]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/mips/kernel/traps.c
Merge branch 'hotfixes' into devel
[mirror_ubuntu-zesty-kernel.git] / arch / mips / kernel / traps.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
13 */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/smp.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
24 #include <linux/interrupt.h>
25
26 #include <asm/bootinfo.h>
27 #include <asm/branch.h>
28 #include <asm/break.h>
29 #include <asm/cpu.h>
30 #include <asm/dsp.h>
31 #include <asm/fpu.h>
32 #include <asm/mipsregs.h>
33 #include <asm/mipsmtregs.h>
34 #include <asm/module.h>
35 #include <asm/pgtable.h>
36 #include <asm/ptrace.h>
37 #include <asm/sections.h>
38 #include <asm/system.h>
39 #include <asm/tlbdebug.h>
40 #include <asm/traps.h>
41 #include <asm/uaccess.h>
42 #include <asm/mmu_context.h>
43 #include <asm/types.h>
44 #include <asm/stacktrace.h>
45
46 extern asmlinkage void handle_int(void);
47 extern asmlinkage void handle_tlbm(void);
48 extern asmlinkage void handle_tlbl(void);
49 extern asmlinkage void handle_tlbs(void);
50 extern asmlinkage void handle_adel(void);
51 extern asmlinkage void handle_ades(void);
52 extern asmlinkage void handle_ibe(void);
53 extern asmlinkage void handle_dbe(void);
54 extern asmlinkage void handle_sys(void);
55 extern asmlinkage void handle_bp(void);
56 extern asmlinkage void handle_ri(void);
57 extern asmlinkage void handle_ri_rdhwr_vivt(void);
58 extern asmlinkage void handle_ri_rdhwr(void);
59 extern asmlinkage void handle_cpu(void);
60 extern asmlinkage void handle_ov(void);
61 extern asmlinkage void handle_tr(void);
62 extern asmlinkage void handle_fpe(void);
63 extern asmlinkage void handle_mdmx(void);
64 extern asmlinkage void handle_watch(void);
65 extern asmlinkage void handle_mt(void);
66 extern asmlinkage void handle_dsp(void);
67 extern asmlinkage void handle_mcheck(void);
68 extern asmlinkage void handle_reserved(void);
69
70 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
71 struct mips_fpu_struct *ctx, int has_fpu);
72
73 void (*board_watchpoint_handler)(struct pt_regs *regs);
74 void (*board_be_init)(void);
75 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
76 void (*board_nmi_handler_setup)(void);
77 void (*board_ejtag_handler_setup)(void);
78 void (*board_bind_eic_interrupt)(int irq, int regset);
79
80
81 static void show_raw_backtrace(unsigned long reg29)
82 {
83 unsigned long *sp = (unsigned long *)reg29;
84 unsigned long addr;
85
86 printk("Call Trace:");
87 #ifdef CONFIG_KALLSYMS
88 printk("\n");
89 #endif
90 while (!kstack_end(sp)) {
91 addr = *sp++;
92 if (__kernel_text_address(addr))
93 print_ip_sym(addr);
94 }
95 printk("\n");
96 }
97
98 #ifdef CONFIG_KALLSYMS
99 int raw_show_trace;
100 static int __init set_raw_show_trace(char *str)
101 {
102 raw_show_trace = 1;
103 return 1;
104 }
105 __setup("raw_show_trace", set_raw_show_trace);
106 #endif
107
108 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
109 {
110 unsigned long sp = regs->regs[29];
111 unsigned long ra = regs->regs[31];
112 unsigned long pc = regs->cp0_epc;
113
114 if (raw_show_trace || !__kernel_text_address(pc)) {
115 show_raw_backtrace(sp);
116 return;
117 }
118 printk("Call Trace:\n");
119 do {
120 print_ip_sym(pc);
121 pc = unwind_stack(task, &sp, pc, &ra);
122 } while (pc);
123 printk("\n");
124 }
125
126 /*
127 * This routine abuses get_user()/put_user() to reference pointers
128 * with at least a bit of error checking ...
129 */
130 static void show_stacktrace(struct task_struct *task,
131 const struct pt_regs *regs)
132 {
133 const int field = 2 * sizeof(unsigned long);
134 long stackdata;
135 int i;
136 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
137
138 printk("Stack :");
139 i = 0;
140 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
141 if (i && ((i % (64 / field)) == 0))
142 printk("\n ");
143 if (i > 39) {
144 printk(" ...");
145 break;
146 }
147
148 if (__get_user(stackdata, sp++)) {
149 printk(" (Bad stack address)");
150 break;
151 }
152
153 printk(" %0*lx", field, stackdata);
154 i++;
155 }
156 printk("\n");
157 show_backtrace(task, regs);
158 }
159
160 void show_stack(struct task_struct *task, unsigned long *sp)
161 {
162 struct pt_regs regs;
163 if (sp) {
164 regs.regs[29] = (unsigned long)sp;
165 regs.regs[31] = 0;
166 regs.cp0_epc = 0;
167 } else {
168 if (task && task != current) {
169 regs.regs[29] = task->thread.reg29;
170 regs.regs[31] = 0;
171 regs.cp0_epc = task->thread.reg31;
172 } else {
173 prepare_frametrace(&regs);
174 }
175 }
176 show_stacktrace(task, &regs);
177 }
178
179 /*
180 * The architecture-independent dump_stack generator
181 */
182 void dump_stack(void)
183 {
184 struct pt_regs regs;
185
186 prepare_frametrace(&regs);
187 show_backtrace(current, &regs);
188 }
189
190 EXPORT_SYMBOL(dump_stack);
191
192 static void show_code(unsigned int __user *pc)
193 {
194 long i;
195
196 printk("\nCode:");
197
198 for(i = -3 ; i < 6 ; i++) {
199 unsigned int insn;
200 if (__get_user(insn, pc + i)) {
201 printk(" (Bad address in epc)\n");
202 break;
203 }
204 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
205 }
206 }
207
208 static void __show_regs(const struct pt_regs *regs)
209 {
210 const int field = 2 * sizeof(unsigned long);
211 unsigned int cause = regs->cp0_cause;
212 int i;
213
214 printk("Cpu %d\n", smp_processor_id());
215
216 /*
217 * Saved main processor registers
218 */
219 for (i = 0; i < 32; ) {
220 if ((i % 4) == 0)
221 printk("$%2d :", i);
222 if (i == 0)
223 printk(" %0*lx", field, 0UL);
224 else if (i == 26 || i == 27)
225 printk(" %*s", field, "");
226 else
227 printk(" %0*lx", field, regs->regs[i]);
228
229 i++;
230 if ((i % 4) == 0)
231 printk("\n");
232 }
233
234 #ifdef CONFIG_CPU_HAS_SMARTMIPS
235 printk("Acx : %0*lx\n", field, regs->acx);
236 #endif
237 printk("Hi : %0*lx\n", field, regs->hi);
238 printk("Lo : %0*lx\n", field, regs->lo);
239
240 /*
241 * Saved cp0 registers
242 */
243 printk("epc : %0*lx ", field, regs->cp0_epc);
244 print_symbol("%s ", regs->cp0_epc);
245 printk(" %s\n", print_tainted());
246 printk("ra : %0*lx ", field, regs->regs[31]);
247 print_symbol("%s\n", regs->regs[31]);
248
249 printk("Status: %08x ", (uint32_t) regs->cp0_status);
250
251 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
252 if (regs->cp0_status & ST0_KUO)
253 printk("KUo ");
254 if (regs->cp0_status & ST0_IEO)
255 printk("IEo ");
256 if (regs->cp0_status & ST0_KUP)
257 printk("KUp ");
258 if (regs->cp0_status & ST0_IEP)
259 printk("IEp ");
260 if (regs->cp0_status & ST0_KUC)
261 printk("KUc ");
262 if (regs->cp0_status & ST0_IEC)
263 printk("IEc ");
264 } else {
265 if (regs->cp0_status & ST0_KX)
266 printk("KX ");
267 if (regs->cp0_status & ST0_SX)
268 printk("SX ");
269 if (regs->cp0_status & ST0_UX)
270 printk("UX ");
271 switch (regs->cp0_status & ST0_KSU) {
272 case KSU_USER:
273 printk("USER ");
274 break;
275 case KSU_SUPERVISOR:
276 printk("SUPERVISOR ");
277 break;
278 case KSU_KERNEL:
279 printk("KERNEL ");
280 break;
281 default:
282 printk("BAD_MODE ");
283 break;
284 }
285 if (regs->cp0_status & ST0_ERL)
286 printk("ERL ");
287 if (regs->cp0_status & ST0_EXL)
288 printk("EXL ");
289 if (regs->cp0_status & ST0_IE)
290 printk("IE ");
291 }
292 printk("\n");
293
294 printk("Cause : %08x\n", cause);
295
296 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
297 if (1 <= cause && cause <= 5)
298 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
299
300 printk("PrId : %08x (%s)\n", read_c0_prid(),
301 cpu_name_string());
302 }
303
304 /*
305 * FIXME: really the generic show_regs should take a const pointer argument.
306 */
307 void show_regs(struct pt_regs *regs)
308 {
309 __show_regs((struct pt_regs *)regs);
310 }
311
312 void show_registers(const struct pt_regs *regs)
313 {
314 __show_regs(regs);
315 print_modules();
316 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
317 current->comm, task_pid_nr(current), current_thread_info(), current);
318 show_stacktrace(current, regs);
319 show_code((unsigned int __user *) regs->cp0_epc);
320 printk("\n");
321 }
322
323 static DEFINE_SPINLOCK(die_lock);
324
325 void __noreturn die(const char * str, const struct pt_regs * regs)
326 {
327 static int die_counter;
328 #ifdef CONFIG_MIPS_MT_SMTC
329 unsigned long dvpret = dvpe();
330 #endif /* CONFIG_MIPS_MT_SMTC */
331
332 console_verbose();
333 spin_lock_irq(&die_lock);
334 bust_spinlocks(1);
335 #ifdef CONFIG_MIPS_MT_SMTC
336 mips_mt_regdump(dvpret);
337 #endif /* CONFIG_MIPS_MT_SMTC */
338 printk("%s[#%d]:\n", str, ++die_counter);
339 show_registers(regs);
340 add_taint(TAINT_DIE);
341 spin_unlock_irq(&die_lock);
342
343 if (in_interrupt())
344 panic("Fatal exception in interrupt");
345
346 if (panic_on_oops) {
347 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
348 ssleep(5);
349 panic("Fatal exception");
350 }
351
352 do_exit(SIGSEGV);
353 }
354
355 extern const struct exception_table_entry __start___dbe_table[];
356 extern const struct exception_table_entry __stop___dbe_table[];
357
358 __asm__(
359 " .section __dbe_table, \"a\"\n"
360 " .previous \n");
361
362 /* Given an address, look for it in the exception tables. */
363 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
364 {
365 const struct exception_table_entry *e;
366
367 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
368 if (!e)
369 e = search_module_dbetables(addr);
370 return e;
371 }
372
373 asmlinkage void do_be(struct pt_regs *regs)
374 {
375 const int field = 2 * sizeof(unsigned long);
376 const struct exception_table_entry *fixup = NULL;
377 int data = regs->cp0_cause & 4;
378 int action = MIPS_BE_FATAL;
379
380 /* XXX For now. Fixme, this searches the wrong table ... */
381 if (data && !user_mode(regs))
382 fixup = search_dbe_tables(exception_epc(regs));
383
384 if (fixup)
385 action = MIPS_BE_FIXUP;
386
387 if (board_be_handler)
388 action = board_be_handler(regs, fixup != NULL);
389
390 switch (action) {
391 case MIPS_BE_DISCARD:
392 return;
393 case MIPS_BE_FIXUP:
394 if (fixup) {
395 regs->cp0_epc = fixup->nextinsn;
396 return;
397 }
398 break;
399 default:
400 break;
401 }
402
403 /*
404 * Assume it would be too dangerous to continue ...
405 */
406 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
407 data ? "Data" : "Instruction",
408 field, regs->cp0_epc, field, regs->regs[31]);
409 die_if_kernel("Oops", regs);
410 force_sig(SIGBUS, current);
411 }
412
413 /*
414 * ll/sc, rdhwr, sync emulation
415 */
416
417 #define OPCODE 0xfc000000
418 #define BASE 0x03e00000
419 #define RT 0x001f0000
420 #define OFFSET 0x0000ffff
421 #define LL 0xc0000000
422 #define SC 0xe0000000
423 #define SPEC0 0x00000000
424 #define SPEC3 0x7c000000
425 #define RD 0x0000f800
426 #define FUNC 0x0000003f
427 #define SYNC 0x0000000f
428 #define RDHWR 0x0000003b
429
430 /*
431 * The ll_bit is cleared by r*_switch.S
432 */
433
434 unsigned long ll_bit;
435
436 static struct task_struct *ll_task = NULL;
437
438 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
439 {
440 unsigned long value, __user *vaddr;
441 long offset;
442
443 /*
444 * analyse the ll instruction that just caused a ri exception
445 * and put the referenced address to addr.
446 */
447
448 /* sign extend offset */
449 offset = opcode & OFFSET;
450 offset <<= 16;
451 offset >>= 16;
452
453 vaddr = (unsigned long __user *)
454 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
455
456 if ((unsigned long)vaddr & 3)
457 return SIGBUS;
458 if (get_user(value, vaddr))
459 return SIGSEGV;
460
461 preempt_disable();
462
463 if (ll_task == NULL || ll_task == current) {
464 ll_bit = 1;
465 } else {
466 ll_bit = 0;
467 }
468 ll_task = current;
469
470 preempt_enable();
471
472 regs->regs[(opcode & RT) >> 16] = value;
473
474 return 0;
475 }
476
477 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
478 {
479 unsigned long __user *vaddr;
480 unsigned long reg;
481 long offset;
482
483 /*
484 * analyse the sc instruction that just caused a ri exception
485 * and put the referenced address to addr.
486 */
487
488 /* sign extend offset */
489 offset = opcode & OFFSET;
490 offset <<= 16;
491 offset >>= 16;
492
493 vaddr = (unsigned long __user *)
494 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
495 reg = (opcode & RT) >> 16;
496
497 if ((unsigned long)vaddr & 3)
498 return SIGBUS;
499
500 preempt_disable();
501
502 if (ll_bit == 0 || ll_task != current) {
503 regs->regs[reg] = 0;
504 preempt_enable();
505 return 0;
506 }
507
508 preempt_enable();
509
510 if (put_user(regs->regs[reg], vaddr))
511 return SIGSEGV;
512
513 regs->regs[reg] = 1;
514
515 return 0;
516 }
517
518 /*
519 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
520 * opcodes are supposed to result in coprocessor unusable exceptions if
521 * executed on ll/sc-less processors. That's the theory. In practice a
522 * few processors such as NEC's VR4100 throw reserved instruction exceptions
523 * instead, so we're doing the emulation thing in both exception handlers.
524 */
525 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
526 {
527 if ((opcode & OPCODE) == LL)
528 return simulate_ll(regs, opcode);
529 if ((opcode & OPCODE) == SC)
530 return simulate_sc(regs, opcode);
531
532 return -1; /* Must be something else ... */
533 }
534
535 /*
536 * Simulate trapping 'rdhwr' instructions to provide user accessible
537 * registers not implemented in hardware.
538 */
539 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
540 {
541 struct thread_info *ti = task_thread_info(current);
542
543 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
544 int rd = (opcode & RD) >> 11;
545 int rt = (opcode & RT) >> 16;
546 switch (rd) {
547 case 0: /* CPU number */
548 regs->regs[rt] = smp_processor_id();
549 return 0;
550 case 1: /* SYNCI length */
551 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
552 current_cpu_data.icache.linesz);
553 return 0;
554 case 2: /* Read count register */
555 regs->regs[rt] = read_c0_count();
556 return 0;
557 case 3: /* Count register resolution */
558 switch (current_cpu_data.cputype) {
559 case CPU_20KC:
560 case CPU_25KF:
561 regs->regs[rt] = 1;
562 break;
563 default:
564 regs->regs[rt] = 2;
565 }
566 return 0;
567 case 29:
568 regs->regs[rt] = ti->tp_value;
569 return 0;
570 default:
571 return -1;
572 }
573 }
574
575 /* Not ours. */
576 return -1;
577 }
578
579 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
580 {
581 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC)
582 return 0;
583
584 return -1; /* Must be something else ... */
585 }
586
587 asmlinkage void do_ov(struct pt_regs *regs)
588 {
589 siginfo_t info;
590
591 die_if_kernel("Integer overflow", regs);
592
593 info.si_code = FPE_INTOVF;
594 info.si_signo = SIGFPE;
595 info.si_errno = 0;
596 info.si_addr = (void __user *) regs->cp0_epc;
597 force_sig_info(SIGFPE, &info, current);
598 }
599
600 /*
601 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
602 */
603 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
604 {
605 siginfo_t info;
606
607 die_if_kernel("FP exception in kernel code", regs);
608
609 if (fcr31 & FPU_CSR_UNI_X) {
610 int sig;
611
612 /*
613 * Unimplemented operation exception. If we've got the full
614 * software emulator on-board, let's use it...
615 *
616 * Force FPU to dump state into task/thread context. We're
617 * moving a lot of data here for what is probably a single
618 * instruction, but the alternative is to pre-decode the FP
619 * register operands before invoking the emulator, which seems
620 * a bit extreme for what should be an infrequent event.
621 */
622 /* Ensure 'resume' not overwrite saved fp context again. */
623 lose_fpu(1);
624
625 /* Run the emulator */
626 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1);
627
628 /*
629 * We can't allow the emulated instruction to leave any of
630 * the cause bit set in $fcr31.
631 */
632 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
633
634 /* Restore the hardware register state */
635 own_fpu(1); /* Using the FPU again. */
636
637 /* If something went wrong, signal */
638 if (sig)
639 force_sig(sig, current);
640
641 return;
642 } else if (fcr31 & FPU_CSR_INV_X)
643 info.si_code = FPE_FLTINV;
644 else if (fcr31 & FPU_CSR_DIV_X)
645 info.si_code = FPE_FLTDIV;
646 else if (fcr31 & FPU_CSR_OVF_X)
647 info.si_code = FPE_FLTOVF;
648 else if (fcr31 & FPU_CSR_UDF_X)
649 info.si_code = FPE_FLTUND;
650 else if (fcr31 & FPU_CSR_INE_X)
651 info.si_code = FPE_FLTRES;
652 else
653 info.si_code = __SI_FAULT;
654 info.si_signo = SIGFPE;
655 info.si_errno = 0;
656 info.si_addr = (void __user *) regs->cp0_epc;
657 force_sig_info(SIGFPE, &info, current);
658 }
659
660 asmlinkage void do_bp(struct pt_regs *regs)
661 {
662 unsigned int opcode, bcode;
663 siginfo_t info;
664
665 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
666 goto out_sigsegv;
667
668 /*
669 * There is the ancient bug in the MIPS assemblers that the break
670 * code starts left to bit 16 instead to bit 6 in the opcode.
671 * Gas is bug-compatible, but not always, grrr...
672 * We handle both cases with a simple heuristics. --macro
673 */
674 bcode = ((opcode >> 6) & ((1 << 20) - 1));
675 if (bcode < (1 << 10))
676 bcode <<= 10;
677
678 /*
679 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
680 * insns, even for break codes that indicate arithmetic failures.
681 * Weird ...)
682 * But should we continue the brokenness??? --macro
683 */
684 switch (bcode) {
685 case BRK_OVERFLOW << 10:
686 case BRK_DIVZERO << 10:
687 die_if_kernel("Break instruction in kernel code", regs);
688 if (bcode == (BRK_DIVZERO << 10))
689 info.si_code = FPE_INTDIV;
690 else
691 info.si_code = FPE_INTOVF;
692 info.si_signo = SIGFPE;
693 info.si_errno = 0;
694 info.si_addr = (void __user *) regs->cp0_epc;
695 force_sig_info(SIGFPE, &info, current);
696 break;
697 case BRK_BUG:
698 die("Kernel bug detected", regs);
699 break;
700 default:
701 die_if_kernel("Break instruction in kernel code", regs);
702 force_sig(SIGTRAP, current);
703 }
704 return;
705
706 out_sigsegv:
707 force_sig(SIGSEGV, current);
708 }
709
710 asmlinkage void do_tr(struct pt_regs *regs)
711 {
712 unsigned int opcode, tcode = 0;
713 siginfo_t info;
714
715 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
716 goto out_sigsegv;
717
718 /* Immediate versions don't provide a code. */
719 if (!(opcode & OPCODE))
720 tcode = ((opcode >> 6) & ((1 << 10) - 1));
721
722 /*
723 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
724 * insns, even for trap codes that indicate arithmetic failures.
725 * Weird ...)
726 * But should we continue the brokenness??? --macro
727 */
728 switch (tcode) {
729 case BRK_OVERFLOW:
730 case BRK_DIVZERO:
731 die_if_kernel("Trap instruction in kernel code", regs);
732 if (tcode == BRK_DIVZERO)
733 info.si_code = FPE_INTDIV;
734 else
735 info.si_code = FPE_INTOVF;
736 info.si_signo = SIGFPE;
737 info.si_errno = 0;
738 info.si_addr = (void __user *) regs->cp0_epc;
739 force_sig_info(SIGFPE, &info, current);
740 break;
741 case BRK_BUG:
742 die("Kernel bug detected", regs);
743 break;
744 default:
745 die_if_kernel("Trap instruction in kernel code", regs);
746 force_sig(SIGTRAP, current);
747 }
748 return;
749
750 out_sigsegv:
751 force_sig(SIGSEGV, current);
752 }
753
754 asmlinkage void do_ri(struct pt_regs *regs)
755 {
756 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
757 unsigned long old_epc = regs->cp0_epc;
758 unsigned int opcode = 0;
759 int status = -1;
760
761 die_if_kernel("Reserved instruction in kernel code", regs);
762
763 if (unlikely(compute_return_epc(regs) < 0))
764 return;
765
766 if (unlikely(get_user(opcode, epc) < 0))
767 status = SIGSEGV;
768
769 if (!cpu_has_llsc && status < 0)
770 status = simulate_llsc(regs, opcode);
771
772 if (status < 0)
773 status = simulate_rdhwr(regs, opcode);
774
775 if (status < 0)
776 status = simulate_sync(regs, opcode);
777
778 if (status < 0)
779 status = SIGILL;
780
781 if (unlikely(status > 0)) {
782 regs->cp0_epc = old_epc; /* Undo skip-over. */
783 force_sig(status, current);
784 }
785 }
786
787 /*
788 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
789 * emulated more than some threshold number of instructions, force migration to
790 * a "CPU" that has FP support.
791 */
792 static void mt_ase_fp_affinity(void)
793 {
794 #ifdef CONFIG_MIPS_MT_FPAFF
795 if (mt_fpemul_threshold > 0 &&
796 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
797 /*
798 * If there's no FPU present, or if the application has already
799 * restricted the allowed set to exclude any CPUs with FPUs,
800 * we'll skip the procedure.
801 */
802 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
803 cpumask_t tmask;
804
805 cpus_and(tmask, current->thread.user_cpus_allowed,
806 mt_fpu_cpumask);
807 set_cpus_allowed(current, tmask);
808 set_thread_flag(TIF_FPUBOUND);
809 }
810 }
811 #endif /* CONFIG_MIPS_MT_FPAFF */
812 }
813
814 asmlinkage void do_cpu(struct pt_regs *regs)
815 {
816 unsigned int __user *epc;
817 unsigned long old_epc;
818 unsigned int opcode;
819 unsigned int cpid;
820 int status;
821
822 die_if_kernel("do_cpu invoked from kernel context!", regs);
823
824 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
825
826 switch (cpid) {
827 case 0:
828 epc = (unsigned int __user *)exception_epc(regs);
829 old_epc = regs->cp0_epc;
830 opcode = 0;
831 status = -1;
832
833 if (unlikely(compute_return_epc(regs) < 0))
834 return;
835
836 if (unlikely(get_user(opcode, epc) < 0))
837 status = SIGSEGV;
838
839 if (!cpu_has_llsc && status < 0)
840 status = simulate_llsc(regs, opcode);
841
842 if (status < 0)
843 status = simulate_rdhwr(regs, opcode);
844
845 if (status < 0)
846 status = SIGILL;
847
848 if (unlikely(status > 0)) {
849 regs->cp0_epc = old_epc; /* Undo skip-over. */
850 force_sig(status, current);
851 }
852
853 return;
854
855 case 1:
856 if (used_math()) /* Using the FPU again. */
857 own_fpu(1);
858 else { /* First time FPU user. */
859 init_fpu();
860 set_used_math();
861 }
862
863 if (!raw_cpu_has_fpu) {
864 int sig;
865 sig = fpu_emulator_cop1Handler(regs,
866 &current->thread.fpu, 0);
867 if (sig)
868 force_sig(sig, current);
869 else
870 mt_ase_fp_affinity();
871 }
872
873 return;
874
875 case 2:
876 case 3:
877 break;
878 }
879
880 force_sig(SIGILL, current);
881 }
882
883 asmlinkage void do_mdmx(struct pt_regs *regs)
884 {
885 force_sig(SIGILL, current);
886 }
887
888 asmlinkage void do_watch(struct pt_regs *regs)
889 {
890 if (board_watchpoint_handler) {
891 (*board_watchpoint_handler)(regs);
892 return;
893 }
894
895 /*
896 * We use the watch exception where available to detect stack
897 * overflows.
898 */
899 dump_tlb_all();
900 show_regs(regs);
901 panic("Caught WATCH exception - probably caused by stack overflow.");
902 }
903
904 asmlinkage void do_mcheck(struct pt_regs *regs)
905 {
906 const int field = 2 * sizeof(unsigned long);
907 int multi_match = regs->cp0_status & ST0_TS;
908
909 show_regs(regs);
910
911 if (multi_match) {
912 printk("Index : %0x\n", read_c0_index());
913 printk("Pagemask: %0x\n", read_c0_pagemask());
914 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
915 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
916 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
917 printk("\n");
918 dump_tlb_all();
919 }
920
921 show_code((unsigned int __user *) regs->cp0_epc);
922
923 /*
924 * Some chips may have other causes of machine check (e.g. SB1
925 * graduation timer)
926 */
927 panic("Caught Machine Check exception - %scaused by multiple "
928 "matching entries in the TLB.",
929 (multi_match) ? "" : "not ");
930 }
931
932 asmlinkage void do_mt(struct pt_regs *regs)
933 {
934 int subcode;
935
936 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
937 >> VPECONTROL_EXCPT_SHIFT;
938 switch (subcode) {
939 case 0:
940 printk(KERN_DEBUG "Thread Underflow\n");
941 break;
942 case 1:
943 printk(KERN_DEBUG "Thread Overflow\n");
944 break;
945 case 2:
946 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
947 break;
948 case 3:
949 printk(KERN_DEBUG "Gating Storage Exception\n");
950 break;
951 case 4:
952 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
953 break;
954 case 5:
955 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
956 break;
957 default:
958 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
959 subcode);
960 break;
961 }
962 die_if_kernel("MIPS MT Thread exception in kernel", regs);
963
964 force_sig(SIGILL, current);
965 }
966
967
968 asmlinkage void do_dsp(struct pt_regs *regs)
969 {
970 if (cpu_has_dsp)
971 panic("Unexpected DSP exception\n");
972
973 force_sig(SIGILL, current);
974 }
975
976 asmlinkage void do_reserved(struct pt_regs *regs)
977 {
978 /*
979 * Game over - no way to handle this if it ever occurs. Most probably
980 * caused by a new unknown cpu type or after another deadly
981 * hard/software error.
982 */
983 show_regs(regs);
984 panic("Caught reserved exception %ld - should not happen.",
985 (regs->cp0_cause & 0x7f) >> 2);
986 }
987
988 /*
989 * Some MIPS CPUs can enable/disable for cache parity detection, but do
990 * it different ways.
991 */
992 static inline void parity_protection_init(void)
993 {
994 switch (current_cpu_type()) {
995 case CPU_24K:
996 case CPU_34K:
997 case CPU_5KC:
998 write_c0_ecc(0x80000000);
999 back_to_back_c0_hazard();
1000 /* Set the PE bit (bit 31) in the c0_errctl register. */
1001 printk(KERN_INFO "Cache parity protection %sabled\n",
1002 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1003 break;
1004 case CPU_20KC:
1005 case CPU_25KF:
1006 /* Clear the DE bit (bit 16) in the c0_status register. */
1007 printk(KERN_INFO "Enable cache parity protection for "
1008 "MIPS 20KC/25KF CPUs.\n");
1009 clear_c0_status(ST0_DE);
1010 break;
1011 default:
1012 break;
1013 }
1014 }
1015
1016 asmlinkage void cache_parity_error(void)
1017 {
1018 const int field = 2 * sizeof(unsigned long);
1019 unsigned int reg_val;
1020
1021 /* For the moment, report the problem and hang. */
1022 printk("Cache error exception:\n");
1023 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1024 reg_val = read_c0_cacheerr();
1025 printk("c0_cacheerr == %08x\n", reg_val);
1026
1027 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1028 reg_val & (1<<30) ? "secondary" : "primary",
1029 reg_val & (1<<31) ? "data" : "insn");
1030 printk("Error bits: %s%s%s%s%s%s%s\n",
1031 reg_val & (1<<29) ? "ED " : "",
1032 reg_val & (1<<28) ? "ET " : "",
1033 reg_val & (1<<26) ? "EE " : "",
1034 reg_val & (1<<25) ? "EB " : "",
1035 reg_val & (1<<24) ? "EI " : "",
1036 reg_val & (1<<23) ? "E1 " : "",
1037 reg_val & (1<<22) ? "E0 " : "");
1038 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1039
1040 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1041 if (reg_val & (1<<22))
1042 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1043
1044 if (reg_val & (1<<23))
1045 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1046 #endif
1047
1048 panic("Can't handle the cache error!");
1049 }
1050
1051 /*
1052 * SDBBP EJTAG debug exception handler.
1053 * We skip the instruction and return to the next instruction.
1054 */
1055 void ejtag_exception_handler(struct pt_regs *regs)
1056 {
1057 const int field = 2 * sizeof(unsigned long);
1058 unsigned long depc, old_epc;
1059 unsigned int debug;
1060
1061 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1062 depc = read_c0_depc();
1063 debug = read_c0_debug();
1064 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1065 if (debug & 0x80000000) {
1066 /*
1067 * In branch delay slot.
1068 * We cheat a little bit here and use EPC to calculate the
1069 * debug return address (DEPC). EPC is restored after the
1070 * calculation.
1071 */
1072 old_epc = regs->cp0_epc;
1073 regs->cp0_epc = depc;
1074 __compute_return_epc(regs);
1075 depc = regs->cp0_epc;
1076 regs->cp0_epc = old_epc;
1077 } else
1078 depc += 4;
1079 write_c0_depc(depc);
1080
1081 #if 0
1082 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1083 write_c0_debug(debug | 0x100);
1084 #endif
1085 }
1086
1087 /*
1088 * NMI exception handler.
1089 */
1090 NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs)
1091 {
1092 bust_spinlocks(1);
1093 printk("NMI taken!!!!\n");
1094 die("NMI", regs);
1095 }
1096
1097 #define VECTORSPACING 0x100 /* for EI/VI mode */
1098
1099 unsigned long ebase;
1100 unsigned long exception_handlers[32];
1101 unsigned long vi_handlers[64];
1102
1103 /*
1104 * As a side effect of the way this is implemented we're limited
1105 * to interrupt handlers in the address range from
1106 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1107 */
1108 void *set_except_vector(int n, void *addr)
1109 {
1110 unsigned long handler = (unsigned long) addr;
1111 unsigned long old_handler = exception_handlers[n];
1112
1113 exception_handlers[n] = handler;
1114 if (n == 0 && cpu_has_divec) {
1115 *(u32 *)(ebase + 0x200) = 0x08000000 |
1116 (0x03ffffff & (handler >> 2));
1117 flush_icache_range(ebase + 0x200, ebase + 0x204);
1118 }
1119 return (void *)old_handler;
1120 }
1121
1122 static asmlinkage void do_default_vi(void)
1123 {
1124 show_regs(get_irq_regs());
1125 panic("Caught unexpected vectored interrupt.");
1126 }
1127
1128 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1129 {
1130 unsigned long handler;
1131 unsigned long old_handler = vi_handlers[n];
1132 int srssets = current_cpu_data.srsets;
1133 u32 *w;
1134 unsigned char *b;
1135
1136 if (!cpu_has_veic && !cpu_has_vint)
1137 BUG();
1138
1139 if (addr == NULL) {
1140 handler = (unsigned long) do_default_vi;
1141 srs = 0;
1142 } else
1143 handler = (unsigned long) addr;
1144 vi_handlers[n] = (unsigned long) addr;
1145
1146 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1147
1148 if (srs >= srssets)
1149 panic("Shadow register set %d not supported", srs);
1150
1151 if (cpu_has_veic) {
1152 if (board_bind_eic_interrupt)
1153 board_bind_eic_interrupt(n, srs);
1154 } else if (cpu_has_vint) {
1155 /* SRSMap is only defined if shadow sets are implemented */
1156 if (srssets > 1)
1157 change_c0_srsmap(0xf << n*4, srs << n*4);
1158 }
1159
1160 if (srs == 0) {
1161 /*
1162 * If no shadow set is selected then use the default handler
1163 * that does normal register saving and a standard interrupt exit
1164 */
1165
1166 extern char except_vec_vi, except_vec_vi_lui;
1167 extern char except_vec_vi_ori, except_vec_vi_end;
1168 #ifdef CONFIG_MIPS_MT_SMTC
1169 /*
1170 * We need to provide the SMTC vectored interrupt handler
1171 * not only with the address of the handler, but with the
1172 * Status.IM bit to be masked before going there.
1173 */
1174 extern char except_vec_vi_mori;
1175 const int mori_offset = &except_vec_vi_mori - &except_vec_vi;
1176 #endif /* CONFIG_MIPS_MT_SMTC */
1177 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1178 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1179 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1180
1181 if (handler_len > VECTORSPACING) {
1182 /*
1183 * Sigh... panicing won't help as the console
1184 * is probably not configured :(
1185 */
1186 panic("VECTORSPACING too small");
1187 }
1188
1189 memcpy(b, &except_vec_vi, handler_len);
1190 #ifdef CONFIG_MIPS_MT_SMTC
1191 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1192
1193 w = (u32 *)(b + mori_offset);
1194 *w = (*w & 0xffff0000) | (0x100 << n);
1195 #endif /* CONFIG_MIPS_MT_SMTC */
1196 w = (u32 *)(b + lui_offset);
1197 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1198 w = (u32 *)(b + ori_offset);
1199 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1200 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1201 }
1202 else {
1203 /*
1204 * In other cases jump directly to the interrupt handler
1205 *
1206 * It is the handlers responsibility to save registers if required
1207 * (eg hi/lo) and return from the exception using "eret"
1208 */
1209 w = (u32 *)b;
1210 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1211 *w = 0;
1212 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1213 }
1214
1215 return (void *)old_handler;
1216 }
1217
1218 void *set_vi_handler(int n, vi_handler_t addr)
1219 {
1220 return set_vi_srs_handler(n, addr, 0);
1221 }
1222
1223 /*
1224 * This is used by native signal handling
1225 */
1226 asmlinkage int (*save_fp_context)(struct sigcontext __user *sc);
1227 asmlinkage int (*restore_fp_context)(struct sigcontext __user *sc);
1228
1229 extern asmlinkage int _save_fp_context(struct sigcontext __user *sc);
1230 extern asmlinkage int _restore_fp_context(struct sigcontext __user *sc);
1231
1232 extern asmlinkage int fpu_emulator_save_context(struct sigcontext __user *sc);
1233 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext __user *sc);
1234
1235 #ifdef CONFIG_SMP
1236 static int smp_save_fp_context(struct sigcontext __user *sc)
1237 {
1238 return raw_cpu_has_fpu
1239 ? _save_fp_context(sc)
1240 : fpu_emulator_save_context(sc);
1241 }
1242
1243 static int smp_restore_fp_context(struct sigcontext __user *sc)
1244 {
1245 return raw_cpu_has_fpu
1246 ? _restore_fp_context(sc)
1247 : fpu_emulator_restore_context(sc);
1248 }
1249 #endif
1250
1251 static inline void signal_init(void)
1252 {
1253 #ifdef CONFIG_SMP
1254 /* For now just do the cpu_has_fpu check when the functions are invoked */
1255 save_fp_context = smp_save_fp_context;
1256 restore_fp_context = smp_restore_fp_context;
1257 #else
1258 if (cpu_has_fpu) {
1259 save_fp_context = _save_fp_context;
1260 restore_fp_context = _restore_fp_context;
1261 } else {
1262 save_fp_context = fpu_emulator_save_context;
1263 restore_fp_context = fpu_emulator_restore_context;
1264 }
1265 #endif
1266 }
1267
1268 #ifdef CONFIG_MIPS32_COMPAT
1269
1270 /*
1271 * This is used by 32-bit signal stuff on the 64-bit kernel
1272 */
1273 asmlinkage int (*save_fp_context32)(struct sigcontext32 __user *sc);
1274 asmlinkage int (*restore_fp_context32)(struct sigcontext32 __user *sc);
1275
1276 extern asmlinkage int _save_fp_context32(struct sigcontext32 __user *sc);
1277 extern asmlinkage int _restore_fp_context32(struct sigcontext32 __user *sc);
1278
1279 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 __user *sc);
1280 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 __user *sc);
1281
1282 static inline void signal32_init(void)
1283 {
1284 if (cpu_has_fpu) {
1285 save_fp_context32 = _save_fp_context32;
1286 restore_fp_context32 = _restore_fp_context32;
1287 } else {
1288 save_fp_context32 = fpu_emulator_save_context32;
1289 restore_fp_context32 = fpu_emulator_restore_context32;
1290 }
1291 }
1292 #endif
1293
1294 extern void cpu_cache_init(void);
1295 extern void tlb_init(void);
1296 extern void flush_tlb_handlers(void);
1297
1298 /*
1299 * Timer interrupt
1300 */
1301 int cp0_compare_irq;
1302
1303 /*
1304 * Performance counter IRQ or -1 if shared with timer
1305 */
1306 int cp0_perfcount_irq;
1307 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1308
1309 void __cpuinit per_cpu_trap_init(void)
1310 {
1311 unsigned int cpu = smp_processor_id();
1312 unsigned int status_set = ST0_CU0;
1313 #ifdef CONFIG_MIPS_MT_SMTC
1314 int secondaryTC = 0;
1315 int bootTC = (cpu == 0);
1316
1317 /*
1318 * Only do per_cpu_trap_init() for first TC of Each VPE.
1319 * Note that this hack assumes that the SMTC init code
1320 * assigns TCs consecutively and in ascending order.
1321 */
1322
1323 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1324 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1325 secondaryTC = 1;
1326 #endif /* CONFIG_MIPS_MT_SMTC */
1327
1328 /*
1329 * Disable coprocessors and select 32-bit or 64-bit addressing
1330 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1331 * flag that some firmware may have left set and the TS bit (for
1332 * IP27). Set XX for ISA IV code to work.
1333 */
1334 #ifdef CONFIG_64BIT
1335 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1336 #endif
1337 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1338 status_set |= ST0_XX;
1339 if (cpu_has_dsp)
1340 status_set |= ST0_MX;
1341
1342 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1343 status_set);
1344
1345 #ifdef CONFIG_CPU_MIPSR2
1346 if (cpu_has_mips_r2) {
1347 unsigned int enable = 0x0000000f;
1348
1349 if (cpu_has_userlocal)
1350 enable |= (1 << 29);
1351
1352 write_c0_hwrena(enable);
1353 }
1354 #endif
1355
1356 #ifdef CONFIG_MIPS_MT_SMTC
1357 if (!secondaryTC) {
1358 #endif /* CONFIG_MIPS_MT_SMTC */
1359
1360 if (cpu_has_veic || cpu_has_vint) {
1361 write_c0_ebase(ebase);
1362 /* Setting vector spacing enables EI/VI mode */
1363 change_c0_intctl(0x3e0, VECTORSPACING);
1364 }
1365 if (cpu_has_divec) {
1366 if (cpu_has_mipsmt) {
1367 unsigned int vpflags = dvpe();
1368 set_c0_cause(CAUSEF_IV);
1369 evpe(vpflags);
1370 } else
1371 set_c0_cause(CAUSEF_IV);
1372 }
1373
1374 /*
1375 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1376 *
1377 * o read IntCtl.IPTI to determine the timer interrupt
1378 * o read IntCtl.IPPCI to determine the performance counter interrupt
1379 */
1380 if (cpu_has_mips_r2) {
1381 cp0_compare_irq = (read_c0_intctl() >> 29) & 7;
1382 cp0_perfcount_irq = (read_c0_intctl() >> 26) & 7;
1383 if (cp0_perfcount_irq == cp0_compare_irq)
1384 cp0_perfcount_irq = -1;
1385 } else {
1386 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1387 cp0_perfcount_irq = -1;
1388 }
1389
1390 #ifdef CONFIG_MIPS_MT_SMTC
1391 }
1392 #endif /* CONFIG_MIPS_MT_SMTC */
1393
1394 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1395 TLBMISS_HANDLER_SETUP();
1396
1397 atomic_inc(&init_mm.mm_count);
1398 current->active_mm = &init_mm;
1399 BUG_ON(current->mm);
1400 enter_lazy_tlb(&init_mm, current);
1401
1402 #ifdef CONFIG_MIPS_MT_SMTC
1403 if (bootTC) {
1404 #endif /* CONFIG_MIPS_MT_SMTC */
1405 cpu_cache_init();
1406 tlb_init();
1407 #ifdef CONFIG_MIPS_MT_SMTC
1408 } else if (!secondaryTC) {
1409 /*
1410 * First TC in non-boot VPE must do subset of tlb_init()
1411 * for MMU countrol registers.
1412 */
1413 write_c0_pagemask(PM_DEFAULT_MASK);
1414 write_c0_wired(0);
1415 }
1416 #endif /* CONFIG_MIPS_MT_SMTC */
1417 }
1418
1419 /* Install CPU exception handler */
1420 void __init set_handler(unsigned long offset, void *addr, unsigned long size)
1421 {
1422 memcpy((void *)(ebase + offset), addr, size);
1423 flush_icache_range(ebase + offset, ebase + offset + size);
1424 }
1425
1426 static char panic_null_cerr[] __cpuinitdata =
1427 "Trying to set NULL cache error exception handler";
1428
1429 /* Install uncached CPU exception handler */
1430 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1431 unsigned long size)
1432 {
1433 #ifdef CONFIG_32BIT
1434 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1435 #endif
1436 #ifdef CONFIG_64BIT
1437 unsigned long uncached_ebase = TO_UNCAC(ebase);
1438 #endif
1439
1440 if (!addr)
1441 panic(panic_null_cerr);
1442
1443 memcpy((void *)(uncached_ebase + offset), addr, size);
1444 }
1445
1446 static int __initdata rdhwr_noopt;
1447 static int __init set_rdhwr_noopt(char *str)
1448 {
1449 rdhwr_noopt = 1;
1450 return 1;
1451 }
1452
1453 __setup("rdhwr_noopt", set_rdhwr_noopt);
1454
1455 void __init trap_init(void)
1456 {
1457 extern char except_vec3_generic, except_vec3_r4000;
1458 extern char except_vec4;
1459 unsigned long i;
1460
1461 if (cpu_has_veic || cpu_has_vint)
1462 ebase = (unsigned long) alloc_bootmem_low_pages(0x200 + VECTORSPACING*64);
1463 else
1464 ebase = CAC_BASE;
1465
1466 per_cpu_trap_init();
1467
1468 /*
1469 * Copy the generic exception handlers to their final destination.
1470 * This will be overriden later as suitable for a particular
1471 * configuration.
1472 */
1473 set_handler(0x180, &except_vec3_generic, 0x80);
1474
1475 /*
1476 * Setup default vectors
1477 */
1478 for (i = 0; i <= 31; i++)
1479 set_except_vector(i, handle_reserved);
1480
1481 /*
1482 * Copy the EJTAG debug exception vector handler code to it's final
1483 * destination.
1484 */
1485 if (cpu_has_ejtag && board_ejtag_handler_setup)
1486 board_ejtag_handler_setup();
1487
1488 /*
1489 * Only some CPUs have the watch exceptions.
1490 */
1491 if (cpu_has_watch)
1492 set_except_vector(23, handle_watch);
1493
1494 /*
1495 * Initialise interrupt handlers
1496 */
1497 if (cpu_has_veic || cpu_has_vint) {
1498 int nvec = cpu_has_veic ? 64 : 8;
1499 for (i = 0; i < nvec; i++)
1500 set_vi_handler(i, NULL);
1501 }
1502 else if (cpu_has_divec)
1503 set_handler(0x200, &except_vec4, 0x8);
1504
1505 /*
1506 * Some CPUs can enable/disable for cache parity detection, but does
1507 * it different ways.
1508 */
1509 parity_protection_init();
1510
1511 /*
1512 * The Data Bus Errors / Instruction Bus Errors are signaled
1513 * by external hardware. Therefore these two exceptions
1514 * may have board specific handlers.
1515 */
1516 if (board_be_init)
1517 board_be_init();
1518
1519 set_except_vector(0, handle_int);
1520 set_except_vector(1, handle_tlbm);
1521 set_except_vector(2, handle_tlbl);
1522 set_except_vector(3, handle_tlbs);
1523
1524 set_except_vector(4, handle_adel);
1525 set_except_vector(5, handle_ades);
1526
1527 set_except_vector(6, handle_ibe);
1528 set_except_vector(7, handle_dbe);
1529
1530 set_except_vector(8, handle_sys);
1531 set_except_vector(9, handle_bp);
1532 set_except_vector(10, rdhwr_noopt ? handle_ri :
1533 (cpu_has_vtag_icache ?
1534 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1535 set_except_vector(11, handle_cpu);
1536 set_except_vector(12, handle_ov);
1537 set_except_vector(13, handle_tr);
1538
1539 if (current_cpu_type() == CPU_R6000 ||
1540 current_cpu_type() == CPU_R6000A) {
1541 /*
1542 * The R6000 is the only R-series CPU that features a machine
1543 * check exception (similar to the R4000 cache error) and
1544 * unaligned ldc1/sdc1 exception. The handlers have not been
1545 * written yet. Well, anyway there is no R6000 machine on the
1546 * current list of targets for Linux/MIPS.
1547 * (Duh, crap, there is someone with a triple R6k machine)
1548 */
1549 //set_except_vector(14, handle_mc);
1550 //set_except_vector(15, handle_ndc);
1551 }
1552
1553
1554 if (board_nmi_handler_setup)
1555 board_nmi_handler_setup();
1556
1557 if (cpu_has_fpu && !cpu_has_nofpuex)
1558 set_except_vector(15, handle_fpe);
1559
1560 set_except_vector(22, handle_mdmx);
1561
1562 if (cpu_has_mcheck)
1563 set_except_vector(24, handle_mcheck);
1564
1565 if (cpu_has_mipsmt)
1566 set_except_vector(25, handle_mt);
1567
1568 set_except_vector(26, handle_dsp);
1569
1570 if (cpu_has_vce)
1571 /* Special exception: R4[04]00 uses also the divec space. */
1572 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1573 else if (cpu_has_4kex)
1574 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1575 else
1576 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1577
1578 signal_init();
1579 #ifdef CONFIG_MIPS32_COMPAT
1580 signal32_init();
1581 #endif
1582
1583 flush_icache_range(ebase, ebase + 0x400);
1584 flush_tlb_handlers();
1585 }