]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/mips/kernel/traps.c
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[mirror_ubuntu-zesty-kernel.git] / arch / mips / kernel / traps.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15 #include <linux/bug.h>
16 #include <linux/compiler.h>
17 #include <linux/context_tracking.h>
18 #include <linux/kexec.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/spinlock.h>
26 #include <linux/kallsyms.h>
27 #include <linux/bootmem.h>
28 #include <linux/interrupt.h>
29 #include <linux/ptrace.h>
30 #include <linux/kgdb.h>
31 #include <linux/kdebug.h>
32 #include <linux/kprobes.h>
33 #include <linux/notifier.h>
34 #include <linux/kdb.h>
35 #include <linux/irq.h>
36 #include <linux/perf_event.h>
37
38 #include <asm/bootinfo.h>
39 #include <asm/branch.h>
40 #include <asm/break.h>
41 #include <asm/cop2.h>
42 #include <asm/cpu.h>
43 #include <asm/cpu-type.h>
44 #include <asm/dsp.h>
45 #include <asm/fpu.h>
46 #include <asm/fpu_emulator.h>
47 #include <asm/idle.h>
48 #include <asm/mipsregs.h>
49 #include <asm/mipsmtregs.h>
50 #include <asm/module.h>
51 #include <asm/msa.h>
52 #include <asm/pgtable.h>
53 #include <asm/ptrace.h>
54 #include <asm/sections.h>
55 #include <asm/tlbdebug.h>
56 #include <asm/traps.h>
57 #include <asm/uaccess.h>
58 #include <asm/watch.h>
59 #include <asm/mmu_context.h>
60 #include <asm/types.h>
61 #include <asm/stacktrace.h>
62 #include <asm/uasm.h>
63
64 extern void check_wait(void);
65 extern asmlinkage void rollback_handle_int(void);
66 extern asmlinkage void handle_int(void);
67 extern u32 handle_tlbl[];
68 extern u32 handle_tlbs[];
69 extern u32 handle_tlbm[];
70 extern asmlinkage void handle_adel(void);
71 extern asmlinkage void handle_ades(void);
72 extern asmlinkage void handle_ibe(void);
73 extern asmlinkage void handle_dbe(void);
74 extern asmlinkage void handle_sys(void);
75 extern asmlinkage void handle_bp(void);
76 extern asmlinkage void handle_ri(void);
77 extern asmlinkage void handle_ri_rdhwr_vivt(void);
78 extern asmlinkage void handle_ri_rdhwr(void);
79 extern asmlinkage void handle_cpu(void);
80 extern asmlinkage void handle_ov(void);
81 extern asmlinkage void handle_tr(void);
82 extern asmlinkage void handle_msa_fpe(void);
83 extern asmlinkage void handle_fpe(void);
84 extern asmlinkage void handle_ftlb(void);
85 extern asmlinkage void handle_msa(void);
86 extern asmlinkage void handle_mdmx(void);
87 extern asmlinkage void handle_watch(void);
88 extern asmlinkage void handle_mt(void);
89 extern asmlinkage void handle_dsp(void);
90 extern asmlinkage void handle_mcheck(void);
91 extern asmlinkage void handle_reserved(void);
92
93 void (*board_be_init)(void);
94 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
95 void (*board_nmi_handler_setup)(void);
96 void (*board_ejtag_handler_setup)(void);
97 void (*board_bind_eic_interrupt)(int irq, int regset);
98 void (*board_ebase_setup)(void);
99 void(*board_cache_error_setup)(void);
100
101 static void show_raw_backtrace(unsigned long reg29)
102 {
103 unsigned long *sp = (unsigned long *)(reg29 & ~3);
104 unsigned long addr;
105
106 printk("Call Trace:");
107 #ifdef CONFIG_KALLSYMS
108 printk("\n");
109 #endif
110 while (!kstack_end(sp)) {
111 unsigned long __user *p =
112 (unsigned long __user *)(unsigned long)sp++;
113 if (__get_user(addr, p)) {
114 printk(" (Bad stack address)");
115 break;
116 }
117 if (__kernel_text_address(addr))
118 print_ip_sym(addr);
119 }
120 printk("\n");
121 }
122
123 #ifdef CONFIG_KALLSYMS
124 int raw_show_trace;
125 static int __init set_raw_show_trace(char *str)
126 {
127 raw_show_trace = 1;
128 return 1;
129 }
130 __setup("raw_show_trace", set_raw_show_trace);
131 #endif
132
133 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
134 {
135 unsigned long sp = regs->regs[29];
136 unsigned long ra = regs->regs[31];
137 unsigned long pc = regs->cp0_epc;
138
139 if (!task)
140 task = current;
141
142 if (raw_show_trace || !__kernel_text_address(pc)) {
143 show_raw_backtrace(sp);
144 return;
145 }
146 printk("Call Trace:\n");
147 do {
148 print_ip_sym(pc);
149 pc = unwind_stack(task, &sp, pc, &ra);
150 } while (pc);
151 printk("\n");
152 }
153
154 /*
155 * This routine abuses get_user()/put_user() to reference pointers
156 * with at least a bit of error checking ...
157 */
158 static void show_stacktrace(struct task_struct *task,
159 const struct pt_regs *regs)
160 {
161 const int field = 2 * sizeof(unsigned long);
162 long stackdata;
163 int i;
164 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
165
166 printk("Stack :");
167 i = 0;
168 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
169 if (i && ((i % (64 / field)) == 0))
170 printk("\n ");
171 if (i > 39) {
172 printk(" ...");
173 break;
174 }
175
176 if (__get_user(stackdata, sp++)) {
177 printk(" (Bad stack address)");
178 break;
179 }
180
181 printk(" %0*lx", field, stackdata);
182 i++;
183 }
184 printk("\n");
185 show_backtrace(task, regs);
186 }
187
188 void show_stack(struct task_struct *task, unsigned long *sp)
189 {
190 struct pt_regs regs;
191 if (sp) {
192 regs.regs[29] = (unsigned long)sp;
193 regs.regs[31] = 0;
194 regs.cp0_epc = 0;
195 } else {
196 if (task && task != current) {
197 regs.regs[29] = task->thread.reg29;
198 regs.regs[31] = 0;
199 regs.cp0_epc = task->thread.reg31;
200 #ifdef CONFIG_KGDB_KDB
201 } else if (atomic_read(&kgdb_active) != -1 &&
202 kdb_current_regs) {
203 memcpy(&regs, kdb_current_regs, sizeof(regs));
204 #endif /* CONFIG_KGDB_KDB */
205 } else {
206 prepare_frametrace(&regs);
207 }
208 }
209 show_stacktrace(task, &regs);
210 }
211
212 static void show_code(unsigned int __user *pc)
213 {
214 long i;
215 unsigned short __user *pc16 = NULL;
216
217 printk("\nCode:");
218
219 if ((unsigned long)pc & 1)
220 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
221 for(i = -3 ; i < 6 ; i++) {
222 unsigned int insn;
223 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
224 printk(" (Bad address in epc)\n");
225 break;
226 }
227 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
228 }
229 }
230
231 static void __show_regs(const struct pt_regs *regs)
232 {
233 const int field = 2 * sizeof(unsigned long);
234 unsigned int cause = regs->cp0_cause;
235 int i;
236
237 show_regs_print_info(KERN_DEFAULT);
238
239 /*
240 * Saved main processor registers
241 */
242 for (i = 0; i < 32; ) {
243 if ((i % 4) == 0)
244 printk("$%2d :", i);
245 if (i == 0)
246 printk(" %0*lx", field, 0UL);
247 else if (i == 26 || i == 27)
248 printk(" %*s", field, "");
249 else
250 printk(" %0*lx", field, regs->regs[i]);
251
252 i++;
253 if ((i % 4) == 0)
254 printk("\n");
255 }
256
257 #ifdef CONFIG_CPU_HAS_SMARTMIPS
258 printk("Acx : %0*lx\n", field, regs->acx);
259 #endif
260 printk("Hi : %0*lx\n", field, regs->hi);
261 printk("Lo : %0*lx\n", field, regs->lo);
262
263 /*
264 * Saved cp0 registers
265 */
266 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
267 (void *) regs->cp0_epc);
268 printk(" %s\n", print_tainted());
269 printk("ra : %0*lx %pS\n", field, regs->regs[31],
270 (void *) regs->regs[31]);
271
272 printk("Status: %08x ", (uint32_t) regs->cp0_status);
273
274 if (cpu_has_3kex) {
275 if (regs->cp0_status & ST0_KUO)
276 printk("KUo ");
277 if (regs->cp0_status & ST0_IEO)
278 printk("IEo ");
279 if (regs->cp0_status & ST0_KUP)
280 printk("KUp ");
281 if (regs->cp0_status & ST0_IEP)
282 printk("IEp ");
283 if (regs->cp0_status & ST0_KUC)
284 printk("KUc ");
285 if (regs->cp0_status & ST0_IEC)
286 printk("IEc ");
287 } else if (cpu_has_4kex) {
288 if (regs->cp0_status & ST0_KX)
289 printk("KX ");
290 if (regs->cp0_status & ST0_SX)
291 printk("SX ");
292 if (regs->cp0_status & ST0_UX)
293 printk("UX ");
294 switch (regs->cp0_status & ST0_KSU) {
295 case KSU_USER:
296 printk("USER ");
297 break;
298 case KSU_SUPERVISOR:
299 printk("SUPERVISOR ");
300 break;
301 case KSU_KERNEL:
302 printk("KERNEL ");
303 break;
304 default:
305 printk("BAD_MODE ");
306 break;
307 }
308 if (regs->cp0_status & ST0_ERL)
309 printk("ERL ");
310 if (regs->cp0_status & ST0_EXL)
311 printk("EXL ");
312 if (regs->cp0_status & ST0_IE)
313 printk("IE ");
314 }
315 printk("\n");
316
317 printk("Cause : %08x\n", cause);
318
319 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
320 if (1 <= cause && cause <= 5)
321 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
322
323 printk("PrId : %08x (%s)\n", read_c0_prid(),
324 cpu_name_string());
325 }
326
327 /*
328 * FIXME: really the generic show_regs should take a const pointer argument.
329 */
330 void show_regs(struct pt_regs *regs)
331 {
332 __show_regs((struct pt_regs *)regs);
333 }
334
335 void show_registers(struct pt_regs *regs)
336 {
337 const int field = 2 * sizeof(unsigned long);
338 mm_segment_t old_fs = get_fs();
339
340 __show_regs(regs);
341 print_modules();
342 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
343 current->comm, current->pid, current_thread_info(), current,
344 field, current_thread_info()->tp_value);
345 if (cpu_has_userlocal) {
346 unsigned long tls;
347
348 tls = read_c0_userlocal();
349 if (tls != current_thread_info()->tp_value)
350 printk("*HwTLS: %0*lx\n", field, tls);
351 }
352
353 if (!user_mode(regs))
354 /* Necessary for getting the correct stack content */
355 set_fs(KERNEL_DS);
356 show_stacktrace(current, regs);
357 show_code((unsigned int __user *) regs->cp0_epc);
358 printk("\n");
359 set_fs(old_fs);
360 }
361
362 static int regs_to_trapnr(struct pt_regs *regs)
363 {
364 return (regs->cp0_cause >> 2) & 0x1f;
365 }
366
367 static DEFINE_RAW_SPINLOCK(die_lock);
368
369 void __noreturn die(const char *str, struct pt_regs *regs)
370 {
371 static int die_counter;
372 int sig = SIGSEGV;
373 #ifdef CONFIG_MIPS_MT_SMTC
374 unsigned long dvpret;
375 #endif /* CONFIG_MIPS_MT_SMTC */
376
377 oops_enter();
378
379 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
380 SIGSEGV) == NOTIFY_STOP)
381 sig = 0;
382
383 console_verbose();
384 raw_spin_lock_irq(&die_lock);
385 #ifdef CONFIG_MIPS_MT_SMTC
386 dvpret = dvpe();
387 #endif /* CONFIG_MIPS_MT_SMTC */
388 bust_spinlocks(1);
389 #ifdef CONFIG_MIPS_MT_SMTC
390 mips_mt_regdump(dvpret);
391 #endif /* CONFIG_MIPS_MT_SMTC */
392
393 printk("%s[#%d]:\n", str, ++die_counter);
394 show_registers(regs);
395 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
396 raw_spin_unlock_irq(&die_lock);
397
398 oops_exit();
399
400 if (in_interrupt())
401 panic("Fatal exception in interrupt");
402
403 if (panic_on_oops) {
404 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
405 ssleep(5);
406 panic("Fatal exception");
407 }
408
409 if (regs && kexec_should_crash(current))
410 crash_kexec(regs);
411
412 do_exit(sig);
413 }
414
415 extern struct exception_table_entry __start___dbe_table[];
416 extern struct exception_table_entry __stop___dbe_table[];
417
418 __asm__(
419 " .section __dbe_table, \"a\"\n"
420 " .previous \n");
421
422 /* Given an address, look for it in the exception tables. */
423 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
424 {
425 const struct exception_table_entry *e;
426
427 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
428 if (!e)
429 e = search_module_dbetables(addr);
430 return e;
431 }
432
433 asmlinkage void do_be(struct pt_regs *regs)
434 {
435 const int field = 2 * sizeof(unsigned long);
436 const struct exception_table_entry *fixup = NULL;
437 int data = regs->cp0_cause & 4;
438 int action = MIPS_BE_FATAL;
439 enum ctx_state prev_state;
440
441 prev_state = exception_enter();
442 /* XXX For now. Fixme, this searches the wrong table ... */
443 if (data && !user_mode(regs))
444 fixup = search_dbe_tables(exception_epc(regs));
445
446 if (fixup)
447 action = MIPS_BE_FIXUP;
448
449 if (board_be_handler)
450 action = board_be_handler(regs, fixup != NULL);
451
452 switch (action) {
453 case MIPS_BE_DISCARD:
454 goto out;
455 case MIPS_BE_FIXUP:
456 if (fixup) {
457 regs->cp0_epc = fixup->nextinsn;
458 goto out;
459 }
460 break;
461 default:
462 break;
463 }
464
465 /*
466 * Assume it would be too dangerous to continue ...
467 */
468 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
469 data ? "Data" : "Instruction",
470 field, regs->cp0_epc, field, regs->regs[31]);
471 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
472 SIGBUS) == NOTIFY_STOP)
473 goto out;
474
475 die_if_kernel("Oops", regs);
476 force_sig(SIGBUS, current);
477
478 out:
479 exception_exit(prev_state);
480 }
481
482 /*
483 * ll/sc, rdhwr, sync emulation
484 */
485
486 #define OPCODE 0xfc000000
487 #define BASE 0x03e00000
488 #define RT 0x001f0000
489 #define OFFSET 0x0000ffff
490 #define LL 0xc0000000
491 #define SC 0xe0000000
492 #define SPEC0 0x00000000
493 #define SPEC3 0x7c000000
494 #define RD 0x0000f800
495 #define FUNC 0x0000003f
496 #define SYNC 0x0000000f
497 #define RDHWR 0x0000003b
498
499 /* microMIPS definitions */
500 #define MM_POOL32A_FUNC 0xfc00ffff
501 #define MM_RDHWR 0x00006b3c
502 #define MM_RS 0x001f0000
503 #define MM_RT 0x03e00000
504
505 /*
506 * The ll_bit is cleared by r*_switch.S
507 */
508
509 unsigned int ll_bit;
510 struct task_struct *ll_task;
511
512 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
513 {
514 unsigned long value, __user *vaddr;
515 long offset;
516
517 /*
518 * analyse the ll instruction that just caused a ri exception
519 * and put the referenced address to addr.
520 */
521
522 /* sign extend offset */
523 offset = opcode & OFFSET;
524 offset <<= 16;
525 offset >>= 16;
526
527 vaddr = (unsigned long __user *)
528 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
529
530 if ((unsigned long)vaddr & 3)
531 return SIGBUS;
532 if (get_user(value, vaddr))
533 return SIGSEGV;
534
535 preempt_disable();
536
537 if (ll_task == NULL || ll_task == current) {
538 ll_bit = 1;
539 } else {
540 ll_bit = 0;
541 }
542 ll_task = current;
543
544 preempt_enable();
545
546 regs->regs[(opcode & RT) >> 16] = value;
547
548 return 0;
549 }
550
551 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
552 {
553 unsigned long __user *vaddr;
554 unsigned long reg;
555 long offset;
556
557 /*
558 * analyse the sc instruction that just caused a ri exception
559 * and put the referenced address to addr.
560 */
561
562 /* sign extend offset */
563 offset = opcode & OFFSET;
564 offset <<= 16;
565 offset >>= 16;
566
567 vaddr = (unsigned long __user *)
568 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
569 reg = (opcode & RT) >> 16;
570
571 if ((unsigned long)vaddr & 3)
572 return SIGBUS;
573
574 preempt_disable();
575
576 if (ll_bit == 0 || ll_task != current) {
577 regs->regs[reg] = 0;
578 preempt_enable();
579 return 0;
580 }
581
582 preempt_enable();
583
584 if (put_user(regs->regs[reg], vaddr))
585 return SIGSEGV;
586
587 regs->regs[reg] = 1;
588
589 return 0;
590 }
591
592 /*
593 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
594 * opcodes are supposed to result in coprocessor unusable exceptions if
595 * executed on ll/sc-less processors. That's the theory. In practice a
596 * few processors such as NEC's VR4100 throw reserved instruction exceptions
597 * instead, so we're doing the emulation thing in both exception handlers.
598 */
599 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
600 {
601 if ((opcode & OPCODE) == LL) {
602 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
603 1, regs, 0);
604 return simulate_ll(regs, opcode);
605 }
606 if ((opcode & OPCODE) == SC) {
607 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
608 1, regs, 0);
609 return simulate_sc(regs, opcode);
610 }
611
612 return -1; /* Must be something else ... */
613 }
614
615 /*
616 * Simulate trapping 'rdhwr' instructions to provide user accessible
617 * registers not implemented in hardware.
618 */
619 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
620 {
621 struct thread_info *ti = task_thread_info(current);
622
623 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
624 1, regs, 0);
625 switch (rd) {
626 case 0: /* CPU number */
627 regs->regs[rt] = smp_processor_id();
628 return 0;
629 case 1: /* SYNCI length */
630 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
631 current_cpu_data.icache.linesz);
632 return 0;
633 case 2: /* Read count register */
634 regs->regs[rt] = read_c0_count();
635 return 0;
636 case 3: /* Count register resolution */
637 switch (current_cpu_type()) {
638 case CPU_20KC:
639 case CPU_25KF:
640 regs->regs[rt] = 1;
641 break;
642 default:
643 regs->regs[rt] = 2;
644 }
645 return 0;
646 case 29:
647 regs->regs[rt] = ti->tp_value;
648 return 0;
649 default:
650 return -1;
651 }
652 }
653
654 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
655 {
656 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
657 int rd = (opcode & RD) >> 11;
658 int rt = (opcode & RT) >> 16;
659
660 simulate_rdhwr(regs, rd, rt);
661 return 0;
662 }
663
664 /* Not ours. */
665 return -1;
666 }
667
668 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
669 {
670 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
671 int rd = (opcode & MM_RS) >> 16;
672 int rt = (opcode & MM_RT) >> 21;
673 simulate_rdhwr(regs, rd, rt);
674 return 0;
675 }
676
677 /* Not ours. */
678 return -1;
679 }
680
681 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
682 {
683 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
684 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
685 1, regs, 0);
686 return 0;
687 }
688
689 return -1; /* Must be something else ... */
690 }
691
692 asmlinkage void do_ov(struct pt_regs *regs)
693 {
694 enum ctx_state prev_state;
695 siginfo_t info;
696
697 prev_state = exception_enter();
698 die_if_kernel("Integer overflow", regs);
699
700 info.si_code = FPE_INTOVF;
701 info.si_signo = SIGFPE;
702 info.si_errno = 0;
703 info.si_addr = (void __user *) regs->cp0_epc;
704 force_sig_info(SIGFPE, &info, current);
705 exception_exit(prev_state);
706 }
707
708 int process_fpemu_return(int sig, void __user *fault_addr)
709 {
710 if (sig == SIGSEGV || sig == SIGBUS) {
711 struct siginfo si = {0};
712 si.si_addr = fault_addr;
713 si.si_signo = sig;
714 if (sig == SIGSEGV) {
715 if (find_vma(current->mm, (unsigned long)fault_addr))
716 si.si_code = SEGV_ACCERR;
717 else
718 si.si_code = SEGV_MAPERR;
719 } else {
720 si.si_code = BUS_ADRERR;
721 }
722 force_sig_info(sig, &si, current);
723 return 1;
724 } else if (sig) {
725 force_sig(sig, current);
726 return 1;
727 } else {
728 return 0;
729 }
730 }
731
732 /*
733 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
734 */
735 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
736 {
737 enum ctx_state prev_state;
738 siginfo_t info = {0};
739
740 prev_state = exception_enter();
741 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
742 SIGFPE) == NOTIFY_STOP)
743 goto out;
744 die_if_kernel("FP exception in kernel code", regs);
745
746 if (fcr31 & FPU_CSR_UNI_X) {
747 int sig;
748 void __user *fault_addr = NULL;
749
750 /*
751 * Unimplemented operation exception. If we've got the full
752 * software emulator on-board, let's use it...
753 *
754 * Force FPU to dump state into task/thread context. We're
755 * moving a lot of data here for what is probably a single
756 * instruction, but the alternative is to pre-decode the FP
757 * register operands before invoking the emulator, which seems
758 * a bit extreme for what should be an infrequent event.
759 */
760 /* Ensure 'resume' not overwrite saved fp context again. */
761 lose_fpu(1);
762
763 /* Run the emulator */
764 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
765 &fault_addr);
766
767 /*
768 * We can't allow the emulated instruction to leave any of
769 * the cause bit set in $fcr31.
770 */
771 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
772
773 /* Restore the hardware register state */
774 own_fpu(1); /* Using the FPU again. */
775
776 /* If something went wrong, signal */
777 process_fpemu_return(sig, fault_addr);
778
779 goto out;
780 } else if (fcr31 & FPU_CSR_INV_X)
781 info.si_code = FPE_FLTINV;
782 else if (fcr31 & FPU_CSR_DIV_X)
783 info.si_code = FPE_FLTDIV;
784 else if (fcr31 & FPU_CSR_OVF_X)
785 info.si_code = FPE_FLTOVF;
786 else if (fcr31 & FPU_CSR_UDF_X)
787 info.si_code = FPE_FLTUND;
788 else if (fcr31 & FPU_CSR_INE_X)
789 info.si_code = FPE_FLTRES;
790 else
791 info.si_code = __SI_FAULT;
792 info.si_signo = SIGFPE;
793 info.si_errno = 0;
794 info.si_addr = (void __user *) regs->cp0_epc;
795 force_sig_info(SIGFPE, &info, current);
796
797 out:
798 exception_exit(prev_state);
799 }
800
801 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
802 const char *str)
803 {
804 siginfo_t info;
805 char b[40];
806
807 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
808 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
809 return;
810 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
811
812 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
813 SIGTRAP) == NOTIFY_STOP)
814 return;
815
816 /*
817 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
818 * insns, even for trap and break codes that indicate arithmetic
819 * failures. Weird ...
820 * But should we continue the brokenness??? --macro
821 */
822 switch (code) {
823 case BRK_OVERFLOW:
824 case BRK_DIVZERO:
825 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
826 die_if_kernel(b, regs);
827 if (code == BRK_DIVZERO)
828 info.si_code = FPE_INTDIV;
829 else
830 info.si_code = FPE_INTOVF;
831 info.si_signo = SIGFPE;
832 info.si_errno = 0;
833 info.si_addr = (void __user *) regs->cp0_epc;
834 force_sig_info(SIGFPE, &info, current);
835 break;
836 case BRK_BUG:
837 die_if_kernel("Kernel bug detected", regs);
838 force_sig(SIGTRAP, current);
839 break;
840 case BRK_MEMU:
841 /*
842 * Address errors may be deliberately induced by the FPU
843 * emulator to retake control of the CPU after executing the
844 * instruction in the delay slot of an emulated branch.
845 *
846 * Terminate if exception was recognized as a delay slot return
847 * otherwise handle as normal.
848 */
849 if (do_dsemulret(regs))
850 return;
851
852 die_if_kernel("Math emu break/trap", regs);
853 force_sig(SIGTRAP, current);
854 break;
855 default:
856 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
857 die_if_kernel(b, regs);
858 force_sig(SIGTRAP, current);
859 }
860 }
861
862 asmlinkage void do_bp(struct pt_regs *regs)
863 {
864 unsigned int opcode, bcode;
865 enum ctx_state prev_state;
866 unsigned long epc;
867 u16 instr[2];
868 mm_segment_t seg;
869
870 seg = get_fs();
871 if (!user_mode(regs))
872 set_fs(KERNEL_DS);
873
874 prev_state = exception_enter();
875 if (get_isa16_mode(regs->cp0_epc)) {
876 /* Calculate EPC. */
877 epc = exception_epc(regs);
878 if (cpu_has_mmips) {
879 if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) ||
880 (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2)))))
881 goto out_sigsegv;
882 opcode = (instr[0] << 16) | instr[1];
883 } else {
884 /* MIPS16e mode */
885 if (__get_user(instr[0],
886 (u16 __user *)msk_isa16_mode(epc)))
887 goto out_sigsegv;
888 bcode = (instr[0] >> 6) & 0x3f;
889 do_trap_or_bp(regs, bcode, "Break");
890 goto out;
891 }
892 } else {
893 if (__get_user(opcode,
894 (unsigned int __user *) exception_epc(regs)))
895 goto out_sigsegv;
896 }
897
898 /*
899 * There is the ancient bug in the MIPS assemblers that the break
900 * code starts left to bit 16 instead to bit 6 in the opcode.
901 * Gas is bug-compatible, but not always, grrr...
902 * We handle both cases with a simple heuristics. --macro
903 */
904 bcode = ((opcode >> 6) & ((1 << 20) - 1));
905 if (bcode >= (1 << 10))
906 bcode >>= 10;
907
908 /*
909 * notify the kprobe handlers, if instruction is likely to
910 * pertain to them.
911 */
912 switch (bcode) {
913 case BRK_KPROBE_BP:
914 if (notify_die(DIE_BREAK, "debug", regs, bcode,
915 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
916 goto out;
917 else
918 break;
919 case BRK_KPROBE_SSTEPBP:
920 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
921 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
922 goto out;
923 else
924 break;
925 default:
926 break;
927 }
928
929 do_trap_or_bp(regs, bcode, "Break");
930
931 out:
932 set_fs(seg);
933 exception_exit(prev_state);
934 return;
935
936 out_sigsegv:
937 force_sig(SIGSEGV, current);
938 goto out;
939 }
940
941 asmlinkage void do_tr(struct pt_regs *regs)
942 {
943 u32 opcode, tcode = 0;
944 enum ctx_state prev_state;
945 u16 instr[2];
946 mm_segment_t seg;
947 unsigned long epc = msk_isa16_mode(exception_epc(regs));
948
949 seg = get_fs();
950 if (!user_mode(regs))
951 set_fs(get_ds());
952
953 prev_state = exception_enter();
954 if (get_isa16_mode(regs->cp0_epc)) {
955 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
956 __get_user(instr[1], (u16 __user *)(epc + 2)))
957 goto out_sigsegv;
958 opcode = (instr[0] << 16) | instr[1];
959 /* Immediate versions don't provide a code. */
960 if (!(opcode & OPCODE))
961 tcode = (opcode >> 12) & ((1 << 4) - 1);
962 } else {
963 if (__get_user(opcode, (u32 __user *)epc))
964 goto out_sigsegv;
965 /* Immediate versions don't provide a code. */
966 if (!(opcode & OPCODE))
967 tcode = (opcode >> 6) & ((1 << 10) - 1);
968 }
969
970 do_trap_or_bp(regs, tcode, "Trap");
971
972 out:
973 set_fs(seg);
974 exception_exit(prev_state);
975 return;
976
977 out_sigsegv:
978 force_sig(SIGSEGV, current);
979 goto out;
980 }
981
982 asmlinkage void do_ri(struct pt_regs *regs)
983 {
984 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
985 unsigned long old_epc = regs->cp0_epc;
986 unsigned long old31 = regs->regs[31];
987 enum ctx_state prev_state;
988 unsigned int opcode = 0;
989 int status = -1;
990
991 prev_state = exception_enter();
992 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
993 SIGILL) == NOTIFY_STOP)
994 goto out;
995
996 die_if_kernel("Reserved instruction in kernel code", regs);
997
998 if (unlikely(compute_return_epc(regs) < 0))
999 goto out;
1000
1001 if (get_isa16_mode(regs->cp0_epc)) {
1002 unsigned short mmop[2] = { 0 };
1003
1004 if (unlikely(get_user(mmop[0], epc) < 0))
1005 status = SIGSEGV;
1006 if (unlikely(get_user(mmop[1], epc) < 0))
1007 status = SIGSEGV;
1008 opcode = (mmop[0] << 16) | mmop[1];
1009
1010 if (status < 0)
1011 status = simulate_rdhwr_mm(regs, opcode);
1012 } else {
1013 if (unlikely(get_user(opcode, epc) < 0))
1014 status = SIGSEGV;
1015
1016 if (!cpu_has_llsc && status < 0)
1017 status = simulate_llsc(regs, opcode);
1018
1019 if (status < 0)
1020 status = simulate_rdhwr_normal(regs, opcode);
1021
1022 if (status < 0)
1023 status = simulate_sync(regs, opcode);
1024 }
1025
1026 if (status < 0)
1027 status = SIGILL;
1028
1029 if (unlikely(status > 0)) {
1030 regs->cp0_epc = old_epc; /* Undo skip-over. */
1031 regs->regs[31] = old31;
1032 force_sig(status, current);
1033 }
1034
1035 out:
1036 exception_exit(prev_state);
1037 }
1038
1039 /*
1040 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1041 * emulated more than some threshold number of instructions, force migration to
1042 * a "CPU" that has FP support.
1043 */
1044 static void mt_ase_fp_affinity(void)
1045 {
1046 #ifdef CONFIG_MIPS_MT_FPAFF
1047 if (mt_fpemul_threshold > 0 &&
1048 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1049 /*
1050 * If there's no FPU present, or if the application has already
1051 * restricted the allowed set to exclude any CPUs with FPUs,
1052 * we'll skip the procedure.
1053 */
1054 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
1055 cpumask_t tmask;
1056
1057 current->thread.user_cpus_allowed
1058 = current->cpus_allowed;
1059 cpus_and(tmask, current->cpus_allowed,
1060 mt_fpu_cpumask);
1061 set_cpus_allowed_ptr(current, &tmask);
1062 set_thread_flag(TIF_FPUBOUND);
1063 }
1064 }
1065 #endif /* CONFIG_MIPS_MT_FPAFF */
1066 }
1067
1068 /*
1069 * No lock; only written during early bootup by CPU 0.
1070 */
1071 static RAW_NOTIFIER_HEAD(cu2_chain);
1072
1073 int __ref register_cu2_notifier(struct notifier_block *nb)
1074 {
1075 return raw_notifier_chain_register(&cu2_chain, nb);
1076 }
1077
1078 int cu2_notifier_call_chain(unsigned long val, void *v)
1079 {
1080 return raw_notifier_call_chain(&cu2_chain, val, v);
1081 }
1082
1083 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1084 void *data)
1085 {
1086 struct pt_regs *regs = data;
1087
1088 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1089 "instruction", regs);
1090 force_sig(SIGILL, current);
1091
1092 return NOTIFY_OK;
1093 }
1094
1095 static int enable_restore_fp_context(int msa)
1096 {
1097 int err, was_fpu_owner;
1098
1099 if (!used_math()) {
1100 /* First time FP context user. */
1101 err = init_fpu();
1102 if (msa && !err)
1103 enable_msa();
1104 if (!err)
1105 set_used_math();
1106 return err;
1107 }
1108
1109 /*
1110 * This task has formerly used the FP context.
1111 *
1112 * If this thread has no live MSA vector context then we can simply
1113 * restore the scalar FP context. If it has live MSA vector context
1114 * (that is, it has or may have used MSA since last performing a
1115 * function call) then we'll need to restore the vector context. This
1116 * applies even if we're currently only executing a scalar FP
1117 * instruction. This is because if we were to later execute an MSA
1118 * instruction then we'd either have to:
1119 *
1120 * - Restore the vector context & clobber any registers modified by
1121 * scalar FP instructions between now & then.
1122 *
1123 * or
1124 *
1125 * - Not restore the vector context & lose the most significant bits
1126 * of all vector registers.
1127 *
1128 * Neither of those options is acceptable. We cannot restore the least
1129 * significant bits of the registers now & only restore the most
1130 * significant bits later because the most significant bits of any
1131 * vector registers whose aliased FP register is modified now will have
1132 * been zeroed. We'd have no way to know that when restoring the vector
1133 * context & thus may load an outdated value for the most significant
1134 * bits of a vector register.
1135 */
1136 if (!msa && !thread_msa_context_live())
1137 return own_fpu(1);
1138
1139 /*
1140 * This task is using or has previously used MSA. Thus we require
1141 * that Status.FR == 1.
1142 */
1143 was_fpu_owner = is_fpu_owner();
1144 err = own_fpu(0);
1145 if (err)
1146 return err;
1147
1148 enable_msa();
1149 write_msa_csr(current->thread.fpu.msacsr);
1150 set_thread_flag(TIF_USEDMSA);
1151
1152 /*
1153 * If this is the first time that the task is using MSA and it has
1154 * previously used scalar FP in this time slice then we already nave
1155 * FP context which we shouldn't clobber.
1156 */
1157 if (!test_and_set_thread_flag(TIF_MSA_CTX_LIVE) && was_fpu_owner)
1158 return 0;
1159
1160 /* We need to restore the vector context. */
1161 restore_msa(current);
1162 return 0;
1163 }
1164
1165 asmlinkage void do_cpu(struct pt_regs *regs)
1166 {
1167 enum ctx_state prev_state;
1168 unsigned int __user *epc;
1169 unsigned long old_epc, old31;
1170 unsigned int opcode;
1171 unsigned int cpid;
1172 int status, err;
1173 unsigned long __maybe_unused flags;
1174
1175 prev_state = exception_enter();
1176 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1177
1178 if (cpid != 2)
1179 die_if_kernel("do_cpu invoked from kernel context!", regs);
1180
1181 switch (cpid) {
1182 case 0:
1183 epc = (unsigned int __user *)exception_epc(regs);
1184 old_epc = regs->cp0_epc;
1185 old31 = regs->regs[31];
1186 opcode = 0;
1187 status = -1;
1188
1189 if (unlikely(compute_return_epc(regs) < 0))
1190 goto out;
1191
1192 if (get_isa16_mode(regs->cp0_epc)) {
1193 unsigned short mmop[2] = { 0 };
1194
1195 if (unlikely(get_user(mmop[0], epc) < 0))
1196 status = SIGSEGV;
1197 if (unlikely(get_user(mmop[1], epc) < 0))
1198 status = SIGSEGV;
1199 opcode = (mmop[0] << 16) | mmop[1];
1200
1201 if (status < 0)
1202 status = simulate_rdhwr_mm(regs, opcode);
1203 } else {
1204 if (unlikely(get_user(opcode, epc) < 0))
1205 status = SIGSEGV;
1206
1207 if (!cpu_has_llsc && status < 0)
1208 status = simulate_llsc(regs, opcode);
1209
1210 if (status < 0)
1211 status = simulate_rdhwr_normal(regs, opcode);
1212 }
1213
1214 if (status < 0)
1215 status = SIGILL;
1216
1217 if (unlikely(status > 0)) {
1218 regs->cp0_epc = old_epc; /* Undo skip-over. */
1219 regs->regs[31] = old31;
1220 force_sig(status, current);
1221 }
1222
1223 goto out;
1224
1225 case 3:
1226 /*
1227 * Old (MIPS I and MIPS II) processors will set this code
1228 * for COP1X opcode instructions that replaced the original
1229 * COP3 space. We don't limit COP1 space instructions in
1230 * the emulator according to the CPU ISA, so we want to
1231 * treat COP1X instructions consistently regardless of which
1232 * code the CPU chose. Therefore we redirect this trap to
1233 * the FP emulator too.
1234 *
1235 * Then some newer FPU-less processors use this code
1236 * erroneously too, so they are covered by this choice
1237 * as well.
1238 */
1239 if (raw_cpu_has_fpu)
1240 break;
1241 /* Fall through. */
1242
1243 case 1:
1244 err = enable_restore_fp_context(0);
1245
1246 if (!raw_cpu_has_fpu || err) {
1247 int sig;
1248 void __user *fault_addr = NULL;
1249 sig = fpu_emulator_cop1Handler(regs,
1250 &current->thread.fpu,
1251 0, &fault_addr);
1252 if (!process_fpemu_return(sig, fault_addr) && !err)
1253 mt_ase_fp_affinity();
1254 }
1255
1256 goto out;
1257
1258 case 2:
1259 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1260 goto out;
1261 }
1262
1263 force_sig(SIGILL, current);
1264
1265 out:
1266 exception_exit(prev_state);
1267 }
1268
1269 asmlinkage void do_msa_fpe(struct pt_regs *regs)
1270 {
1271 enum ctx_state prev_state;
1272
1273 prev_state = exception_enter();
1274 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1275 force_sig(SIGFPE, current);
1276 exception_exit(prev_state);
1277 }
1278
1279 asmlinkage void do_msa(struct pt_regs *regs)
1280 {
1281 enum ctx_state prev_state;
1282 int err;
1283
1284 prev_state = exception_enter();
1285
1286 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1287 force_sig(SIGILL, current);
1288 goto out;
1289 }
1290
1291 die_if_kernel("do_msa invoked from kernel context!", regs);
1292
1293 err = enable_restore_fp_context(1);
1294 if (err)
1295 force_sig(SIGILL, current);
1296 out:
1297 exception_exit(prev_state);
1298 }
1299
1300 asmlinkage void do_mdmx(struct pt_regs *regs)
1301 {
1302 enum ctx_state prev_state;
1303
1304 prev_state = exception_enter();
1305 force_sig(SIGILL, current);
1306 exception_exit(prev_state);
1307 }
1308
1309 /*
1310 * Called with interrupts disabled.
1311 */
1312 asmlinkage void do_watch(struct pt_regs *regs)
1313 {
1314 enum ctx_state prev_state;
1315 u32 cause;
1316
1317 prev_state = exception_enter();
1318 /*
1319 * Clear WP (bit 22) bit of cause register so we don't loop
1320 * forever.
1321 */
1322 cause = read_c0_cause();
1323 cause &= ~(1 << 22);
1324 write_c0_cause(cause);
1325
1326 /*
1327 * If the current thread has the watch registers loaded, save
1328 * their values and send SIGTRAP. Otherwise another thread
1329 * left the registers set, clear them and continue.
1330 */
1331 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1332 mips_read_watch_registers();
1333 local_irq_enable();
1334 force_sig(SIGTRAP, current);
1335 } else {
1336 mips_clear_watch_registers();
1337 local_irq_enable();
1338 }
1339 exception_exit(prev_state);
1340 }
1341
1342 asmlinkage void do_mcheck(struct pt_regs *regs)
1343 {
1344 const int field = 2 * sizeof(unsigned long);
1345 int multi_match = regs->cp0_status & ST0_TS;
1346 enum ctx_state prev_state;
1347
1348 prev_state = exception_enter();
1349 show_regs(regs);
1350
1351 if (multi_match) {
1352 printk("Index : %0x\n", read_c0_index());
1353 printk("Pagemask: %0x\n", read_c0_pagemask());
1354 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1355 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1356 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1357 printk("\n");
1358 dump_tlb_all();
1359 }
1360
1361 show_code((unsigned int __user *) regs->cp0_epc);
1362
1363 /*
1364 * Some chips may have other causes of machine check (e.g. SB1
1365 * graduation timer)
1366 */
1367 panic("Caught Machine Check exception - %scaused by multiple "
1368 "matching entries in the TLB.",
1369 (multi_match) ? "" : "not ");
1370 }
1371
1372 asmlinkage void do_mt(struct pt_regs *regs)
1373 {
1374 int subcode;
1375
1376 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1377 >> VPECONTROL_EXCPT_SHIFT;
1378 switch (subcode) {
1379 case 0:
1380 printk(KERN_DEBUG "Thread Underflow\n");
1381 break;
1382 case 1:
1383 printk(KERN_DEBUG "Thread Overflow\n");
1384 break;
1385 case 2:
1386 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1387 break;
1388 case 3:
1389 printk(KERN_DEBUG "Gating Storage Exception\n");
1390 break;
1391 case 4:
1392 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1393 break;
1394 case 5:
1395 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1396 break;
1397 default:
1398 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1399 subcode);
1400 break;
1401 }
1402 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1403
1404 force_sig(SIGILL, current);
1405 }
1406
1407
1408 asmlinkage void do_dsp(struct pt_regs *regs)
1409 {
1410 if (cpu_has_dsp)
1411 panic("Unexpected DSP exception");
1412
1413 force_sig(SIGILL, current);
1414 }
1415
1416 asmlinkage void do_reserved(struct pt_regs *regs)
1417 {
1418 /*
1419 * Game over - no way to handle this if it ever occurs. Most probably
1420 * caused by a new unknown cpu type or after another deadly
1421 * hard/software error.
1422 */
1423 show_regs(regs);
1424 panic("Caught reserved exception %ld - should not happen.",
1425 (regs->cp0_cause & 0x7f) >> 2);
1426 }
1427
1428 static int __initdata l1parity = 1;
1429 static int __init nol1parity(char *s)
1430 {
1431 l1parity = 0;
1432 return 1;
1433 }
1434 __setup("nol1par", nol1parity);
1435 static int __initdata l2parity = 1;
1436 static int __init nol2parity(char *s)
1437 {
1438 l2parity = 0;
1439 return 1;
1440 }
1441 __setup("nol2par", nol2parity);
1442
1443 /*
1444 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1445 * it different ways.
1446 */
1447 static inline void parity_protection_init(void)
1448 {
1449 switch (current_cpu_type()) {
1450 case CPU_24K:
1451 case CPU_34K:
1452 case CPU_74K:
1453 case CPU_1004K:
1454 case CPU_1074K:
1455 case CPU_INTERAPTIV:
1456 case CPU_PROAPTIV:
1457 case CPU_P5600:
1458 {
1459 #define ERRCTL_PE 0x80000000
1460 #define ERRCTL_L2P 0x00800000
1461 unsigned long errctl;
1462 unsigned int l1parity_present, l2parity_present;
1463
1464 errctl = read_c0_ecc();
1465 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1466
1467 /* probe L1 parity support */
1468 write_c0_ecc(errctl | ERRCTL_PE);
1469 back_to_back_c0_hazard();
1470 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1471
1472 /* probe L2 parity support */
1473 write_c0_ecc(errctl|ERRCTL_L2P);
1474 back_to_back_c0_hazard();
1475 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1476
1477 if (l1parity_present && l2parity_present) {
1478 if (l1parity)
1479 errctl |= ERRCTL_PE;
1480 if (l1parity ^ l2parity)
1481 errctl |= ERRCTL_L2P;
1482 } else if (l1parity_present) {
1483 if (l1parity)
1484 errctl |= ERRCTL_PE;
1485 } else if (l2parity_present) {
1486 if (l2parity)
1487 errctl |= ERRCTL_L2P;
1488 } else {
1489 /* No parity available */
1490 }
1491
1492 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1493
1494 write_c0_ecc(errctl);
1495 back_to_back_c0_hazard();
1496 errctl = read_c0_ecc();
1497 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1498
1499 if (l1parity_present)
1500 printk(KERN_INFO "Cache parity protection %sabled\n",
1501 (errctl & ERRCTL_PE) ? "en" : "dis");
1502
1503 if (l2parity_present) {
1504 if (l1parity_present && l1parity)
1505 errctl ^= ERRCTL_L2P;
1506 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1507 (errctl & ERRCTL_L2P) ? "en" : "dis");
1508 }
1509 }
1510 break;
1511
1512 case CPU_5KC:
1513 case CPU_5KE:
1514 case CPU_LOONGSON1:
1515 write_c0_ecc(0x80000000);
1516 back_to_back_c0_hazard();
1517 /* Set the PE bit (bit 31) in the c0_errctl register. */
1518 printk(KERN_INFO "Cache parity protection %sabled\n",
1519 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1520 break;
1521 case CPU_20KC:
1522 case CPU_25KF:
1523 /* Clear the DE bit (bit 16) in the c0_status register. */
1524 printk(KERN_INFO "Enable cache parity protection for "
1525 "MIPS 20KC/25KF CPUs.\n");
1526 clear_c0_status(ST0_DE);
1527 break;
1528 default:
1529 break;
1530 }
1531 }
1532
1533 asmlinkage void cache_parity_error(void)
1534 {
1535 const int field = 2 * sizeof(unsigned long);
1536 unsigned int reg_val;
1537
1538 /* For the moment, report the problem and hang. */
1539 printk("Cache error exception:\n");
1540 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1541 reg_val = read_c0_cacheerr();
1542 printk("c0_cacheerr == %08x\n", reg_val);
1543
1544 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1545 reg_val & (1<<30) ? "secondary" : "primary",
1546 reg_val & (1<<31) ? "data" : "insn");
1547 if (cpu_has_mips_r2 &&
1548 ((current_cpu_data.processor_id && 0xff0000) == PRID_COMP_MIPS)) {
1549 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1550 reg_val & (1<<29) ? "ED " : "",
1551 reg_val & (1<<28) ? "ET " : "",
1552 reg_val & (1<<27) ? "ES " : "",
1553 reg_val & (1<<26) ? "EE " : "",
1554 reg_val & (1<<25) ? "EB " : "",
1555 reg_val & (1<<24) ? "EI " : "",
1556 reg_val & (1<<23) ? "E1 " : "",
1557 reg_val & (1<<22) ? "E0 " : "");
1558 } else {
1559 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1560 reg_val & (1<<29) ? "ED " : "",
1561 reg_val & (1<<28) ? "ET " : "",
1562 reg_val & (1<<26) ? "EE " : "",
1563 reg_val & (1<<25) ? "EB " : "",
1564 reg_val & (1<<24) ? "EI " : "",
1565 reg_val & (1<<23) ? "E1 " : "",
1566 reg_val & (1<<22) ? "E0 " : "");
1567 }
1568 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1569
1570 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1571 if (reg_val & (1<<22))
1572 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1573
1574 if (reg_val & (1<<23))
1575 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1576 #endif
1577
1578 panic("Can't handle the cache error!");
1579 }
1580
1581 asmlinkage void do_ftlb(void)
1582 {
1583 const int field = 2 * sizeof(unsigned long);
1584 unsigned int reg_val;
1585
1586 /* For the moment, report the problem and hang. */
1587 if (cpu_has_mips_r2 &&
1588 ((current_cpu_data.processor_id && 0xff0000) == PRID_COMP_MIPS)) {
1589 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1590 read_c0_ecc());
1591 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1592 reg_val = read_c0_cacheerr();
1593 pr_err("c0_cacheerr == %08x\n", reg_val);
1594
1595 if ((reg_val & 0xc0000000) == 0xc0000000) {
1596 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1597 } else {
1598 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1599 reg_val & (1<<30) ? "secondary" : "primary",
1600 reg_val & (1<<31) ? "data" : "insn");
1601 }
1602 } else {
1603 pr_err("FTLB error exception\n");
1604 }
1605 /* Just print the cacheerr bits for now */
1606 cache_parity_error();
1607 }
1608
1609 /*
1610 * SDBBP EJTAG debug exception handler.
1611 * We skip the instruction and return to the next instruction.
1612 */
1613 void ejtag_exception_handler(struct pt_regs *regs)
1614 {
1615 const int field = 2 * sizeof(unsigned long);
1616 unsigned long depc, old_epc, old_ra;
1617 unsigned int debug;
1618
1619 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1620 depc = read_c0_depc();
1621 debug = read_c0_debug();
1622 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1623 if (debug & 0x80000000) {
1624 /*
1625 * In branch delay slot.
1626 * We cheat a little bit here and use EPC to calculate the
1627 * debug return address (DEPC). EPC is restored after the
1628 * calculation.
1629 */
1630 old_epc = regs->cp0_epc;
1631 old_ra = regs->regs[31];
1632 regs->cp0_epc = depc;
1633 compute_return_epc(regs);
1634 depc = regs->cp0_epc;
1635 regs->cp0_epc = old_epc;
1636 regs->regs[31] = old_ra;
1637 } else
1638 depc += 4;
1639 write_c0_depc(depc);
1640
1641 #if 0
1642 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1643 write_c0_debug(debug | 0x100);
1644 #endif
1645 }
1646
1647 /*
1648 * NMI exception handler.
1649 * No lock; only written during early bootup by CPU 0.
1650 */
1651 static RAW_NOTIFIER_HEAD(nmi_chain);
1652
1653 int register_nmi_notifier(struct notifier_block *nb)
1654 {
1655 return raw_notifier_chain_register(&nmi_chain, nb);
1656 }
1657
1658 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1659 {
1660 char str[100];
1661
1662 raw_notifier_call_chain(&nmi_chain, 0, regs);
1663 bust_spinlocks(1);
1664 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1665 smp_processor_id(), regs->cp0_epc);
1666 regs->cp0_epc = read_c0_errorepc();
1667 die(str, regs);
1668 }
1669
1670 #define VECTORSPACING 0x100 /* for EI/VI mode */
1671
1672 unsigned long ebase;
1673 unsigned long exception_handlers[32];
1674 unsigned long vi_handlers[64];
1675
1676 void __init *set_except_vector(int n, void *addr)
1677 {
1678 unsigned long handler = (unsigned long) addr;
1679 unsigned long old_handler;
1680
1681 #ifdef CONFIG_CPU_MICROMIPS
1682 /*
1683 * Only the TLB handlers are cache aligned with an even
1684 * address. All other handlers are on an odd address and
1685 * require no modification. Otherwise, MIPS32 mode will
1686 * be entered when handling any TLB exceptions. That
1687 * would be bad...since we must stay in microMIPS mode.
1688 */
1689 if (!(handler & 0x1))
1690 handler |= 1;
1691 #endif
1692 old_handler = xchg(&exception_handlers[n], handler);
1693
1694 if (n == 0 && cpu_has_divec) {
1695 #ifdef CONFIG_CPU_MICROMIPS
1696 unsigned long jump_mask = ~((1 << 27) - 1);
1697 #else
1698 unsigned long jump_mask = ~((1 << 28) - 1);
1699 #endif
1700 u32 *buf = (u32 *)(ebase + 0x200);
1701 unsigned int k0 = 26;
1702 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1703 uasm_i_j(&buf, handler & ~jump_mask);
1704 uasm_i_nop(&buf);
1705 } else {
1706 UASM_i_LA(&buf, k0, handler);
1707 uasm_i_jr(&buf, k0);
1708 uasm_i_nop(&buf);
1709 }
1710 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1711 }
1712 return (void *)old_handler;
1713 }
1714
1715 static void do_default_vi(void)
1716 {
1717 show_regs(get_irq_regs());
1718 panic("Caught unexpected vectored interrupt.");
1719 }
1720
1721 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1722 {
1723 unsigned long handler;
1724 unsigned long old_handler = vi_handlers[n];
1725 int srssets = current_cpu_data.srsets;
1726 u16 *h;
1727 unsigned char *b;
1728
1729 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1730
1731 if (addr == NULL) {
1732 handler = (unsigned long) do_default_vi;
1733 srs = 0;
1734 } else
1735 handler = (unsigned long) addr;
1736 vi_handlers[n] = handler;
1737
1738 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1739
1740 if (srs >= srssets)
1741 panic("Shadow register set %d not supported", srs);
1742
1743 if (cpu_has_veic) {
1744 if (board_bind_eic_interrupt)
1745 board_bind_eic_interrupt(n, srs);
1746 } else if (cpu_has_vint) {
1747 /* SRSMap is only defined if shadow sets are implemented */
1748 if (srssets > 1)
1749 change_c0_srsmap(0xf << n*4, srs << n*4);
1750 }
1751
1752 if (srs == 0) {
1753 /*
1754 * If no shadow set is selected then use the default handler
1755 * that does normal register saving and standard interrupt exit
1756 */
1757 extern char except_vec_vi, except_vec_vi_lui;
1758 extern char except_vec_vi_ori, except_vec_vi_end;
1759 extern char rollback_except_vec_vi;
1760 char *vec_start = using_rollback_handler() ?
1761 &rollback_except_vec_vi : &except_vec_vi;
1762 #ifdef CONFIG_MIPS_MT_SMTC
1763 /*
1764 * We need to provide the SMTC vectored interrupt handler
1765 * not only with the address of the handler, but with the
1766 * Status.IM bit to be masked before going there.
1767 */
1768 extern char except_vec_vi_mori;
1769 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1770 const int mori_offset = &except_vec_vi_mori - vec_start + 2;
1771 #else
1772 const int mori_offset = &except_vec_vi_mori - vec_start;
1773 #endif
1774 #endif /* CONFIG_MIPS_MT_SMTC */
1775 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1776 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1777 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1778 #else
1779 const int lui_offset = &except_vec_vi_lui - vec_start;
1780 const int ori_offset = &except_vec_vi_ori - vec_start;
1781 #endif
1782 const int handler_len = &except_vec_vi_end - vec_start;
1783
1784 if (handler_len > VECTORSPACING) {
1785 /*
1786 * Sigh... panicing won't help as the console
1787 * is probably not configured :(
1788 */
1789 panic("VECTORSPACING too small");
1790 }
1791
1792 set_handler(((unsigned long)b - ebase), vec_start,
1793 #ifdef CONFIG_CPU_MICROMIPS
1794 (handler_len - 1));
1795 #else
1796 handler_len);
1797 #endif
1798 #ifdef CONFIG_MIPS_MT_SMTC
1799 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1800
1801 h = (u16 *)(b + mori_offset);
1802 *h = (0x100 << n);
1803 #endif /* CONFIG_MIPS_MT_SMTC */
1804 h = (u16 *)(b + lui_offset);
1805 *h = (handler >> 16) & 0xffff;
1806 h = (u16 *)(b + ori_offset);
1807 *h = (handler & 0xffff);
1808 local_flush_icache_range((unsigned long)b,
1809 (unsigned long)(b+handler_len));
1810 }
1811 else {
1812 /*
1813 * In other cases jump directly to the interrupt handler. It
1814 * is the handler's responsibility to save registers if required
1815 * (eg hi/lo) and return from the exception using "eret".
1816 */
1817 u32 insn;
1818
1819 h = (u16 *)b;
1820 /* j handler */
1821 #ifdef CONFIG_CPU_MICROMIPS
1822 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1823 #else
1824 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1825 #endif
1826 h[0] = (insn >> 16) & 0xffff;
1827 h[1] = insn & 0xffff;
1828 h[2] = 0;
1829 h[3] = 0;
1830 local_flush_icache_range((unsigned long)b,
1831 (unsigned long)(b+8));
1832 }
1833
1834 return (void *)old_handler;
1835 }
1836
1837 void *set_vi_handler(int n, vi_handler_t addr)
1838 {
1839 return set_vi_srs_handler(n, addr, 0);
1840 }
1841
1842 extern void tlb_init(void);
1843
1844 /*
1845 * Timer interrupt
1846 */
1847 int cp0_compare_irq;
1848 EXPORT_SYMBOL_GPL(cp0_compare_irq);
1849 int cp0_compare_irq_shift;
1850
1851 /*
1852 * Performance counter IRQ or -1 if shared with timer
1853 */
1854 int cp0_perfcount_irq;
1855 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1856
1857 static int noulri;
1858
1859 static int __init ulri_disable(char *s)
1860 {
1861 pr_info("Disabling ulri\n");
1862 noulri = 1;
1863
1864 return 1;
1865 }
1866 __setup("noulri", ulri_disable);
1867
1868 void per_cpu_trap_init(bool is_boot_cpu)
1869 {
1870 unsigned int cpu = smp_processor_id();
1871 unsigned int status_set = ST0_CU0;
1872 unsigned int hwrena = cpu_hwrena_impl_bits;
1873 #ifdef CONFIG_MIPS_MT_SMTC
1874 int secondaryTC = 0;
1875 int bootTC = (cpu == 0);
1876
1877 /*
1878 * Only do per_cpu_trap_init() for first TC of Each VPE.
1879 * Note that this hack assumes that the SMTC init code
1880 * assigns TCs consecutively and in ascending order.
1881 */
1882
1883 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1884 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1885 secondaryTC = 1;
1886 #endif /* CONFIG_MIPS_MT_SMTC */
1887
1888 /*
1889 * Disable coprocessors and select 32-bit or 64-bit addressing
1890 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1891 * flag that some firmware may have left set and the TS bit (for
1892 * IP27). Set XX for ISA IV code to work.
1893 */
1894 #ifdef CONFIG_64BIT
1895 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1896 #endif
1897 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1898 status_set |= ST0_XX;
1899 if (cpu_has_dsp)
1900 status_set |= ST0_MX;
1901
1902 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1903 status_set);
1904
1905 if (cpu_has_mips_r2)
1906 hwrena |= 0x0000000f;
1907
1908 if (!noulri && cpu_has_userlocal)
1909 hwrena |= (1 << 29);
1910
1911 if (hwrena)
1912 write_c0_hwrena(hwrena);
1913
1914 #ifdef CONFIG_MIPS_MT_SMTC
1915 if (!secondaryTC) {
1916 #endif /* CONFIG_MIPS_MT_SMTC */
1917
1918 if (cpu_has_veic || cpu_has_vint) {
1919 unsigned long sr = set_c0_status(ST0_BEV);
1920 write_c0_ebase(ebase);
1921 write_c0_status(sr);
1922 /* Setting vector spacing enables EI/VI mode */
1923 change_c0_intctl(0x3e0, VECTORSPACING);
1924 }
1925 if (cpu_has_divec) {
1926 if (cpu_has_mipsmt) {
1927 unsigned int vpflags = dvpe();
1928 set_c0_cause(CAUSEF_IV);
1929 evpe(vpflags);
1930 } else
1931 set_c0_cause(CAUSEF_IV);
1932 }
1933
1934 /*
1935 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1936 *
1937 * o read IntCtl.IPTI to determine the timer interrupt
1938 * o read IntCtl.IPPCI to determine the performance counter interrupt
1939 */
1940 if (cpu_has_mips_r2) {
1941 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1942 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1943 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1944 if (cp0_perfcount_irq == cp0_compare_irq)
1945 cp0_perfcount_irq = -1;
1946 } else {
1947 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1948 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1949 cp0_perfcount_irq = -1;
1950 }
1951
1952 #ifdef CONFIG_MIPS_MT_SMTC
1953 }
1954 #endif /* CONFIG_MIPS_MT_SMTC */
1955
1956 if (!cpu_data[cpu].asid_cache)
1957 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1958
1959 atomic_inc(&init_mm.mm_count);
1960 current->active_mm = &init_mm;
1961 BUG_ON(current->mm);
1962 enter_lazy_tlb(&init_mm, current);
1963
1964 #ifdef CONFIG_MIPS_MT_SMTC
1965 if (bootTC) {
1966 #endif /* CONFIG_MIPS_MT_SMTC */
1967 /* Boot CPU's cache setup in setup_arch(). */
1968 if (!is_boot_cpu)
1969 cpu_cache_init();
1970 tlb_init();
1971 #ifdef CONFIG_MIPS_MT_SMTC
1972 } else if (!secondaryTC) {
1973 /*
1974 * First TC in non-boot VPE must do subset of tlb_init()
1975 * for MMU countrol registers.
1976 */
1977 write_c0_pagemask(PM_DEFAULT_MASK);
1978 write_c0_wired(0);
1979 }
1980 #endif /* CONFIG_MIPS_MT_SMTC */
1981 TLBMISS_HANDLER_SETUP();
1982 }
1983
1984 /* Install CPU exception handler */
1985 void set_handler(unsigned long offset, void *addr, unsigned long size)
1986 {
1987 #ifdef CONFIG_CPU_MICROMIPS
1988 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
1989 #else
1990 memcpy((void *)(ebase + offset), addr, size);
1991 #endif
1992 local_flush_icache_range(ebase + offset, ebase + offset + size);
1993 }
1994
1995 static char panic_null_cerr[] =
1996 "Trying to set NULL cache error exception handler";
1997
1998 /*
1999 * Install uncached CPU exception handler.
2000 * This is suitable only for the cache error exception which is the only
2001 * exception handler that is being run uncached.
2002 */
2003 void set_uncached_handler(unsigned long offset, void *addr,
2004 unsigned long size)
2005 {
2006 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2007
2008 if (!addr)
2009 panic(panic_null_cerr);
2010
2011 memcpy((void *)(uncached_ebase + offset), addr, size);
2012 }
2013
2014 static int __initdata rdhwr_noopt;
2015 static int __init set_rdhwr_noopt(char *str)
2016 {
2017 rdhwr_noopt = 1;
2018 return 1;
2019 }
2020
2021 __setup("rdhwr_noopt", set_rdhwr_noopt);
2022
2023 void __init trap_init(void)
2024 {
2025 extern char except_vec3_generic;
2026 extern char except_vec4;
2027 extern char except_vec3_r4000;
2028 unsigned long i;
2029
2030 check_wait();
2031
2032 #if defined(CONFIG_KGDB)
2033 if (kgdb_early_setup)
2034 return; /* Already done */
2035 #endif
2036
2037 if (cpu_has_veic || cpu_has_vint) {
2038 unsigned long size = 0x200 + VECTORSPACING*64;
2039 ebase = (unsigned long)
2040 __alloc_bootmem(size, 1 << fls(size), 0);
2041 } else {
2042 #ifdef CONFIG_KVM_GUEST
2043 #define KVM_GUEST_KSEG0 0x40000000
2044 ebase = KVM_GUEST_KSEG0;
2045 #else
2046 ebase = CKSEG0;
2047 #endif
2048 if (cpu_has_mips_r2)
2049 ebase += (read_c0_ebase() & 0x3ffff000);
2050 }
2051
2052 if (cpu_has_mmips) {
2053 unsigned int config3 = read_c0_config3();
2054
2055 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2056 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2057 else
2058 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2059 }
2060
2061 if (board_ebase_setup)
2062 board_ebase_setup();
2063 per_cpu_trap_init(true);
2064
2065 /*
2066 * Copy the generic exception handlers to their final destination.
2067 * This will be overriden later as suitable for a particular
2068 * configuration.
2069 */
2070 set_handler(0x180, &except_vec3_generic, 0x80);
2071
2072 /*
2073 * Setup default vectors
2074 */
2075 for (i = 0; i <= 31; i++)
2076 set_except_vector(i, handle_reserved);
2077
2078 /*
2079 * Copy the EJTAG debug exception vector handler code to it's final
2080 * destination.
2081 */
2082 if (cpu_has_ejtag && board_ejtag_handler_setup)
2083 board_ejtag_handler_setup();
2084
2085 /*
2086 * Only some CPUs have the watch exceptions.
2087 */
2088 if (cpu_has_watch)
2089 set_except_vector(23, handle_watch);
2090
2091 /*
2092 * Initialise interrupt handlers
2093 */
2094 if (cpu_has_veic || cpu_has_vint) {
2095 int nvec = cpu_has_veic ? 64 : 8;
2096 for (i = 0; i < nvec; i++)
2097 set_vi_handler(i, NULL);
2098 }
2099 else if (cpu_has_divec)
2100 set_handler(0x200, &except_vec4, 0x8);
2101
2102 /*
2103 * Some CPUs can enable/disable for cache parity detection, but does
2104 * it different ways.
2105 */
2106 parity_protection_init();
2107
2108 /*
2109 * The Data Bus Errors / Instruction Bus Errors are signaled
2110 * by external hardware. Therefore these two exceptions
2111 * may have board specific handlers.
2112 */
2113 if (board_be_init)
2114 board_be_init();
2115
2116 set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2117 : handle_int);
2118 set_except_vector(1, handle_tlbm);
2119 set_except_vector(2, handle_tlbl);
2120 set_except_vector(3, handle_tlbs);
2121
2122 set_except_vector(4, handle_adel);
2123 set_except_vector(5, handle_ades);
2124
2125 set_except_vector(6, handle_ibe);
2126 set_except_vector(7, handle_dbe);
2127
2128 set_except_vector(8, handle_sys);
2129 set_except_vector(9, handle_bp);
2130 set_except_vector(10, rdhwr_noopt ? handle_ri :
2131 (cpu_has_vtag_icache ?
2132 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2133 set_except_vector(11, handle_cpu);
2134 set_except_vector(12, handle_ov);
2135 set_except_vector(13, handle_tr);
2136 set_except_vector(14, handle_msa_fpe);
2137
2138 if (current_cpu_type() == CPU_R6000 ||
2139 current_cpu_type() == CPU_R6000A) {
2140 /*
2141 * The R6000 is the only R-series CPU that features a machine
2142 * check exception (similar to the R4000 cache error) and
2143 * unaligned ldc1/sdc1 exception. The handlers have not been
2144 * written yet. Well, anyway there is no R6000 machine on the
2145 * current list of targets for Linux/MIPS.
2146 * (Duh, crap, there is someone with a triple R6k machine)
2147 */
2148 //set_except_vector(14, handle_mc);
2149 //set_except_vector(15, handle_ndc);
2150 }
2151
2152
2153 if (board_nmi_handler_setup)
2154 board_nmi_handler_setup();
2155
2156 if (cpu_has_fpu && !cpu_has_nofpuex)
2157 set_except_vector(15, handle_fpe);
2158
2159 set_except_vector(16, handle_ftlb);
2160 set_except_vector(21, handle_msa);
2161 set_except_vector(22, handle_mdmx);
2162
2163 if (cpu_has_mcheck)
2164 set_except_vector(24, handle_mcheck);
2165
2166 if (cpu_has_mipsmt)
2167 set_except_vector(25, handle_mt);
2168
2169 set_except_vector(26, handle_dsp);
2170
2171 if (board_cache_error_setup)
2172 board_cache_error_setup();
2173
2174 if (cpu_has_vce)
2175 /* Special exception: R4[04]00 uses also the divec space. */
2176 set_handler(0x180, &except_vec3_r4000, 0x100);
2177 else if (cpu_has_4kex)
2178 set_handler(0x180, &except_vec3_generic, 0x80);
2179 else
2180 set_handler(0x080, &except_vec3_generic, 0x80);
2181
2182 local_flush_icache_range(ebase, ebase + 0x400);
2183
2184 sort_extable(__start___dbe_table, __stop___dbe_table);
2185
2186 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2187 }