }
1515
1516 asmlinkage void do_mcheck(struct pt_regs *regs)
1517 {
1518 const int field = 2 * sizeof(unsigned long);
1519 int multi_match = regs->cp0_status & ST0_TS;
1520 enum ctx_state prev_state;
1521
1522 prev_state = exception_enter();
1523 show_regs(regs);
1524
1525 if (multi_match) {
1526 pr_err("Index : %0x\n", read_c0_index());
1527 pr_err("Pagemask: %0x\n", read_c0_pagemask());
1528 pr_err("EntryHi : %0*lx\n", field, read_c0_entryhi());
1529 pr_err("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1530 pr_err("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1531 pr_err("Wired : %0x\n", read_c0_wired());
1532 pr_err("Pagegrain: %0x\n", read_c0_pagegrain());
1533 if (cpu_has_htw) {
1534 pr_err("PWField : %0*lx\n", field, read_c0_pwfield());
1535 pr_err("PWSize : %0*lx\n", field, read_c0_pwsize());
1536 pr_err("PWCtl : %0x\n", read_c0_pwctl());
1537 }
1538 pr_err("\n");
1539 dump_tlb_all();
1540 }
1541
1542 show_code((unsigned int __user *) regs->cp0_epc);
1543
1544 /*
1545 * Some chips may have other causes of machine check (e.g. SB1
1546 * graduation timer)
1547 */
1548 panic("Caught Machine Check exception - %scaused by multiple "
1549 "matching entries in the TLB.",
1550 (multi_match) ? "" : "not ");
1551 }
1552
1553 asmlinkage void do_mt(struct pt_regs *regs)
1554 {
1555 int subcode;
1556
1557 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1558 >> VPECONTROL_EXCPT_SHIFT;
1559 switch (subcode) {
1560 case 0:
1561 printk(KERN_DEBUG "Thread Underflow\n");
1562 break;
1563 case 1:
1564 printk(KERN_DEBUG "Thread Overflow\n");
1565 break;
1566 case 2:
1567 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1568 break;
1569 case 3:
1570 printk(KERN_DEBUG "Gating Storage Exception\n");
1571 break;
1572 case 4:
1573 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1574 break;
1575 case 5:
1576 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1577 break;
1578 default:
1579 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1580 subcode);
1581 break;
1582 }
1583 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1584
1585 force_sig(SIGILL, current);
1586 }
1587
1588
1589 asmlinkage void do_dsp(struct pt_regs *regs)
1590 {
1591 if (cpu_has_dsp)
1592 panic("Unexpected DSP exception");
1593
1594 force_sig(SIGILL, current);
1595 }
1596
1597 asmlinkage void do_reserved(struct pt_regs *regs)
1598 {
1599 /*
1600 * Game over - no way to handle this if it ever occurs. Most probably
1601 * caused by a new unknown cpu type or after another deadly
1602 * hard/software error.
1603 */
1604 show_regs(regs);
1605 panic("Caught reserved exception %ld - should not happen.",
1606 (regs->cp0_cause & 0x7f) >> 2);
1607 }
1608
1609 static int __initdata l1parity = 1;
1610 static int __init nol1parity(char *s)
1611 {
1612 l1parity = 0;
1613 return 1;
1614 }
1615 __setup("nol1par", nol1parity);
1616 static int __initdata l2parity = 1;
1617 static int __init nol2parity(char *s)
1618 {
1619 l2parity = 0;
1620 return 1;
1621 }
1622 __setup("nol2par", nol2parity);
1623
1624 /*
1625 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1626 * it different ways.
1627 */
1628 static inline void parity_protection_init(void)
1629 {
1630 switch (current_cpu_type()) {
1631 case CPU_24K:
1632 case CPU_34K:
1633 case CPU_74K:
1634 case CPU_1004K:
1635 case CPU_1074K:
1636 case CPU_INTERAPTIV:
1637 case CPU_PROAPTIV:
1638 case CPU_P5600:
1639 case CPU_QEMU_GENERIC:
1640 {
1641 #define ERRCTL_PE 0x80000000
1642 #define ERRCTL_L2P 0x00800000
1643 unsigned long errctl;
1644 unsigned int l1parity_present, l2parity_present;
1645
1646 errctl = read_c0_ecc();
1647 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1648
1649 /* probe L1 parity support */
1650 write_c0_ecc(errctl | ERRCTL_PE);
1651 back_to_back_c0_hazard();
1652 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1653
1654 /* probe L2 parity support */
1655 write_c0_ecc(errctl|ERRCTL_L2P);
1656 back_to_back_c0_hazard();
1657 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1658
1659 if (l1parity_present && l2parity_present) {
1660 if (l1parity)
1661 errctl |= ERRCTL_PE;
1662 if (l1parity ^ l2parity)
1663 errctl |= ERRCTL_L2P;
1664 } else if (l1parity_present) {
1665 if (l1parity)
1666 errctl |= ERRCTL_PE;
1667 } else if (l2parity_present) {
1668 if (l2parity)
1669 errctl |= ERRCTL_L2P;
1670 } else {
1671 /* No parity available */
1672 }
1673
1674 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1675
1676 write_c0_ecc(errctl);
1677 back_to_back_c0_hazard();
1678 errctl = read_c0_ecc();
1679 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1680
1681 if (l1parity_present)
1682 printk(KERN_INFO "Cache parity protection %sabled\n",
1683 (errctl & ERRCTL_PE) ? "en" : "dis");
1684
1685 if (l2parity_present) {
1686 if (l1parity_present && l1parity)
1687 errctl ^= ERRCTL_L2P;
1688 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1689 (errctl & ERRCTL_L2P) ? "en" : "dis");
1690 }
1691 }
1692 break;
1693
1694 case CPU_5KC:
1695 case CPU_5KE:
1696 case CPU_LOONGSON1:
1697 write_c0_ecc(0x80000000);
1698 back_to_back_c0_hazard();
1699 /* Set the PE bit (bit 31) in the c0_errctl register. */
1700 printk(KERN_INFO "Cache parity protection %sabled\n",
1701 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1702 break;
1703 case CPU_20KC:
1704 case CPU_25KF:
1705 /* Clear the DE bit (bit 16) in the c0_status register. */
1706 printk(KERN_INFO "Enable cache parity protection for "
1707 "MIPS 20KC/25KF CPUs.\n");
1708 clear_c0_status(ST0_DE);
1709 break;
1710 default:
1711 break;
1712 }
1713 }
1714
1715 asmlinkage void cache_parity_error(void)
1716 {
1717 const int field = 2 * sizeof(unsigned long);
1718 unsigned int reg_val;
1719
1720 /* For the moment, report the problem and hang. */
1721 printk("Cache error exception:\n");
1722 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1723 reg_val = read_c0_cacheerr();
1724 printk("c0_cacheerr == %08x\n", reg_val);
1725
1726 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1727 reg_val & (1<<30) ? "secondary" : "primary",
1728 reg_val & (1<<31) ? "data" : "insn");
1729 if ((cpu_has_mips_r2_r6) &&
1730 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1731 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1732 reg_val & (1<<29) ? "ED " : "",
1733 reg_val & (1<<28) ? "ET " : "",
1734 reg_val & (1<<27) ? "ES " : "",
1735 reg_val & (1<<26) ? "EE " : "",
1736 reg_val & (1<<25) ? "EB " : "",
1737 reg_val & (1<<24) ? "EI " : "",
1738 reg_val & (1<<23) ? "E1 " : "",
1739 reg_val & (1<<22) ? "E0 " : "");
1740 } else {
1741 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1742 reg_val & (1<<29) ? "ED " : "",
1743 reg_val & (1<<28) ? "ET " : "",
1744 reg_val & (1<<26) ? "EE " : "",
1745 reg_val & (1<<25) ? "EB " : "",
1746 reg_val & (1<<24) ? "EI " : "",
1747 reg_val & (1<<23) ? "E1 " : "",
1748 reg_val & (1<<22) ? "E0 " : "");
1749 }
1750 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1751
1752 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1753 if (reg_val & (1<<22))
1754 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1755
1756 if (reg_val & (1<<23))
1757 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1758 #endif
1759
1760 panic("Can't handle the cache error!");
1761 }
1762
1763 asmlinkage void do_ftlb(void)
1764 {
1765 const int field = 2 * sizeof(unsigned long);
1766 unsigned int reg_val;
1767
1768 /* For the moment, report the problem and hang. */
1769 if ((cpu_has_mips_r2_r6) &&
1770 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1771 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1772 read_c0_ecc());
1773 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1774 reg_val = read_c0_cacheerr();
1775 pr_err("c0_cacheerr == %08x\n", reg_val);
1776
1777 if ((reg_val & 0xc0000000) == 0xc0000000) {
1778 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1779 } else {
1780 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1781 reg_val & (1<<30) ? "secondary" : "primary",
1782 reg_val & (1<<31) ? "data" : "insn");
1783 }
1784 } else {
1785 pr_err("FTLB error exception\n");
1786 }
1787 /* Just print the cacheerr bits for now */
1788 cache_parity_error();
1789 }
1790
1791 /*
1792 * SDBBP EJTAG debug exception handler.
1793 * We skip the instruction and return to the next instruction.
1794 */
1795 void ejtag_exception_handler(struct pt_regs *regs)
1796 {
1797 const int field = 2 * sizeof(unsigned long);
1798 unsigned long depc, old_epc, old_ra;
1799 unsigned int debug;
1800
1801 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1802 depc = read_c0_depc();
1803 debug = read_c0_debug();
1804 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1805 if (debug & 0x80000000) {
1806 /*
1807 * In branch delay slot.
1808 * We cheat a little bit here and use EPC to calculate the
1809 * debug return address (DEPC). EPC is restored after the
1810 * calculation.
1811 */
1812 old_epc = regs->cp0_epc;
1813 old_ra = regs->regs[31];
1814 regs->cp0_epc = depc;
1815 compute_return_epc(regs);
1816 depc = regs->cp0_epc;
1817 regs->cp0_epc = old_epc;
1818 regs->regs[31] = old_ra;
1819 } else
1820 depc += 4;
1821 write_c0_depc(depc);
1822
1823 #if 0
1824 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1825 write_c0_debug(debug | 0x100);
1826 #endif
1827 }
1828
1829 /*
1830 * NMI exception handler.
1831 * No lock; only written during early bootup by CPU 0.
1832 */
1833 static RAW_NOTIFIER_HEAD(nmi_chain);
1834
1835 int register_nmi_notifier(struct notifier_block *nb)
1836 {
1837 return raw_notifier_chain_register(&nmi_chain, nb);
1838 }
1839
1840 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1841 {
1842 char str[100];
1843
1844 raw_notifier_call_chain(&nmi_chain, 0, regs);
1845 bust_spinlocks(1);
1846 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1847 smp_processor_id(), regs->cp0_epc);
1848 regs->cp0_epc = read_c0_errorepc();
1849 die(str, regs);
1850 }
1851
1852 #define VECTORSPACING 0x100 /* for EI/VI mode */
1853
1854 unsigned long ebase;
1855 unsigned long exception_handlers[32];
1856 unsigned long vi_handlers[64];
1857
1858 void __init *set_except_vector(int n, void *addr)
1859 {
1860 unsigned long handler = (unsigned long) addr;
1861 unsigned long old_handler;
1862
1863 #ifdef CONFIG_CPU_MICROMIPS
1864 /*
1865 * Only the TLB handlers are cache aligned with an even
1866 * address. All other handlers are on an odd address and
1867 * require no modification. Otherwise, MIPS32 mode will
1868 * be entered when handling any TLB exceptions. That
1869 * would be bad...since we must stay in microMIPS mode.
1870 */
1871 if (!(handler & 0x1))
1872 handler |= 1;
1873 #endif
1874 old_handler = xchg(&exception_handlers[n], handler);
1875
1876 if (n == 0 && cpu_has_divec) {
1877 #ifdef CONFIG_CPU_MICROMIPS
1878 unsigned long jump_mask = ~((1 << 27) - 1);
1879 #else
1880 unsigned long jump_mask = ~((1 << 28) - 1);
1881 #endif
1882 u32 *buf = (u32 *)(ebase + 0x200);
1883 unsigned int k0 = 26;
1884 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1885 uasm_i_j(&buf, handler & ~jump_mask);
1886 uasm_i_nop(&buf);
1887 } else {
1888 UASM_i_LA(&buf, k0, handler);
1889 uasm_i_jr(&buf, k0);
1890 uasm_i_nop(&buf);
1891 }
1892 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1893 }
1894 return (void *)old_handler;
1895 }
1896
1897 static void do_default_vi(void)
1898 {
1899 show_regs(get_irq_regs());
1900 panic("Caught unexpected vectored interrupt.");
1901 }
1902
1903 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1904 {
1905 unsigned long handler;
1906 unsigned long old_handler = vi_handlers[n];
1907 int srssets = current_cpu_data.srsets;
1908 u16 *h;
1909 unsigned char *b;
1910
1911 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1912
1913 if (addr == NULL) {
1914 handler = (unsigned long) do_default_vi;
1915 srs = 0;
1916 } else
1917 handler = (unsigned long) addr;
1918 vi_handlers[n] = handler;
1919
1920 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1921
1922 if (srs >= srssets)
1923 panic("Shadow register set %d not supported", srs);
1924
1925 if (cpu_has_veic) {
1926 if (board_bind_eic_interrupt)
1927 board_bind_eic_interrupt(n, srs);
1928 } else if (cpu_has_vint) {
1929 /* SRSMap is only defined if shadow sets are implemented */
1930 if (srssets > 1)
1931 change_c0_srsmap(0xf << n*4, srs << n*4);
1932 }
1933
1934 if (srs == 0) {
1935 /*
1936 * If no shadow set is selected then use the default handler
1937 * that does normal register saving and standard interrupt exit
1938 */
1939 extern char except_vec_vi, except_vec_vi_lui;
1940 extern char except_vec_vi_ori, except_vec_vi_end;
1941 extern char rollback_except_vec_vi;
1942 char *vec_start = using_rollback_handler() ?
1943 &rollback_except_vec_vi : &except_vec_vi;
1944 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1945 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1946 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1947 #else
1948 const int lui_offset = &except_vec_vi_lui - vec_start;
1949 const int ori_offset = &except_vec_vi_ori - vec_start;
1950 #endif
1951 const int handler_len = &except_vec_vi_end - vec_start;
1952
1953 if (handler_len > VECTORSPACING) {
1954 /*
1955 * Sigh... panicing won't help as the console
1956 * is probably not configured :(
1957 */
1958 panic("VECTORSPACING too small");
1959 }
1960
1961 set_handler(((unsigned long)b - ebase), vec_start,
1962 #ifdef CONFIG_CPU_MICROMIPS
1963 (handler_len - 1));
1964 #else
1965 handler_len);
1966 #endif
1967 h = (u16 *)(b + lui_offset);
1968 *h = (handler >> 16) & 0xffff;
1969 h = (u16 *)(b + ori_offset);
1970 *h = (handler & 0xffff);
1971 local_flush_icache_range((unsigned long)b,
1972 (unsigned long)(b+handler_len));
1973 }
1974 else {
1975 /*
1976 * In other cases jump directly to the interrupt handler. It
1977 * is the handler's responsibility to save registers if required
1978 * (eg hi/lo) and return from the exception using "eret".
1979 */
1980 u32 insn;
1981
1982 h = (u16 *)b;
1983 /* j handler */
1984 #ifdef CONFIG_CPU_MICROMIPS
1985 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1986 #else
1987 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1988 #endif
1989 h[0] = (insn >> 16) & 0xffff;
1990 h[1] = insn & 0xffff;
1991 h[2] = 0;
1992 h[3] = 0;
1993 local_flush_icache_range((unsigned long)b,
1994 (unsigned long)(b+8));
1995 }
1996
1997 return (void *)old_handler;
1998 }
1999
2000 void *set_vi_handler(int n, vi_handler_t addr)
2001 {
2002 return set_vi_srs_handler(n, addr, 0);
2003 }
2004
2005 extern void tlb_init(void);
2006
2007 /*
2008 * Timer interrupt
2009 */
2010 int cp0_compare_irq;
2011 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2012 int cp0_compare_irq_shift;
2013
2014 /*
2015 * Performance counter IRQ or -1 if shared with timer
2016 */
2017 int cp0_perfcount_irq;
2018 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2019
2020 /*
2021 * Fast debug channel IRQ or -1 if not present
2022 */
2023 int cp0_fdc_irq;
2024 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2025
2026 static int noulri;
2027
2028 static int __init ulri_disable(char *s)
2029 {
2030 pr_info("Disabling ulri\n");
2031 noulri = 1;
2032
2033 return 1;
2034 }
2035 __setup("noulri", ulri_disable);
2036
2037 /* configure STATUS register */
2038 static void configure_status(void)
2039 {
2040 /*
2041 * Disable coprocessors and select 32-bit or 64-bit addressing
2042 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2043 * flag that some firmware may have left set and the TS bit (for
2044 * IP27). Set XX for ISA IV code to work.
2045 */
2046 unsigned int status_set = ST0_CU0;
2047 #ifdef CONFIG_64BIT
2048 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2049 #endif
2050 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2051 status_set |= ST0_XX;
2052 if (cpu_has_dsp)
2053 status_set |= ST0_MX;
2054
2055 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2056 status_set);
2057 }
2058
2059 /* configure HWRENA register */
2060 static void configure_hwrena(void)
2061 {
2062 unsigned int hwrena = cpu_hwrena_impl_bits;
2063
2064 if (cpu_has_mips_r2_r6)
2065 hwrena |= 0x0000000f;
2066
2067 if (!noulri && cpu_has_userlocal)
2068 hwrena |= (1 << 29);
2069
2070 if (hwrena)
2071 write_c0_hwrena(hwrena);
2072 }
2073
2074 static void configure_exception_vector(void)
2075 {
2076 if (cpu_has_veic || cpu_has_vint) {
2077 unsigned long sr = set_c0_status(ST0_BEV);
2078 write_c0_ebase(ebase);
2079 write_c0_status(sr);
2080 /* Setting vector spacing enables EI/VI mode */
2081 change_c0_intctl(0x3e0, VECTORSPACING);
2082 }
2083 if (cpu_has_divec) {
2084 if (cpu_has_mipsmt) {
2085 unsigned int vpflags = dvpe();
2086 set_c0_cause(CAUSEF_IV);
2087 evpe(vpflags);
2088 } else
2089 set_c0_cause(CAUSEF_IV);
2090 }
2091 }
2092
2093 void per_cpu_trap_init(bool is_boot_cpu)
2094 {
2095 unsigned int cpu = smp_processor_id();
2096
2097 configure_status();
2098 configure_hwrena();
2099
2100 configure_exception_vector();
2101
2102 /*
2103 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2104 *
2105 * o read IntCtl.IPTI to determine the timer interrupt
2106 * o read IntCtl.IPPCI to determine the performance counter interrupt
2107 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2108 */
2109 if (cpu_has_mips_r2_r6) {
2110 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2111 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2112 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2113 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2114 if (!cp0_fdc_irq)
2115 cp0_fdc_irq = -1;
2116
2117 } else {
2118 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2119 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2120 cp0_perfcount_irq = -1;
2121 cp0_fdc_irq = -1;
2122 }
2123
2124 if (!cpu_data[cpu].asid_cache)
2125 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
2126
2127 atomic_inc(&init_mm.mm_count);
2128 current->active_mm = &init_mm;
2129 BUG_ON(current->mm);
2130 enter_lazy_tlb(&init_mm, current);
2131
2132 /* Boot CPU's cache setup in setup_arch(). */
2133 if (!is_boot_cpu)
2134 cpu_cache_init();
2135 tlb_init();
2136 TLBMISS_HANDLER_SETUP();
2137 }
2138
2139 /* Install CPU exception handler */
2140 void set_handler(unsigned long offset, void *addr, unsigned long size)
2141 {
2142 #ifdef CONFIG_CPU_MICROMIPS
2143 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2144 #else
2145 memcpy((void *)(ebase + offset), addr, size);
2146 #endif
2147 local_flush_icache_range(ebase + offset, ebase + offset + size);
2148 }
2149
2150 static char panic_null_cerr[] =
2151 "Trying to set NULL cache error exception handler";
2152
2153 /*
2154 * Install uncached CPU exception handler.
2155 * This is suitable only for the cache error exception which is the only
2156 * exception handler that is being run uncached.
2157 */
2158 void set_uncached_handler(unsigned long offset, void *addr,
2159 unsigned long size)
2160 {
2161 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2162
2163 if (!addr)
2164 panic(panic_null_cerr);
2165
2166 memcpy((void *)(uncached_ebase + offset), addr, size);
2167 }
2168
2169 static int __initdata rdhwr_noopt;
2170 static int __init set_rdhwr_noopt(char *str)
2171 {
2172 rdhwr_noopt = 1;
2173 return 1;
2174 }
2175
2176 __setup("rdhwr_noopt", set_rdhwr_noopt);
2177
2178 void __init trap_init(void)
2179 {
2180 extern char except_vec3_generic;
2181 extern char except_vec4;
2182 extern char except_vec3_r4000;
2183 unsigned long i;
2184
2185 check_wait();
2186
2187 #if defined(CONFIG_KGDB)
2188 if (kgdb_early_setup)
2189 return; /* Already done */
2190 #endif
2191
2192 if (cpu_has_veic || cpu_has_vint) {
2193 unsigned long size = 0x200 + VECTORSPACING*64;
2194 ebase = (unsigned long)
2195 __alloc_bootmem(size, 1 << fls(size), 0);
2196 } else {
2197 #ifdef CONFIG_KVM_GUEST
2198 #define KVM_GUEST_KSEG0 0x40000000
2199 ebase = KVM_GUEST_KSEG0;
2200 #else
2201 ebase = CKSEG0;
2202 #endif
2203 if (cpu_has_mips_r2_r6)
2204 ebase += (read_c0_ebase() & 0x3ffff000);
2205 }
2206
2207 if (cpu_has_mmips) {
2208 unsigned int config3 = read_c0_config3();
2209
2210 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2211 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2212 else
2213 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2214 }
2215
2216 if (board_ebase_setup)
2217 board_ebase_setup();
2218 per_cpu_trap_init(true);
2219
2220 /*
2221 * Copy the generic exception handlers to their final destination.
2222 * This will be overriden later as suitable for a particular
2223 * configuration.
2224 */
2225 set_handler(0x180, &except_vec3_generic, 0x80);
2226
2227 /*
2228 * Setup default vectors
2229 */
2230 for (i = 0; i <= 31; i++)
2231 set_except_vector(i, handle_reserved);
2232
2233 /*
2234 * Copy the EJTAG debug exception vector handler code to it's final
2235 * destination.
2236 */
2237 if (cpu_has_ejtag && board_ejtag_handler_setup)
2238 board_ejtag_handler_setup();
2239
2240 /*
2241 * Only some CPUs have the watch exceptions.
2242 */
2243 if (cpu_has_watch)
2244 set_except_vector(23, handle_watch);
2245
2246 /*
2247 * Initialise interrupt handlers
2248 */
2249 if (cpu_has_veic || cpu_has_vint) {
2250 int nvec = cpu_has_veic ? 64 : 8;
2251 for (i = 0; i < nvec; i++)
2252 set_vi_handler(i, NULL);
2253 }
2254 else if (cpu_has_divec)
2255 set_handler(0x200, &except_vec4, 0x8);
2256
2257 /*
2258 * Some CPUs can enable/disable for cache parity detection, but does
2259 * it different ways.
2260 */
2261 parity_protection_init();
2262
2263 /*
2264 * The Data Bus Errors / Instruction Bus Errors are signaled
2265 * by external hardware. Therefore these two exceptions
2266 * may have board specific handlers.
2267 */
2268 if (board_be_init)
2269 board_be_init();
2270
2271 set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2272 : handle_int);
2273 set_except_vector(1, handle_tlbm);
2274 set_except_vector(2, handle_tlbl);
2275 set_except_vector(3, handle_tlbs);
2276
2277 set_except_vector(4, handle_adel);
2278 set_except_vector(5, handle_ades);
2279
2280 set_except_vector(6, handle_ibe);
2281 set_except_vector(7, handle_dbe);
2282
2283 set_except_vector(8, handle_sys);
2284 set_except_vector(9, handle_bp);
2285 set_except_vector(10, rdhwr_noopt ? handle_ri :
2286 (cpu_has_vtag_icache ?
2287 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2288 set_except_vector(11, handle_cpu);
2289 set_except_vector(12, handle_ov);
2290 set_except_vector(13, handle_tr);
2291 set_except_vector(14, handle_msa_fpe);
2292
2293 if (current_cpu_type() == CPU_R6000 ||
2294 current_cpu_type() == CPU_R6000A) {
2295 /*
2296 * The R6000 is the only R-series CPU that features a machine
2297 * check exception (similar to the R4000 cache error) and
2298 * unaligned ldc1/sdc1 exception. The handlers have not been
2299 * written yet. Well, anyway there is no R6000 machine on the
2300 * current list of targets for Linux/MIPS.
2301 * (Duh, crap, there is someone with a triple R6k machine)
2302 */
2303 //set_except_vector(14, handle_mc);
2304 //set_except_vector(15, handle_ndc);
2305 }
2306
2307
2308 if (board_nmi_handler_setup)
2309 board_nmi_handler_setup();
2310
2311 if (cpu_has_fpu && !cpu_has_nofpuex)
2312 set_except_vector(15, handle_fpe);
2313
2314 set_except_vector(16, handle_ftlb);
2315
2316 if (cpu_has_rixiex) {
2317 set_except_vector(19, tlb_do_page_fault_0);
2318 set_except_vector(20, tlb_do_page_fault_0);
2319 }
2320
2321 set_except_vector(21, handle_msa);
2322 set_except_vector(22, handle_mdmx);
2323
2324 if (cpu_has_mcheck)
2325 set_except_vector(24, handle_mcheck);
2326
2327 if (cpu_has_mipsmt)
2328 set_except_vector(25, handle_mt);
2329
2330 set_except_vector(26, handle_dsp);
2331
2332 if (board_cache_error_setup)
2333 board_cache_error_setup();
2334
2335 if (cpu_has_vce)
2336 /* Special exception: R4[04]00 uses also the divec space. */
2337 set_handler(0x180, &except_vec3_r4000, 0x100);
2338 else if (cpu_has_4kex)
2339 set_handler(0x180, &except_vec3_generic, 0x80);
2340 else
2341 set_handler(0x080, &except_vec3_generic, 0x80);
2342
2343 local_flush_icache_range(ebase, ebase + 0x400);
2344
2345 sort_extable(__start___dbe_table, __stop___dbe_table);
2346
2347 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2348 }
2349
2350 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2351 void *v)
2352 {
2353 switch (cmd) {
2354 case CPU_PM_ENTER_FAILED:
2355 case CPU_PM_EXIT:
2356 configure_status();
2357 configure_hwrena();
2358 configure_exception_vector();
2359
2360 /* Restore register with CPU number for TLB handlers */
2361 TLBMISS_HANDLER_RESTORE();
2362
2363 break;
2364 }
2365
2366 return NOTIFY_OK;
2367 }
2368
2369 static struct notifier_block trap_pm_notifier_block = {
2370 .notifier_call = trap_pm_notifier,
2371 };
2372
2373 static int __init trap_pm_init(void)
2374 {
2375 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2376 }
2377 arch_initcall(trap_pm_init);