]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/kvm/emulate.c
KVM: add kvm_{test,clear}_request to replace {test,clear}_bit
[mirror_ubuntu-artful-kernel.git] / arch / mips / kvm / emulate.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: Instruction/Exception emulation
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/bootmem.h>
19 #include <linux/random.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cacheops.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
26 #include <asm/inst.h>
27
28 #undef CONFIG_MIPS_MT
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
31
32 #include "interrupt.h"
33 #include "commpage.h"
34
35 #include "trace.h"
36
37 /*
38 * Compute the return address and do emulate branch simulation, if required.
39 * This function should be called only in branch delay slot active.
40 */
41 static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
42 unsigned long *out)
43 {
44 unsigned int dspcontrol;
45 union mips_instruction insn;
46 struct kvm_vcpu_arch *arch = &vcpu->arch;
47 long epc = instpc;
48 long nextpc;
49 int err;
50
51 if (epc & 3) {
52 kvm_err("%s: unaligned epc\n", __func__);
53 return -EINVAL;
54 }
55
56 /* Read the instruction */
57 err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
58 if (err)
59 return err;
60
61 switch (insn.i_format.opcode) {
62 /* jr and jalr are in r_format format. */
63 case spec_op:
64 switch (insn.r_format.func) {
65 case jalr_op:
66 arch->gprs[insn.r_format.rd] = epc + 8;
67 /* Fall through */
68 case jr_op:
69 nextpc = arch->gprs[insn.r_format.rs];
70 break;
71 default:
72 return -EINVAL;
73 }
74 break;
75
76 /*
77 * This group contains:
78 * bltz_op, bgez_op, bltzl_op, bgezl_op,
79 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
80 */
81 case bcond_op:
82 switch (insn.i_format.rt) {
83 case bltz_op:
84 case bltzl_op:
85 if ((long)arch->gprs[insn.i_format.rs] < 0)
86 epc = epc + 4 + (insn.i_format.simmediate << 2);
87 else
88 epc += 8;
89 nextpc = epc;
90 break;
91
92 case bgez_op:
93 case bgezl_op:
94 if ((long)arch->gprs[insn.i_format.rs] >= 0)
95 epc = epc + 4 + (insn.i_format.simmediate << 2);
96 else
97 epc += 8;
98 nextpc = epc;
99 break;
100
101 case bltzal_op:
102 case bltzall_op:
103 arch->gprs[31] = epc + 8;
104 if ((long)arch->gprs[insn.i_format.rs] < 0)
105 epc = epc + 4 + (insn.i_format.simmediate << 2);
106 else
107 epc += 8;
108 nextpc = epc;
109 break;
110
111 case bgezal_op:
112 case bgezall_op:
113 arch->gprs[31] = epc + 8;
114 if ((long)arch->gprs[insn.i_format.rs] >= 0)
115 epc = epc + 4 + (insn.i_format.simmediate << 2);
116 else
117 epc += 8;
118 nextpc = epc;
119 break;
120 case bposge32_op:
121 if (!cpu_has_dsp) {
122 kvm_err("%s: DSP branch but not DSP ASE\n",
123 __func__);
124 return -EINVAL;
125 }
126
127 dspcontrol = rddsp(0x01);
128
129 if (dspcontrol >= 32)
130 epc = epc + 4 + (insn.i_format.simmediate << 2);
131 else
132 epc += 8;
133 nextpc = epc;
134 break;
135 default:
136 return -EINVAL;
137 }
138 break;
139
140 /* These are unconditional and in j_format. */
141 case jal_op:
142 arch->gprs[31] = instpc + 8;
143 case j_op:
144 epc += 4;
145 epc >>= 28;
146 epc <<= 28;
147 epc |= (insn.j_format.target << 2);
148 nextpc = epc;
149 break;
150
151 /* These are conditional and in i_format. */
152 case beq_op:
153 case beql_op:
154 if (arch->gprs[insn.i_format.rs] ==
155 arch->gprs[insn.i_format.rt])
156 epc = epc + 4 + (insn.i_format.simmediate << 2);
157 else
158 epc += 8;
159 nextpc = epc;
160 break;
161
162 case bne_op:
163 case bnel_op:
164 if (arch->gprs[insn.i_format.rs] !=
165 arch->gprs[insn.i_format.rt])
166 epc = epc + 4 + (insn.i_format.simmediate << 2);
167 else
168 epc += 8;
169 nextpc = epc;
170 break;
171
172 case blez_op: /* POP06 */
173 #ifndef CONFIG_CPU_MIPSR6
174 case blezl_op: /* removed in R6 */
175 #endif
176 if (insn.i_format.rt != 0)
177 goto compact_branch;
178 if ((long)arch->gprs[insn.i_format.rs] <= 0)
179 epc = epc + 4 + (insn.i_format.simmediate << 2);
180 else
181 epc += 8;
182 nextpc = epc;
183 break;
184
185 case bgtz_op: /* POP07 */
186 #ifndef CONFIG_CPU_MIPSR6
187 case bgtzl_op: /* removed in R6 */
188 #endif
189 if (insn.i_format.rt != 0)
190 goto compact_branch;
191 if ((long)arch->gprs[insn.i_format.rs] > 0)
192 epc = epc + 4 + (insn.i_format.simmediate << 2);
193 else
194 epc += 8;
195 nextpc = epc;
196 break;
197
198 /* And now the FPA/cp1 branch instructions. */
199 case cop1_op:
200 kvm_err("%s: unsupported cop1_op\n", __func__);
201 return -EINVAL;
202
203 #ifdef CONFIG_CPU_MIPSR6
204 /* R6 added the following compact branches with forbidden slots */
205 case blezl_op: /* POP26 */
206 case bgtzl_op: /* POP27 */
207 /* only rt == 0 isn't compact branch */
208 if (insn.i_format.rt != 0)
209 goto compact_branch;
210 return -EINVAL;
211 case pop10_op:
212 case pop30_op:
213 /* only rs == rt == 0 is reserved, rest are compact branches */
214 if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
215 goto compact_branch;
216 return -EINVAL;
217 case pop66_op:
218 case pop76_op:
219 /* only rs == 0 isn't compact branch */
220 if (insn.i_format.rs != 0)
221 goto compact_branch;
222 return -EINVAL;
223 compact_branch:
224 /*
225 * If we've hit an exception on the forbidden slot, then
226 * the branch must not have been taken.
227 */
228 epc += 8;
229 nextpc = epc;
230 break;
231 #else
232 compact_branch:
233 /* Fall through - Compact branches not supported before R6 */
234 #endif
235 default:
236 return -EINVAL;
237 }
238
239 *out = nextpc;
240 return 0;
241 }
242
243 enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
244 {
245 int err;
246
247 if (cause & CAUSEF_BD) {
248 err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
249 &vcpu->arch.pc);
250 if (err)
251 return EMULATE_FAIL;
252 } else {
253 vcpu->arch.pc += 4;
254 }
255
256 kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
257
258 return EMULATE_DONE;
259 }
260
261 /**
262 * kvm_get_badinstr() - Get bad instruction encoding.
263 * @opc: Guest pointer to faulting instruction.
264 * @vcpu: KVM VCPU information.
265 *
266 * Gets the instruction encoding of the faulting instruction, using the saved
267 * BadInstr register value if it exists, otherwise falling back to reading guest
268 * memory at @opc.
269 *
270 * Returns: The instruction encoding of the faulting instruction.
271 */
272 int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
273 {
274 if (cpu_has_badinstr) {
275 *out = vcpu->arch.host_cp0_badinstr;
276 return 0;
277 } else {
278 return kvm_get_inst(opc, vcpu, out);
279 }
280 }
281
282 /**
283 * kvm_get_badinstrp() - Get bad prior instruction encoding.
284 * @opc: Guest pointer to prior faulting instruction.
285 * @vcpu: KVM VCPU information.
286 *
287 * Gets the instruction encoding of the prior faulting instruction (the branch
288 * containing the delay slot which faulted), using the saved BadInstrP register
289 * value if it exists, otherwise falling back to reading guest memory at @opc.
290 *
291 * Returns: The instruction encoding of the prior faulting instruction.
292 */
293 int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
294 {
295 if (cpu_has_badinstrp) {
296 *out = vcpu->arch.host_cp0_badinstrp;
297 return 0;
298 } else {
299 return kvm_get_inst(opc, vcpu, out);
300 }
301 }
302
303 /**
304 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
305 * @vcpu: Virtual CPU.
306 *
307 * Returns: 1 if the CP0_Count timer is disabled by either the guest
308 * CP0_Cause.DC bit or the count_ctl.DC bit.
309 * 0 otherwise (in which case CP0_Count timer is running).
310 */
311 int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
312 {
313 struct mips_coproc *cop0 = vcpu->arch.cop0;
314
315 return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
316 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
317 }
318
319 /**
320 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
321 *
322 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
323 *
324 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
325 */
326 static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
327 {
328 s64 now_ns, periods;
329 u64 delta;
330
331 now_ns = ktime_to_ns(now);
332 delta = now_ns + vcpu->arch.count_dyn_bias;
333
334 if (delta >= vcpu->arch.count_period) {
335 /* If delta is out of safe range the bias needs adjusting */
336 periods = div64_s64(now_ns, vcpu->arch.count_period);
337 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
338 /* Recalculate delta with new bias */
339 delta = now_ns + vcpu->arch.count_dyn_bias;
340 }
341
342 /*
343 * We've ensured that:
344 * delta < count_period
345 *
346 * Therefore the intermediate delta*count_hz will never overflow since
347 * at the boundary condition:
348 * delta = count_period
349 * delta = NSEC_PER_SEC * 2^32 / count_hz
350 * delta * count_hz = NSEC_PER_SEC * 2^32
351 */
352 return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
353 }
354
355 /**
356 * kvm_mips_count_time() - Get effective current time.
357 * @vcpu: Virtual CPU.
358 *
359 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
360 * except when the master disable bit is set in count_ctl, in which case it is
361 * count_resume, i.e. the time that the count was disabled.
362 *
363 * Returns: Effective monotonic ktime for CP0_Count.
364 */
365 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
366 {
367 if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
368 return vcpu->arch.count_resume;
369
370 return ktime_get();
371 }
372
373 /**
374 * kvm_mips_read_count_running() - Read the current count value as if running.
375 * @vcpu: Virtual CPU.
376 * @now: Kernel time to read CP0_Count at.
377 *
378 * Returns the current guest CP0_Count register at time @now and handles if the
379 * timer interrupt is pending and hasn't been handled yet.
380 *
381 * Returns: The current value of the guest CP0_Count register.
382 */
383 static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
384 {
385 struct mips_coproc *cop0 = vcpu->arch.cop0;
386 ktime_t expires, threshold;
387 u32 count, compare;
388 int running;
389
390 /* Calculate the biased and scaled guest CP0_Count */
391 count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
392 compare = kvm_read_c0_guest_compare(cop0);
393
394 /*
395 * Find whether CP0_Count has reached the closest timer interrupt. If
396 * not, we shouldn't inject it.
397 */
398 if ((s32)(count - compare) < 0)
399 return count;
400
401 /*
402 * The CP0_Count we're going to return has already reached the closest
403 * timer interrupt. Quickly check if it really is a new interrupt by
404 * looking at whether the interval until the hrtimer expiry time is
405 * less than 1/4 of the timer period.
406 */
407 expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
408 threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
409 if (ktime_before(expires, threshold)) {
410 /*
411 * Cancel it while we handle it so there's no chance of
412 * interference with the timeout handler.
413 */
414 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
415
416 /* Nothing should be waiting on the timeout */
417 kvm_mips_callbacks->queue_timer_int(vcpu);
418
419 /*
420 * Restart the timer if it was running based on the expiry time
421 * we read, so that we don't push it back 2 periods.
422 */
423 if (running) {
424 expires = ktime_add_ns(expires,
425 vcpu->arch.count_period);
426 hrtimer_start(&vcpu->arch.comparecount_timer, expires,
427 HRTIMER_MODE_ABS);
428 }
429 }
430
431 return count;
432 }
433
434 /**
435 * kvm_mips_read_count() - Read the current count value.
436 * @vcpu: Virtual CPU.
437 *
438 * Read the current guest CP0_Count value, taking into account whether the timer
439 * is stopped.
440 *
441 * Returns: The current guest CP0_Count value.
442 */
443 u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
444 {
445 struct mips_coproc *cop0 = vcpu->arch.cop0;
446
447 /* If count disabled just read static copy of count */
448 if (kvm_mips_count_disabled(vcpu))
449 return kvm_read_c0_guest_count(cop0);
450
451 return kvm_mips_read_count_running(vcpu, ktime_get());
452 }
453
454 /**
455 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
456 * @vcpu: Virtual CPU.
457 * @count: Output pointer for CP0_Count value at point of freeze.
458 *
459 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
460 * at the point it was frozen. It is guaranteed that any pending interrupts at
461 * the point it was frozen are handled, and none after that point.
462 *
463 * This is useful where the time/CP0_Count is needed in the calculation of the
464 * new parameters.
465 *
466 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
467 *
468 * Returns: The ktime at the point of freeze.
469 */
470 ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
471 {
472 ktime_t now;
473
474 /* stop hrtimer before finding time */
475 hrtimer_cancel(&vcpu->arch.comparecount_timer);
476 now = ktime_get();
477
478 /* find count at this point and handle pending hrtimer */
479 *count = kvm_mips_read_count_running(vcpu, now);
480
481 return now;
482 }
483
484 /**
485 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
486 * @vcpu: Virtual CPU.
487 * @now: ktime at point of resume.
488 * @count: CP0_Count at point of resume.
489 *
490 * Resumes the timer and updates the timer expiry based on @now and @count.
491 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
492 * parameters need to be changed.
493 *
494 * It is guaranteed that a timer interrupt immediately after resume will be
495 * handled, but not if CP_Compare is exactly at @count. That case is already
496 * handled by kvm_mips_freeze_timer().
497 *
498 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
499 */
500 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
501 ktime_t now, u32 count)
502 {
503 struct mips_coproc *cop0 = vcpu->arch.cop0;
504 u32 compare;
505 u64 delta;
506 ktime_t expire;
507
508 /* Calculate timeout (wrap 0 to 2^32) */
509 compare = kvm_read_c0_guest_compare(cop0);
510 delta = (u64)(u32)(compare - count - 1) + 1;
511 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
512 expire = ktime_add_ns(now, delta);
513
514 /* Update hrtimer to use new timeout */
515 hrtimer_cancel(&vcpu->arch.comparecount_timer);
516 hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
517 }
518
519 /**
520 * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
521 * @vcpu: Virtual CPU.
522 * @before: Time before Count was saved, lower bound of drift calculation.
523 * @count: CP0_Count at point of restore.
524 * @min_drift: Minimum amount of drift permitted before correction.
525 * Must be <= 0.
526 *
527 * Restores the timer from a particular @count, accounting for drift. This can
528 * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
529 * to be used for a period of time, but the exact ktime corresponding to the
530 * final Count that must be restored is not known.
531 *
532 * It is gauranteed that a timer interrupt immediately after restore will be
533 * handled, but not if CP0_Compare is exactly at @count. That case should
534 * already be handled when the hardware timer state is saved.
535 *
536 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
537 * stopped).
538 *
539 * Returns: Amount of correction to count_bias due to drift.
540 */
541 int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
542 u32 count, int min_drift)
543 {
544 ktime_t now, count_time;
545 u32 now_count, before_count;
546 u64 delta;
547 int drift, ret = 0;
548
549 /* Calculate expected count at before */
550 before_count = vcpu->arch.count_bias +
551 kvm_mips_ktime_to_count(vcpu, before);
552
553 /*
554 * Detect significantly negative drift, where count is lower than
555 * expected. Some negative drift is expected when hardware counter is
556 * set after kvm_mips_freeze_timer(), and it is harmless to allow the
557 * time to jump forwards a little, within reason. If the drift is too
558 * significant, adjust the bias to avoid a big Guest.CP0_Count jump.
559 */
560 drift = count - before_count;
561 if (drift < min_drift) {
562 count_time = before;
563 vcpu->arch.count_bias += drift;
564 ret = drift;
565 goto resume;
566 }
567
568 /* Calculate expected count right now */
569 now = ktime_get();
570 now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
571
572 /*
573 * Detect positive drift, where count is higher than expected, and
574 * adjust the bias to avoid guest time going backwards.
575 */
576 drift = count - now_count;
577 if (drift > 0) {
578 count_time = now;
579 vcpu->arch.count_bias += drift;
580 ret = drift;
581 goto resume;
582 }
583
584 /* Subtract nanosecond delta to find ktime when count was read */
585 delta = (u64)(u32)(now_count - count);
586 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
587 count_time = ktime_sub_ns(now, delta);
588
589 resume:
590 /* Resume using the calculated ktime */
591 kvm_mips_resume_hrtimer(vcpu, count_time, count);
592 return ret;
593 }
594
595 /**
596 * kvm_mips_write_count() - Modify the count and update timer.
597 * @vcpu: Virtual CPU.
598 * @count: Guest CP0_Count value to set.
599 *
600 * Sets the CP0_Count value and updates the timer accordingly.
601 */
602 void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
603 {
604 struct mips_coproc *cop0 = vcpu->arch.cop0;
605 ktime_t now;
606
607 /* Calculate bias */
608 now = kvm_mips_count_time(vcpu);
609 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
610
611 if (kvm_mips_count_disabled(vcpu))
612 /* The timer's disabled, adjust the static count */
613 kvm_write_c0_guest_count(cop0, count);
614 else
615 /* Update timeout */
616 kvm_mips_resume_hrtimer(vcpu, now, count);
617 }
618
619 /**
620 * kvm_mips_init_count() - Initialise timer.
621 * @vcpu: Virtual CPU.
622 * @count_hz: Frequency of timer.
623 *
624 * Initialise the timer to the specified frequency, zero it, and set it going if
625 * it's enabled.
626 */
627 void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
628 {
629 vcpu->arch.count_hz = count_hz;
630 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
631 vcpu->arch.count_dyn_bias = 0;
632
633 /* Starting at 0 */
634 kvm_mips_write_count(vcpu, 0);
635 }
636
637 /**
638 * kvm_mips_set_count_hz() - Update the frequency of the timer.
639 * @vcpu: Virtual CPU.
640 * @count_hz: Frequency of CP0_Count timer in Hz.
641 *
642 * Change the frequency of the CP0_Count timer. This is done atomically so that
643 * CP0_Count is continuous and no timer interrupt is lost.
644 *
645 * Returns: -EINVAL if @count_hz is out of range.
646 * 0 on success.
647 */
648 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
649 {
650 struct mips_coproc *cop0 = vcpu->arch.cop0;
651 int dc;
652 ktime_t now;
653 u32 count;
654
655 /* ensure the frequency is in a sensible range... */
656 if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
657 return -EINVAL;
658 /* ... and has actually changed */
659 if (vcpu->arch.count_hz == count_hz)
660 return 0;
661
662 /* Safely freeze timer so we can keep it continuous */
663 dc = kvm_mips_count_disabled(vcpu);
664 if (dc) {
665 now = kvm_mips_count_time(vcpu);
666 count = kvm_read_c0_guest_count(cop0);
667 } else {
668 now = kvm_mips_freeze_hrtimer(vcpu, &count);
669 }
670
671 /* Update the frequency */
672 vcpu->arch.count_hz = count_hz;
673 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
674 vcpu->arch.count_dyn_bias = 0;
675
676 /* Calculate adjusted bias so dynamic count is unchanged */
677 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
678
679 /* Update and resume hrtimer */
680 if (!dc)
681 kvm_mips_resume_hrtimer(vcpu, now, count);
682 return 0;
683 }
684
685 /**
686 * kvm_mips_write_compare() - Modify compare and update timer.
687 * @vcpu: Virtual CPU.
688 * @compare: New CP0_Compare value.
689 * @ack: Whether to acknowledge timer interrupt.
690 *
691 * Update CP0_Compare to a new value and update the timeout.
692 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
693 * any pending timer interrupt is preserved.
694 */
695 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
696 {
697 struct mips_coproc *cop0 = vcpu->arch.cop0;
698 int dc;
699 u32 old_compare = kvm_read_c0_guest_compare(cop0);
700 s32 delta = compare - old_compare;
701 u32 cause;
702 ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
703 u32 count;
704
705 /* if unchanged, must just be an ack */
706 if (old_compare == compare) {
707 if (!ack)
708 return;
709 kvm_mips_callbacks->dequeue_timer_int(vcpu);
710 kvm_write_c0_guest_compare(cop0, compare);
711 return;
712 }
713
714 /*
715 * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
716 * too to prevent guest CP0_Count hitting guest CP0_Compare.
717 *
718 * The new GTOffset corresponds to the new value of CP0_Compare, and is
719 * set prior to it being written into the guest context. We disable
720 * preemption until the new value is written to prevent restore of a
721 * GTOffset corresponding to the old CP0_Compare value.
722 */
723 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta > 0) {
724 preempt_disable();
725 write_c0_gtoffset(compare - read_c0_count());
726 back_to_back_c0_hazard();
727 }
728
729 /* freeze_hrtimer() takes care of timer interrupts <= count */
730 dc = kvm_mips_count_disabled(vcpu);
731 if (!dc)
732 now = kvm_mips_freeze_hrtimer(vcpu, &count);
733
734 if (ack)
735 kvm_mips_callbacks->dequeue_timer_int(vcpu);
736 else if (IS_ENABLED(CONFIG_KVM_MIPS_VZ))
737 /*
738 * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
739 * preserve guest CP0_Cause.TI if we don't want to ack it.
740 */
741 cause = kvm_read_c0_guest_cause(cop0);
742
743 kvm_write_c0_guest_compare(cop0, compare);
744
745 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
746 if (delta > 0)
747 preempt_enable();
748
749 back_to_back_c0_hazard();
750
751 if (!ack && cause & CAUSEF_TI)
752 kvm_write_c0_guest_cause(cop0, cause);
753 }
754
755 /* resume_hrtimer() takes care of timer interrupts > count */
756 if (!dc)
757 kvm_mips_resume_hrtimer(vcpu, now, count);
758
759 /*
760 * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
761 * until after the new CP0_Compare is written, otherwise new guest
762 * CP0_Count could hit new guest CP0_Compare.
763 */
764 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta <= 0)
765 write_c0_gtoffset(compare - read_c0_count());
766 }
767
768 /**
769 * kvm_mips_count_disable() - Disable count.
770 * @vcpu: Virtual CPU.
771 *
772 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
773 * time will be handled but not after.
774 *
775 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
776 * count_ctl.DC has been set (count disabled).
777 *
778 * Returns: The time that the timer was stopped.
779 */
780 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
781 {
782 struct mips_coproc *cop0 = vcpu->arch.cop0;
783 u32 count;
784 ktime_t now;
785
786 /* Stop hrtimer */
787 hrtimer_cancel(&vcpu->arch.comparecount_timer);
788
789 /* Set the static count from the dynamic count, handling pending TI */
790 now = ktime_get();
791 count = kvm_mips_read_count_running(vcpu, now);
792 kvm_write_c0_guest_count(cop0, count);
793
794 return now;
795 }
796
797 /**
798 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
799 * @vcpu: Virtual CPU.
800 *
801 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
802 * before the final stop time will be handled if the timer isn't disabled by
803 * count_ctl.DC, but not after.
804 *
805 * Assumes CP0_Cause.DC is clear (count enabled).
806 */
807 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
808 {
809 struct mips_coproc *cop0 = vcpu->arch.cop0;
810
811 kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
812 if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
813 kvm_mips_count_disable(vcpu);
814 }
815
816 /**
817 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
818 * @vcpu: Virtual CPU.
819 *
820 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
821 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
822 * potentially before even returning, so the caller should be careful with
823 * ordering of CP0_Cause modifications so as not to lose it.
824 *
825 * Assumes CP0_Cause.DC is set (count disabled).
826 */
827 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
828 {
829 struct mips_coproc *cop0 = vcpu->arch.cop0;
830 u32 count;
831
832 kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
833
834 /*
835 * Set the dynamic count to match the static count.
836 * This starts the hrtimer if count_ctl.DC allows it.
837 * Otherwise it conveniently updates the biases.
838 */
839 count = kvm_read_c0_guest_count(cop0);
840 kvm_mips_write_count(vcpu, count);
841 }
842
843 /**
844 * kvm_mips_set_count_ctl() - Update the count control KVM register.
845 * @vcpu: Virtual CPU.
846 * @count_ctl: Count control register new value.
847 *
848 * Set the count control KVM register. The timer is updated accordingly.
849 *
850 * Returns: -EINVAL if reserved bits are set.
851 * 0 on success.
852 */
853 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
854 {
855 struct mips_coproc *cop0 = vcpu->arch.cop0;
856 s64 changed = count_ctl ^ vcpu->arch.count_ctl;
857 s64 delta;
858 ktime_t expire, now;
859 u32 count, compare;
860
861 /* Only allow defined bits to be changed */
862 if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
863 return -EINVAL;
864
865 /* Apply new value */
866 vcpu->arch.count_ctl = count_ctl;
867
868 /* Master CP0_Count disable */
869 if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
870 /* Is CP0_Cause.DC already disabling CP0_Count? */
871 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
872 if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
873 /* Just record the current time */
874 vcpu->arch.count_resume = ktime_get();
875 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
876 /* disable timer and record current time */
877 vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
878 } else {
879 /*
880 * Calculate timeout relative to static count at resume
881 * time (wrap 0 to 2^32).
882 */
883 count = kvm_read_c0_guest_count(cop0);
884 compare = kvm_read_c0_guest_compare(cop0);
885 delta = (u64)(u32)(compare - count - 1) + 1;
886 delta = div_u64(delta * NSEC_PER_SEC,
887 vcpu->arch.count_hz);
888 expire = ktime_add_ns(vcpu->arch.count_resume, delta);
889
890 /* Handle pending interrupt */
891 now = ktime_get();
892 if (ktime_compare(now, expire) >= 0)
893 /* Nothing should be waiting on the timeout */
894 kvm_mips_callbacks->queue_timer_int(vcpu);
895
896 /* Resume hrtimer without changing bias */
897 count = kvm_mips_read_count_running(vcpu, now);
898 kvm_mips_resume_hrtimer(vcpu, now, count);
899 }
900 }
901
902 return 0;
903 }
904
905 /**
906 * kvm_mips_set_count_resume() - Update the count resume KVM register.
907 * @vcpu: Virtual CPU.
908 * @count_resume: Count resume register new value.
909 *
910 * Set the count resume KVM register.
911 *
912 * Returns: -EINVAL if out of valid range (0..now).
913 * 0 on success.
914 */
915 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
916 {
917 /*
918 * It doesn't make sense for the resume time to be in the future, as it
919 * would be possible for the next interrupt to be more than a full
920 * period in the future.
921 */
922 if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
923 return -EINVAL;
924
925 vcpu->arch.count_resume = ns_to_ktime(count_resume);
926 return 0;
927 }
928
929 /**
930 * kvm_mips_count_timeout() - Push timer forward on timeout.
931 * @vcpu: Virtual CPU.
932 *
933 * Handle an hrtimer event by push the hrtimer forward a period.
934 *
935 * Returns: The hrtimer_restart value to return to the hrtimer subsystem.
936 */
937 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
938 {
939 /* Add the Count period to the current expiry time */
940 hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
941 vcpu->arch.count_period);
942 return HRTIMER_RESTART;
943 }
944
945 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
946 {
947 struct mips_coproc *cop0 = vcpu->arch.cop0;
948 enum emulation_result er = EMULATE_DONE;
949
950 if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
951 kvm_clear_c0_guest_status(cop0, ST0_ERL);
952 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
953 } else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
954 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
955 kvm_read_c0_guest_epc(cop0));
956 kvm_clear_c0_guest_status(cop0, ST0_EXL);
957 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
958
959 } else {
960 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
961 vcpu->arch.pc);
962 er = EMULATE_FAIL;
963 }
964
965 return er;
966 }
967
968 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
969 {
970 kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
971 vcpu->arch.pending_exceptions);
972
973 ++vcpu->stat.wait_exits;
974 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
975 if (!vcpu->arch.pending_exceptions) {
976 kvm_vz_lose_htimer(vcpu);
977 vcpu->arch.wait = 1;
978 kvm_vcpu_block(vcpu);
979
980 /*
981 * We we are runnable, then definitely go off to user space to
982 * check if any I/O interrupts are pending.
983 */
984 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
985 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
986 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
987 }
988 }
989
990 return EMULATE_DONE;
991 }
992
993 static void kvm_mips_change_entryhi(struct kvm_vcpu *vcpu,
994 unsigned long entryhi)
995 {
996 struct mips_coproc *cop0 = vcpu->arch.cop0;
997 struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
998 int cpu, i;
999 u32 nasid = entryhi & KVM_ENTRYHI_ASID;
1000
1001 if (((kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID) != nasid)) {
1002 trace_kvm_asid_change(vcpu, kvm_read_c0_guest_entryhi(cop0) &
1003 KVM_ENTRYHI_ASID, nasid);
1004
1005 /*
1006 * Flush entries from the GVA page tables.
1007 * Guest user page table will get flushed lazily on re-entry to
1008 * guest user if the guest ASID actually changes.
1009 */
1010 kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_KERN);
1011
1012 /*
1013 * Regenerate/invalidate kernel MMU context.
1014 * The user MMU context will be regenerated lazily on re-entry
1015 * to guest user if the guest ASID actually changes.
1016 */
1017 preempt_disable();
1018 cpu = smp_processor_id();
1019 get_new_mmu_context(kern_mm, cpu);
1020 for_each_possible_cpu(i)
1021 if (i != cpu)
1022 cpu_context(i, kern_mm) = 0;
1023 preempt_enable();
1024 }
1025 kvm_write_c0_guest_entryhi(cop0, entryhi);
1026 }
1027
1028 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
1029 {
1030 struct mips_coproc *cop0 = vcpu->arch.cop0;
1031 struct kvm_mips_tlb *tlb;
1032 unsigned long pc = vcpu->arch.pc;
1033 int index;
1034
1035 index = kvm_read_c0_guest_index(cop0);
1036 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1037 /* UNDEFINED */
1038 kvm_debug("[%#lx] TLBR Index %#x out of range\n", pc, index);
1039 index &= KVM_MIPS_GUEST_TLB_SIZE - 1;
1040 }
1041
1042 tlb = &vcpu->arch.guest_tlb[index];
1043 kvm_write_c0_guest_pagemask(cop0, tlb->tlb_mask);
1044 kvm_write_c0_guest_entrylo0(cop0, tlb->tlb_lo[0]);
1045 kvm_write_c0_guest_entrylo1(cop0, tlb->tlb_lo[1]);
1046 kvm_mips_change_entryhi(vcpu, tlb->tlb_hi);
1047
1048 return EMULATE_DONE;
1049 }
1050
1051 /**
1052 * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
1053 * @vcpu: VCPU with changed mappings.
1054 * @tlb: TLB entry being removed.
1055 *
1056 * This is called to indicate a single change in guest MMU mappings, so that we
1057 * can arrange TLB flushes on this and other CPUs.
1058 */
1059 static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
1060 struct kvm_mips_tlb *tlb)
1061 {
1062 struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
1063 struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
1064 int cpu, i;
1065 bool user;
1066
1067 /* No need to flush for entries which are already invalid */
1068 if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V))
1069 return;
1070 /* Don't touch host kernel page tables or TLB mappings */
1071 if ((unsigned long)tlb->tlb_hi > 0x7fffffff)
1072 return;
1073 /* User address space doesn't need flushing for KSeg2/3 changes */
1074 user = tlb->tlb_hi < KVM_GUEST_KSEG0;
1075
1076 preempt_disable();
1077
1078 /* Invalidate page table entries */
1079 kvm_trap_emul_invalidate_gva(vcpu, tlb->tlb_hi & VPN2_MASK, user);
1080
1081 /*
1082 * Probe the shadow host TLB for the entry being overwritten, if one
1083 * matches, invalidate it
1084 */
1085 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi, user, true);
1086
1087 /* Invalidate the whole ASID on other CPUs */
1088 cpu = smp_processor_id();
1089 for_each_possible_cpu(i) {
1090 if (i == cpu)
1091 continue;
1092 if (user)
1093 cpu_context(i, user_mm) = 0;
1094 cpu_context(i, kern_mm) = 0;
1095 }
1096
1097 preempt_enable();
1098 }
1099
1100 /* Write Guest TLB Entry @ Index */
1101 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
1102 {
1103 struct mips_coproc *cop0 = vcpu->arch.cop0;
1104 int index = kvm_read_c0_guest_index(cop0);
1105 struct kvm_mips_tlb *tlb = NULL;
1106 unsigned long pc = vcpu->arch.pc;
1107
1108 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1109 kvm_debug("%s: illegal index: %d\n", __func__, index);
1110 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1111 pc, index, kvm_read_c0_guest_entryhi(cop0),
1112 kvm_read_c0_guest_entrylo0(cop0),
1113 kvm_read_c0_guest_entrylo1(cop0),
1114 kvm_read_c0_guest_pagemask(cop0));
1115 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
1116 }
1117
1118 tlb = &vcpu->arch.guest_tlb[index];
1119
1120 kvm_mips_invalidate_guest_tlb(vcpu, tlb);
1121
1122 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1123 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1124 tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1125 tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1126
1127 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1128 pc, index, kvm_read_c0_guest_entryhi(cop0),
1129 kvm_read_c0_guest_entrylo0(cop0),
1130 kvm_read_c0_guest_entrylo1(cop0),
1131 kvm_read_c0_guest_pagemask(cop0));
1132
1133 return EMULATE_DONE;
1134 }
1135
1136 /* Write Guest TLB Entry @ Random Index */
1137 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
1138 {
1139 struct mips_coproc *cop0 = vcpu->arch.cop0;
1140 struct kvm_mips_tlb *tlb = NULL;
1141 unsigned long pc = vcpu->arch.pc;
1142 int index;
1143
1144 get_random_bytes(&index, sizeof(index));
1145 index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
1146
1147 tlb = &vcpu->arch.guest_tlb[index];
1148
1149 kvm_mips_invalidate_guest_tlb(vcpu, tlb);
1150
1151 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1152 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1153 tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1154 tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1155
1156 kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
1157 pc, index, kvm_read_c0_guest_entryhi(cop0),
1158 kvm_read_c0_guest_entrylo0(cop0),
1159 kvm_read_c0_guest_entrylo1(cop0));
1160
1161 return EMULATE_DONE;
1162 }
1163
1164 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
1165 {
1166 struct mips_coproc *cop0 = vcpu->arch.cop0;
1167 long entryhi = kvm_read_c0_guest_entryhi(cop0);
1168 unsigned long pc = vcpu->arch.pc;
1169 int index = -1;
1170
1171 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1172
1173 kvm_write_c0_guest_index(cop0, index);
1174
1175 kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
1176 index);
1177
1178 return EMULATE_DONE;
1179 }
1180
1181 /**
1182 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
1183 * @vcpu: Virtual CPU.
1184 *
1185 * Finds the mask of bits which are writable in the guest's Config1 CP0
1186 * register, by userland (currently read-only to the guest).
1187 */
1188 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
1189 {
1190 unsigned int mask = 0;
1191
1192 /* Permit FPU to be present if FPU is supported */
1193 if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
1194 mask |= MIPS_CONF1_FP;
1195
1196 return mask;
1197 }
1198
1199 /**
1200 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
1201 * @vcpu: Virtual CPU.
1202 *
1203 * Finds the mask of bits which are writable in the guest's Config3 CP0
1204 * register, by userland (currently read-only to the guest).
1205 */
1206 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
1207 {
1208 /* Config4 and ULRI are optional */
1209 unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
1210
1211 /* Permit MSA to be present if MSA is supported */
1212 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
1213 mask |= MIPS_CONF3_MSA;
1214
1215 return mask;
1216 }
1217
1218 /**
1219 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
1220 * @vcpu: Virtual CPU.
1221 *
1222 * Finds the mask of bits which are writable in the guest's Config4 CP0
1223 * register, by userland (currently read-only to the guest).
1224 */
1225 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
1226 {
1227 /* Config5 is optional */
1228 unsigned int mask = MIPS_CONF_M;
1229
1230 /* KScrExist */
1231 mask |= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT;
1232
1233 return mask;
1234 }
1235
1236 /**
1237 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
1238 * @vcpu: Virtual CPU.
1239 *
1240 * Finds the mask of bits which are writable in the guest's Config5 CP0
1241 * register, by the guest itself.
1242 */
1243 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
1244 {
1245 unsigned int mask = 0;
1246
1247 /* Permit MSAEn changes if MSA supported and enabled */
1248 if (kvm_mips_guest_has_msa(&vcpu->arch))
1249 mask |= MIPS_CONF5_MSAEN;
1250
1251 /*
1252 * Permit guest FPU mode changes if FPU is enabled and the relevant
1253 * feature exists according to FIR register.
1254 */
1255 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1256 if (cpu_has_fre)
1257 mask |= MIPS_CONF5_FRE;
1258 /* We don't support UFR or UFE */
1259 }
1260
1261 return mask;
1262 }
1263
1264 enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
1265 u32 *opc, u32 cause,
1266 struct kvm_run *run,
1267 struct kvm_vcpu *vcpu)
1268 {
1269 struct mips_coproc *cop0 = vcpu->arch.cop0;
1270 enum emulation_result er = EMULATE_DONE;
1271 u32 rt, rd, sel;
1272 unsigned long curr_pc;
1273
1274 /*
1275 * Update PC and hold onto current PC in case there is
1276 * an error and we want to rollback the PC
1277 */
1278 curr_pc = vcpu->arch.pc;
1279 er = update_pc(vcpu, cause);
1280 if (er == EMULATE_FAIL)
1281 return er;
1282
1283 if (inst.co_format.co) {
1284 switch (inst.co_format.func) {
1285 case tlbr_op: /* Read indexed TLB entry */
1286 er = kvm_mips_emul_tlbr(vcpu);
1287 break;
1288 case tlbwi_op: /* Write indexed */
1289 er = kvm_mips_emul_tlbwi(vcpu);
1290 break;
1291 case tlbwr_op: /* Write random */
1292 er = kvm_mips_emul_tlbwr(vcpu);
1293 break;
1294 case tlbp_op: /* TLB Probe */
1295 er = kvm_mips_emul_tlbp(vcpu);
1296 break;
1297 case rfe_op:
1298 kvm_err("!!!COP0_RFE!!!\n");
1299 break;
1300 case eret_op:
1301 er = kvm_mips_emul_eret(vcpu);
1302 goto dont_update_pc;
1303 case wait_op:
1304 er = kvm_mips_emul_wait(vcpu);
1305 break;
1306 case hypcall_op:
1307 er = kvm_mips_emul_hypcall(vcpu, inst);
1308 break;
1309 }
1310 } else {
1311 rt = inst.c0r_format.rt;
1312 rd = inst.c0r_format.rd;
1313 sel = inst.c0r_format.sel;
1314
1315 switch (inst.c0r_format.rs) {
1316 case mfc_op:
1317 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1318 cop0->stat[rd][sel]++;
1319 #endif
1320 /* Get reg */
1321 if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1322 vcpu->arch.gprs[rt] =
1323 (s32)kvm_mips_read_count(vcpu);
1324 } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1325 vcpu->arch.gprs[rt] = 0x0;
1326 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1327 kvm_mips_trans_mfc0(inst, opc, vcpu);
1328 #endif
1329 } else {
1330 vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
1331
1332 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1333 kvm_mips_trans_mfc0(inst, opc, vcpu);
1334 #endif
1335 }
1336
1337 trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
1338 KVM_TRACE_COP0(rd, sel),
1339 vcpu->arch.gprs[rt]);
1340 break;
1341
1342 case dmfc_op:
1343 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1344
1345 trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
1346 KVM_TRACE_COP0(rd, sel),
1347 vcpu->arch.gprs[rt]);
1348 break;
1349
1350 case mtc_op:
1351 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1352 cop0->stat[rd][sel]++;
1353 #endif
1354 trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
1355 KVM_TRACE_COP0(rd, sel),
1356 vcpu->arch.gprs[rt]);
1357
1358 if ((rd == MIPS_CP0_TLB_INDEX)
1359 && (vcpu->arch.gprs[rt] >=
1360 KVM_MIPS_GUEST_TLB_SIZE)) {
1361 kvm_err("Invalid TLB Index: %ld",
1362 vcpu->arch.gprs[rt]);
1363 er = EMULATE_FAIL;
1364 break;
1365 }
1366 if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1367 /*
1368 * Preserve core number, and keep the exception
1369 * base in guest KSeg0.
1370 */
1371 kvm_change_c0_guest_ebase(cop0, 0x1ffff000,
1372 vcpu->arch.gprs[rt]);
1373 } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1374 kvm_mips_change_entryhi(vcpu,
1375 vcpu->arch.gprs[rt]);
1376 }
1377 /* Are we writing to COUNT */
1378 else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1379 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1380 goto done;
1381 } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1382 /* If we are writing to COMPARE */
1383 /* Clear pending timer interrupt, if any */
1384 kvm_mips_write_compare(vcpu,
1385 vcpu->arch.gprs[rt],
1386 true);
1387 } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1388 unsigned int old_val, val, change;
1389
1390 old_val = kvm_read_c0_guest_status(cop0);
1391 val = vcpu->arch.gprs[rt];
1392 change = val ^ old_val;
1393
1394 /* Make sure that the NMI bit is never set */
1395 val &= ~ST0_NMI;
1396
1397 /*
1398 * Don't allow CU1 or FR to be set unless FPU
1399 * capability enabled and exists in guest
1400 * configuration.
1401 */
1402 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1403 val &= ~(ST0_CU1 | ST0_FR);
1404
1405 /*
1406 * Also don't allow FR to be set if host doesn't
1407 * support it.
1408 */
1409 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1410 val &= ~ST0_FR;
1411
1412
1413 /* Handle changes in FPU mode */
1414 preempt_disable();
1415
1416 /*
1417 * FPU and Vector register state is made
1418 * UNPREDICTABLE by a change of FR, so don't
1419 * even bother saving it.
1420 */
1421 if (change & ST0_FR)
1422 kvm_drop_fpu(vcpu);
1423
1424 /*
1425 * If MSA state is already live, it is undefined
1426 * how it interacts with FR=0 FPU state, and we
1427 * don't want to hit reserved instruction
1428 * exceptions trying to save the MSA state later
1429 * when CU=1 && FR=1, so play it safe and save
1430 * it first.
1431 */
1432 if (change & ST0_CU1 && !(val & ST0_FR) &&
1433 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1434 kvm_lose_fpu(vcpu);
1435
1436 /*
1437 * Propagate CU1 (FPU enable) changes
1438 * immediately if the FPU context is already
1439 * loaded. When disabling we leave the context
1440 * loaded so it can be quickly enabled again in
1441 * the near future.
1442 */
1443 if (change & ST0_CU1 &&
1444 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1445 change_c0_status(ST0_CU1, val);
1446
1447 preempt_enable();
1448
1449 kvm_write_c0_guest_status(cop0, val);
1450
1451 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1452 /*
1453 * If FPU present, we need CU1/FR bits to take
1454 * effect fairly soon.
1455 */
1456 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1457 kvm_mips_trans_mtc0(inst, opc, vcpu);
1458 #endif
1459 } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1460 unsigned int old_val, val, change, wrmask;
1461
1462 old_val = kvm_read_c0_guest_config5(cop0);
1463 val = vcpu->arch.gprs[rt];
1464
1465 /* Only a few bits are writable in Config5 */
1466 wrmask = kvm_mips_config5_wrmask(vcpu);
1467 change = (val ^ old_val) & wrmask;
1468 val = old_val ^ change;
1469
1470
1471 /* Handle changes in FPU/MSA modes */
1472 preempt_disable();
1473
1474 /*
1475 * Propagate FRE changes immediately if the FPU
1476 * context is already loaded.
1477 */
1478 if (change & MIPS_CONF5_FRE &&
1479 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1480 change_c0_config5(MIPS_CONF5_FRE, val);
1481
1482 /*
1483 * Propagate MSAEn changes immediately if the
1484 * MSA context is already loaded. When disabling
1485 * we leave the context loaded so it can be
1486 * quickly enabled again in the near future.
1487 */
1488 if (change & MIPS_CONF5_MSAEN &&
1489 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1490 change_c0_config5(MIPS_CONF5_MSAEN,
1491 val);
1492
1493 preempt_enable();
1494
1495 kvm_write_c0_guest_config5(cop0, val);
1496 } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1497 u32 old_cause, new_cause;
1498
1499 old_cause = kvm_read_c0_guest_cause(cop0);
1500 new_cause = vcpu->arch.gprs[rt];
1501 /* Update R/W bits */
1502 kvm_change_c0_guest_cause(cop0, 0x08800300,
1503 new_cause);
1504 /* DC bit enabling/disabling timer? */
1505 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1506 if (new_cause & CAUSEF_DC)
1507 kvm_mips_count_disable_cause(vcpu);
1508 else
1509 kvm_mips_count_enable_cause(vcpu);
1510 }
1511 } else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
1512 u32 mask = MIPS_HWRENA_CPUNUM |
1513 MIPS_HWRENA_SYNCISTEP |
1514 MIPS_HWRENA_CC |
1515 MIPS_HWRENA_CCRES;
1516
1517 if (kvm_read_c0_guest_config3(cop0) &
1518 MIPS_CONF3_ULRI)
1519 mask |= MIPS_HWRENA_ULR;
1520 cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
1521 } else {
1522 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1523 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1524 kvm_mips_trans_mtc0(inst, opc, vcpu);
1525 #endif
1526 }
1527 break;
1528
1529 case dmtc_op:
1530 kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1531 vcpu->arch.pc, rt, rd, sel);
1532 trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
1533 KVM_TRACE_COP0(rd, sel),
1534 vcpu->arch.gprs[rt]);
1535 er = EMULATE_FAIL;
1536 break;
1537
1538 case mfmc0_op:
1539 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1540 cop0->stat[MIPS_CP0_STATUS][0]++;
1541 #endif
1542 if (rt != 0)
1543 vcpu->arch.gprs[rt] =
1544 kvm_read_c0_guest_status(cop0);
1545 /* EI */
1546 if (inst.mfmc0_format.sc) {
1547 kvm_debug("[%#lx] mfmc0_op: EI\n",
1548 vcpu->arch.pc);
1549 kvm_set_c0_guest_status(cop0, ST0_IE);
1550 } else {
1551 kvm_debug("[%#lx] mfmc0_op: DI\n",
1552 vcpu->arch.pc);
1553 kvm_clear_c0_guest_status(cop0, ST0_IE);
1554 }
1555
1556 break;
1557
1558 case wrpgpr_op:
1559 {
1560 u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1561 u32 pss =
1562 (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1563 /*
1564 * We don't support any shadow register sets, so
1565 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1566 */
1567 if (css || pss) {
1568 er = EMULATE_FAIL;
1569 break;
1570 }
1571 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1572 vcpu->arch.gprs[rt]);
1573 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1574 }
1575 break;
1576 default:
1577 kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1578 vcpu->arch.pc, inst.c0r_format.rs);
1579 er = EMULATE_FAIL;
1580 break;
1581 }
1582 }
1583
1584 done:
1585 /* Rollback PC only if emulation was unsuccessful */
1586 if (er == EMULATE_FAIL)
1587 vcpu->arch.pc = curr_pc;
1588
1589 dont_update_pc:
1590 /*
1591 * This is for special instructions whose emulation
1592 * updates the PC, so do not overwrite the PC under
1593 * any circumstances
1594 */
1595
1596 return er;
1597 }
1598
1599 enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
1600 u32 cause,
1601 struct kvm_run *run,
1602 struct kvm_vcpu *vcpu)
1603 {
1604 enum emulation_result er;
1605 u32 rt;
1606 void *data = run->mmio.data;
1607 unsigned long curr_pc;
1608
1609 /*
1610 * Update PC and hold onto current PC in case there is
1611 * an error and we want to rollback the PC
1612 */
1613 curr_pc = vcpu->arch.pc;
1614 er = update_pc(vcpu, cause);
1615 if (er == EMULATE_FAIL)
1616 return er;
1617
1618 rt = inst.i_format.rt;
1619
1620 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1621 vcpu->arch.host_cp0_badvaddr);
1622 if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1623 goto out_fail;
1624
1625 switch (inst.i_format.opcode) {
1626 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1627 case sd_op:
1628 run->mmio.len = 8;
1629 *(u64 *)data = vcpu->arch.gprs[rt];
1630
1631 kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1632 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1633 vcpu->arch.gprs[rt], *(u64 *)data);
1634 break;
1635 #endif
1636
1637 case sw_op:
1638 run->mmio.len = 4;
1639 *(u32 *)data = vcpu->arch.gprs[rt];
1640
1641 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1642 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1643 vcpu->arch.gprs[rt], *(u32 *)data);
1644 break;
1645
1646 case sh_op:
1647 run->mmio.len = 2;
1648 *(u16 *)data = vcpu->arch.gprs[rt];
1649
1650 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1651 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1652 vcpu->arch.gprs[rt], *(u16 *)data);
1653 break;
1654
1655 case sb_op:
1656 run->mmio.len = 1;
1657 *(u8 *)data = vcpu->arch.gprs[rt];
1658
1659 kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1660 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1661 vcpu->arch.gprs[rt], *(u8 *)data);
1662 break;
1663
1664 default:
1665 kvm_err("Store not yet supported (inst=0x%08x)\n",
1666 inst.word);
1667 goto out_fail;
1668 }
1669
1670 run->mmio.is_write = 1;
1671 vcpu->mmio_needed = 1;
1672 vcpu->mmio_is_write = 1;
1673 return EMULATE_DO_MMIO;
1674
1675 out_fail:
1676 /* Rollback PC if emulation was unsuccessful */
1677 vcpu->arch.pc = curr_pc;
1678 return EMULATE_FAIL;
1679 }
1680
1681 enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1682 u32 cause, struct kvm_run *run,
1683 struct kvm_vcpu *vcpu)
1684 {
1685 enum emulation_result er;
1686 unsigned long curr_pc;
1687 u32 op, rt;
1688
1689 rt = inst.i_format.rt;
1690 op = inst.i_format.opcode;
1691
1692 /*
1693 * Find the resume PC now while we have safe and easy access to the
1694 * prior branch instruction, and save it for
1695 * kvm_mips_complete_mmio_load() to restore later.
1696 */
1697 curr_pc = vcpu->arch.pc;
1698 er = update_pc(vcpu, cause);
1699 if (er == EMULATE_FAIL)
1700 return er;
1701 vcpu->arch.io_pc = vcpu->arch.pc;
1702 vcpu->arch.pc = curr_pc;
1703
1704 vcpu->arch.io_gpr = rt;
1705
1706 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1707 vcpu->arch.host_cp0_badvaddr);
1708 if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1709 return EMULATE_FAIL;
1710
1711 vcpu->mmio_needed = 2; /* signed */
1712 switch (op) {
1713 #if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1714 case ld_op:
1715 run->mmio.len = 8;
1716 break;
1717
1718 case lwu_op:
1719 vcpu->mmio_needed = 1; /* unsigned */
1720 /* fall through */
1721 #endif
1722 case lw_op:
1723 run->mmio.len = 4;
1724 break;
1725
1726 case lhu_op:
1727 vcpu->mmio_needed = 1; /* unsigned */
1728 /* fall through */
1729 case lh_op:
1730 run->mmio.len = 2;
1731 break;
1732
1733 case lbu_op:
1734 vcpu->mmio_needed = 1; /* unsigned */
1735 /* fall through */
1736 case lb_op:
1737 run->mmio.len = 1;
1738 break;
1739
1740 default:
1741 kvm_err("Load not yet supported (inst=0x%08x)\n",
1742 inst.word);
1743 vcpu->mmio_needed = 0;
1744 return EMULATE_FAIL;
1745 }
1746
1747 run->mmio.is_write = 0;
1748 vcpu->mmio_is_write = 0;
1749 return EMULATE_DO_MMIO;
1750 }
1751
1752 #ifndef CONFIG_KVM_MIPS_VZ
1753 static enum emulation_result kvm_mips_guest_cache_op(int (*fn)(unsigned long),
1754 unsigned long curr_pc,
1755 unsigned long addr,
1756 struct kvm_run *run,
1757 struct kvm_vcpu *vcpu,
1758 u32 cause)
1759 {
1760 int err;
1761
1762 for (;;) {
1763 /* Carefully attempt the cache operation */
1764 kvm_trap_emul_gva_lockless_begin(vcpu);
1765 err = fn(addr);
1766 kvm_trap_emul_gva_lockless_end(vcpu);
1767
1768 if (likely(!err))
1769 return EMULATE_DONE;
1770
1771 /*
1772 * Try to handle the fault and retry, maybe we just raced with a
1773 * GVA invalidation.
1774 */
1775 switch (kvm_trap_emul_gva_fault(vcpu, addr, false)) {
1776 case KVM_MIPS_GVA:
1777 case KVM_MIPS_GPA:
1778 /* bad virtual or physical address */
1779 return EMULATE_FAIL;
1780 case KVM_MIPS_TLB:
1781 /* no matching guest TLB */
1782 vcpu->arch.host_cp0_badvaddr = addr;
1783 vcpu->arch.pc = curr_pc;
1784 kvm_mips_emulate_tlbmiss_ld(cause, NULL, run, vcpu);
1785 return EMULATE_EXCEPT;
1786 case KVM_MIPS_TLBINV:
1787 /* invalid matching guest TLB */
1788 vcpu->arch.host_cp0_badvaddr = addr;
1789 vcpu->arch.pc = curr_pc;
1790 kvm_mips_emulate_tlbinv_ld(cause, NULL, run, vcpu);
1791 return EMULATE_EXCEPT;
1792 default:
1793 break;
1794 };
1795 }
1796 }
1797
1798 enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
1799 u32 *opc, u32 cause,
1800 struct kvm_run *run,
1801 struct kvm_vcpu *vcpu)
1802 {
1803 enum emulation_result er = EMULATE_DONE;
1804 u32 cache, op_inst, op, base;
1805 s16 offset;
1806 struct kvm_vcpu_arch *arch = &vcpu->arch;
1807 unsigned long va;
1808 unsigned long curr_pc;
1809
1810 /*
1811 * Update PC and hold onto current PC in case there is
1812 * an error and we want to rollback the PC
1813 */
1814 curr_pc = vcpu->arch.pc;
1815 er = update_pc(vcpu, cause);
1816 if (er == EMULATE_FAIL)
1817 return er;
1818
1819 base = inst.i_format.rs;
1820 op_inst = inst.i_format.rt;
1821 if (cpu_has_mips_r6)
1822 offset = inst.spec3_format.simmediate;
1823 else
1824 offset = inst.i_format.simmediate;
1825 cache = op_inst & CacheOp_Cache;
1826 op = op_inst & CacheOp_Op;
1827
1828 va = arch->gprs[base] + offset;
1829
1830 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1831 cache, op, base, arch->gprs[base], offset);
1832
1833 /*
1834 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1835 * invalidate the caches entirely by stepping through all the
1836 * ways/indexes
1837 */
1838 if (op == Index_Writeback_Inv) {
1839 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1840 vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1841 arch->gprs[base], offset);
1842
1843 if (cache == Cache_D) {
1844 #ifdef CONFIG_CPU_R4K_CACHE_TLB
1845 r4k_blast_dcache();
1846 #else
1847 switch (boot_cpu_type()) {
1848 case CPU_CAVIUM_OCTEON3:
1849 /* locally flush icache */
1850 local_flush_icache_range(0, 0);
1851 break;
1852 default:
1853 __flush_cache_all();
1854 break;
1855 }
1856 #endif
1857 } else if (cache == Cache_I) {
1858 #ifdef CONFIG_CPU_R4K_CACHE_TLB
1859 r4k_blast_icache();
1860 #else
1861 switch (boot_cpu_type()) {
1862 case CPU_CAVIUM_OCTEON3:
1863 /* locally flush icache */
1864 local_flush_icache_range(0, 0);
1865 break;
1866 default:
1867 flush_icache_all();
1868 break;
1869 }
1870 #endif
1871 } else {
1872 kvm_err("%s: unsupported CACHE INDEX operation\n",
1873 __func__);
1874 return EMULATE_FAIL;
1875 }
1876
1877 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1878 kvm_mips_trans_cache_index(inst, opc, vcpu);
1879 #endif
1880 goto done;
1881 }
1882
1883 /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1884 if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1885 /*
1886 * Perform the dcache part of icache synchronisation on the
1887 * guest's behalf.
1888 */
1889 er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
1890 curr_pc, va, run, vcpu, cause);
1891 if (er != EMULATE_DONE)
1892 goto done;
1893 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1894 /*
1895 * Replace the CACHE instruction, with a SYNCI, not the same,
1896 * but avoids a trap
1897 */
1898 kvm_mips_trans_cache_va(inst, opc, vcpu);
1899 #endif
1900 } else if (op_inst == Hit_Invalidate_I) {
1901 /* Perform the icache synchronisation on the guest's behalf */
1902 er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
1903 curr_pc, va, run, vcpu, cause);
1904 if (er != EMULATE_DONE)
1905 goto done;
1906 er = kvm_mips_guest_cache_op(protected_flush_icache_line,
1907 curr_pc, va, run, vcpu, cause);
1908 if (er != EMULATE_DONE)
1909 goto done;
1910
1911 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1912 /* Replace the CACHE instruction, with a SYNCI */
1913 kvm_mips_trans_cache_va(inst, opc, vcpu);
1914 #endif
1915 } else {
1916 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1917 cache, op, base, arch->gprs[base], offset);
1918 er = EMULATE_FAIL;
1919 }
1920
1921 done:
1922 /* Rollback PC only if emulation was unsuccessful */
1923 if (er == EMULATE_FAIL)
1924 vcpu->arch.pc = curr_pc;
1925 /* Guest exception needs guest to resume */
1926 if (er == EMULATE_EXCEPT)
1927 er = EMULATE_DONE;
1928
1929 return er;
1930 }
1931
1932 enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
1933 struct kvm_run *run,
1934 struct kvm_vcpu *vcpu)
1935 {
1936 union mips_instruction inst;
1937 enum emulation_result er = EMULATE_DONE;
1938 int err;
1939
1940 /* Fetch the instruction. */
1941 if (cause & CAUSEF_BD)
1942 opc += 1;
1943 err = kvm_get_badinstr(opc, vcpu, &inst.word);
1944 if (err)
1945 return EMULATE_FAIL;
1946
1947 switch (inst.r_format.opcode) {
1948 case cop0_op:
1949 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1950 break;
1951
1952 #ifndef CONFIG_CPU_MIPSR6
1953 case cache_op:
1954 ++vcpu->stat.cache_exits;
1955 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1956 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1957 break;
1958 #else
1959 case spec3_op:
1960 switch (inst.spec3_format.func) {
1961 case cache6_op:
1962 ++vcpu->stat.cache_exits;
1963 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1964 er = kvm_mips_emulate_cache(inst, opc, cause, run,
1965 vcpu);
1966 break;
1967 default:
1968 goto unknown;
1969 };
1970 break;
1971 unknown:
1972 #endif
1973
1974 default:
1975 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1976 inst.word);
1977 kvm_arch_vcpu_dump_regs(vcpu);
1978 er = EMULATE_FAIL;
1979 break;
1980 }
1981
1982 return er;
1983 }
1984 #endif /* CONFIG_KVM_MIPS_VZ */
1985
1986 /**
1987 * kvm_mips_guest_exception_base() - Find guest exception vector base address.
1988 *
1989 * Returns: The base address of the current guest exception vector, taking
1990 * both Guest.CP0_Status.BEV and Guest.CP0_EBase into account.
1991 */
1992 long kvm_mips_guest_exception_base(struct kvm_vcpu *vcpu)
1993 {
1994 struct mips_coproc *cop0 = vcpu->arch.cop0;
1995
1996 if (kvm_read_c0_guest_status(cop0) & ST0_BEV)
1997 return KVM_GUEST_CKSEG1ADDR(0x1fc00200);
1998 else
1999 return kvm_read_c0_guest_ebase(cop0) & MIPS_EBASE_BASE;
2000 }
2001
2002 enum emulation_result kvm_mips_emulate_syscall(u32 cause,
2003 u32 *opc,
2004 struct kvm_run *run,
2005 struct kvm_vcpu *vcpu)
2006 {
2007 struct mips_coproc *cop0 = vcpu->arch.cop0;
2008 struct kvm_vcpu_arch *arch = &vcpu->arch;
2009 enum emulation_result er = EMULATE_DONE;
2010
2011 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2012 /* save old pc */
2013 kvm_write_c0_guest_epc(cop0, arch->pc);
2014 kvm_set_c0_guest_status(cop0, ST0_EXL);
2015
2016 if (cause & CAUSEF_BD)
2017 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2018 else
2019 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2020
2021 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
2022
2023 kvm_change_c0_guest_cause(cop0, (0xff),
2024 (EXCCODE_SYS << CAUSEB_EXCCODE));
2025
2026 /* Set PC to the exception entry point */
2027 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2028
2029 } else {
2030 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
2031 er = EMULATE_FAIL;
2032 }
2033
2034 return er;
2035 }
2036
2037 enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
2038 u32 *opc,
2039 struct kvm_run *run,
2040 struct kvm_vcpu *vcpu)
2041 {
2042 struct mips_coproc *cop0 = vcpu->arch.cop0;
2043 struct kvm_vcpu_arch *arch = &vcpu->arch;
2044 unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) |
2045 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2046
2047 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2048 /* save old pc */
2049 kvm_write_c0_guest_epc(cop0, arch->pc);
2050 kvm_set_c0_guest_status(cop0, ST0_EXL);
2051
2052 if (cause & CAUSEF_BD)
2053 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2054 else
2055 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2056
2057 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
2058 arch->pc);
2059
2060 /* set pc to the exception entry point */
2061 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2062
2063 } else {
2064 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2065 arch->pc);
2066
2067 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2068 }
2069
2070 kvm_change_c0_guest_cause(cop0, (0xff),
2071 (EXCCODE_TLBL << CAUSEB_EXCCODE));
2072
2073 /* setup badvaddr, context and entryhi registers for the guest */
2074 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2075 /* XXXKYMA: is the context register used by linux??? */
2076 kvm_write_c0_guest_entryhi(cop0, entryhi);
2077
2078 return EMULATE_DONE;
2079 }
2080
2081 enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
2082 u32 *opc,
2083 struct kvm_run *run,
2084 struct kvm_vcpu *vcpu)
2085 {
2086 struct mips_coproc *cop0 = vcpu->arch.cop0;
2087 struct kvm_vcpu_arch *arch = &vcpu->arch;
2088 unsigned long entryhi =
2089 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2090 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2091
2092 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2093 /* save old pc */
2094 kvm_write_c0_guest_epc(cop0, arch->pc);
2095 kvm_set_c0_guest_status(cop0, ST0_EXL);
2096
2097 if (cause & CAUSEF_BD)
2098 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2099 else
2100 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2101
2102 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
2103 arch->pc);
2104 } else {
2105 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2106 arch->pc);
2107 }
2108
2109 /* set pc to the exception entry point */
2110 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2111
2112 kvm_change_c0_guest_cause(cop0, (0xff),
2113 (EXCCODE_TLBL << CAUSEB_EXCCODE));
2114
2115 /* setup badvaddr, context and entryhi registers for the guest */
2116 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2117 /* XXXKYMA: is the context register used by linux??? */
2118 kvm_write_c0_guest_entryhi(cop0, entryhi);
2119
2120 return EMULATE_DONE;
2121 }
2122
2123 enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
2124 u32 *opc,
2125 struct kvm_run *run,
2126 struct kvm_vcpu *vcpu)
2127 {
2128 struct mips_coproc *cop0 = vcpu->arch.cop0;
2129 struct kvm_vcpu_arch *arch = &vcpu->arch;
2130 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2131 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2132
2133 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2134 /* save old pc */
2135 kvm_write_c0_guest_epc(cop0, arch->pc);
2136 kvm_set_c0_guest_status(cop0, ST0_EXL);
2137
2138 if (cause & CAUSEF_BD)
2139 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2140 else
2141 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2142
2143 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2144 arch->pc);
2145
2146 /* Set PC to the exception entry point */
2147 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2148 } else {
2149 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2150 arch->pc);
2151 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2152 }
2153
2154 kvm_change_c0_guest_cause(cop0, (0xff),
2155 (EXCCODE_TLBS << CAUSEB_EXCCODE));
2156
2157 /* setup badvaddr, context and entryhi registers for the guest */
2158 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2159 /* XXXKYMA: is the context register used by linux??? */
2160 kvm_write_c0_guest_entryhi(cop0, entryhi);
2161
2162 return EMULATE_DONE;
2163 }
2164
2165 enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
2166 u32 *opc,
2167 struct kvm_run *run,
2168 struct kvm_vcpu *vcpu)
2169 {
2170 struct mips_coproc *cop0 = vcpu->arch.cop0;
2171 struct kvm_vcpu_arch *arch = &vcpu->arch;
2172 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2173 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2174
2175 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2176 /* save old pc */
2177 kvm_write_c0_guest_epc(cop0, arch->pc);
2178 kvm_set_c0_guest_status(cop0, ST0_EXL);
2179
2180 if (cause & CAUSEF_BD)
2181 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2182 else
2183 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2184
2185 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2186 arch->pc);
2187 } else {
2188 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2189 arch->pc);
2190 }
2191
2192 /* Set PC to the exception entry point */
2193 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2194
2195 kvm_change_c0_guest_cause(cop0, (0xff),
2196 (EXCCODE_TLBS << CAUSEB_EXCCODE));
2197
2198 /* setup badvaddr, context and entryhi registers for the guest */
2199 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2200 /* XXXKYMA: is the context register used by linux??? */
2201 kvm_write_c0_guest_entryhi(cop0, entryhi);
2202
2203 return EMULATE_DONE;
2204 }
2205
2206 enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
2207 u32 *opc,
2208 struct kvm_run *run,
2209 struct kvm_vcpu *vcpu)
2210 {
2211 struct mips_coproc *cop0 = vcpu->arch.cop0;
2212 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2213 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2214 struct kvm_vcpu_arch *arch = &vcpu->arch;
2215
2216 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2217 /* save old pc */
2218 kvm_write_c0_guest_epc(cop0, arch->pc);
2219 kvm_set_c0_guest_status(cop0, ST0_EXL);
2220
2221 if (cause & CAUSEF_BD)
2222 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2223 else
2224 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2225
2226 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2227 arch->pc);
2228 } else {
2229 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2230 arch->pc);
2231 }
2232
2233 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2234
2235 kvm_change_c0_guest_cause(cop0, (0xff),
2236 (EXCCODE_MOD << CAUSEB_EXCCODE));
2237
2238 /* setup badvaddr, context and entryhi registers for the guest */
2239 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2240 /* XXXKYMA: is the context register used by linux??? */
2241 kvm_write_c0_guest_entryhi(cop0, entryhi);
2242
2243 return EMULATE_DONE;
2244 }
2245
2246 enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
2247 u32 *opc,
2248 struct kvm_run *run,
2249 struct kvm_vcpu *vcpu)
2250 {
2251 struct mips_coproc *cop0 = vcpu->arch.cop0;
2252 struct kvm_vcpu_arch *arch = &vcpu->arch;
2253
2254 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2255 /* save old pc */
2256 kvm_write_c0_guest_epc(cop0, arch->pc);
2257 kvm_set_c0_guest_status(cop0, ST0_EXL);
2258
2259 if (cause & CAUSEF_BD)
2260 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2261 else
2262 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2263
2264 }
2265
2266 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2267
2268 kvm_change_c0_guest_cause(cop0, (0xff),
2269 (EXCCODE_CPU << CAUSEB_EXCCODE));
2270 kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2271
2272 return EMULATE_DONE;
2273 }
2274
2275 enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
2276 u32 *opc,
2277 struct kvm_run *run,
2278 struct kvm_vcpu *vcpu)
2279 {
2280 struct mips_coproc *cop0 = vcpu->arch.cop0;
2281 struct kvm_vcpu_arch *arch = &vcpu->arch;
2282 enum emulation_result er = EMULATE_DONE;
2283
2284 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2285 /* save old pc */
2286 kvm_write_c0_guest_epc(cop0, arch->pc);
2287 kvm_set_c0_guest_status(cop0, ST0_EXL);
2288
2289 if (cause & CAUSEF_BD)
2290 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2291 else
2292 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2293
2294 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2295
2296 kvm_change_c0_guest_cause(cop0, (0xff),
2297 (EXCCODE_RI << CAUSEB_EXCCODE));
2298
2299 /* Set PC to the exception entry point */
2300 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2301
2302 } else {
2303 kvm_err("Trying to deliver RI when EXL is already set\n");
2304 er = EMULATE_FAIL;
2305 }
2306
2307 return er;
2308 }
2309
2310 enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
2311 u32 *opc,
2312 struct kvm_run *run,
2313 struct kvm_vcpu *vcpu)
2314 {
2315 struct mips_coproc *cop0 = vcpu->arch.cop0;
2316 struct kvm_vcpu_arch *arch = &vcpu->arch;
2317 enum emulation_result er = EMULATE_DONE;
2318
2319 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2320 /* save old pc */
2321 kvm_write_c0_guest_epc(cop0, arch->pc);
2322 kvm_set_c0_guest_status(cop0, ST0_EXL);
2323
2324 if (cause & CAUSEF_BD)
2325 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2326 else
2327 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2328
2329 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2330
2331 kvm_change_c0_guest_cause(cop0, (0xff),
2332 (EXCCODE_BP << CAUSEB_EXCCODE));
2333
2334 /* Set PC to the exception entry point */
2335 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2336
2337 } else {
2338 kvm_err("Trying to deliver BP when EXL is already set\n");
2339 er = EMULATE_FAIL;
2340 }
2341
2342 return er;
2343 }
2344
2345 enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
2346 u32 *opc,
2347 struct kvm_run *run,
2348 struct kvm_vcpu *vcpu)
2349 {
2350 struct mips_coproc *cop0 = vcpu->arch.cop0;
2351 struct kvm_vcpu_arch *arch = &vcpu->arch;
2352 enum emulation_result er = EMULATE_DONE;
2353
2354 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2355 /* save old pc */
2356 kvm_write_c0_guest_epc(cop0, arch->pc);
2357 kvm_set_c0_guest_status(cop0, ST0_EXL);
2358
2359 if (cause & CAUSEF_BD)
2360 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2361 else
2362 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2363
2364 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2365
2366 kvm_change_c0_guest_cause(cop0, (0xff),
2367 (EXCCODE_TR << CAUSEB_EXCCODE));
2368
2369 /* Set PC to the exception entry point */
2370 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2371
2372 } else {
2373 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2374 er = EMULATE_FAIL;
2375 }
2376
2377 return er;
2378 }
2379
2380 enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
2381 u32 *opc,
2382 struct kvm_run *run,
2383 struct kvm_vcpu *vcpu)
2384 {
2385 struct mips_coproc *cop0 = vcpu->arch.cop0;
2386 struct kvm_vcpu_arch *arch = &vcpu->arch;
2387 enum emulation_result er = EMULATE_DONE;
2388
2389 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2390 /* save old pc */
2391 kvm_write_c0_guest_epc(cop0, arch->pc);
2392 kvm_set_c0_guest_status(cop0, ST0_EXL);
2393
2394 if (cause & CAUSEF_BD)
2395 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2396 else
2397 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2398
2399 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2400
2401 kvm_change_c0_guest_cause(cop0, (0xff),
2402 (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2403
2404 /* Set PC to the exception entry point */
2405 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2406
2407 } else {
2408 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2409 er = EMULATE_FAIL;
2410 }
2411
2412 return er;
2413 }
2414
2415 enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
2416 u32 *opc,
2417 struct kvm_run *run,
2418 struct kvm_vcpu *vcpu)
2419 {
2420 struct mips_coproc *cop0 = vcpu->arch.cop0;
2421 struct kvm_vcpu_arch *arch = &vcpu->arch;
2422 enum emulation_result er = EMULATE_DONE;
2423
2424 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2425 /* save old pc */
2426 kvm_write_c0_guest_epc(cop0, arch->pc);
2427 kvm_set_c0_guest_status(cop0, ST0_EXL);
2428
2429 if (cause & CAUSEF_BD)
2430 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2431 else
2432 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2433
2434 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2435
2436 kvm_change_c0_guest_cause(cop0, (0xff),
2437 (EXCCODE_FPE << CAUSEB_EXCCODE));
2438
2439 /* Set PC to the exception entry point */
2440 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2441
2442 } else {
2443 kvm_err("Trying to deliver FPE when EXL is already set\n");
2444 er = EMULATE_FAIL;
2445 }
2446
2447 return er;
2448 }
2449
2450 enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
2451 u32 *opc,
2452 struct kvm_run *run,
2453 struct kvm_vcpu *vcpu)
2454 {
2455 struct mips_coproc *cop0 = vcpu->arch.cop0;
2456 struct kvm_vcpu_arch *arch = &vcpu->arch;
2457 enum emulation_result er = EMULATE_DONE;
2458
2459 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2460 /* save old pc */
2461 kvm_write_c0_guest_epc(cop0, arch->pc);
2462 kvm_set_c0_guest_status(cop0, ST0_EXL);
2463
2464 if (cause & CAUSEF_BD)
2465 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2466 else
2467 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2468
2469 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2470
2471 kvm_change_c0_guest_cause(cop0, (0xff),
2472 (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2473
2474 /* Set PC to the exception entry point */
2475 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2476
2477 } else {
2478 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2479 er = EMULATE_FAIL;
2480 }
2481
2482 return er;
2483 }
2484
2485 enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
2486 struct kvm_run *run,
2487 struct kvm_vcpu *vcpu)
2488 {
2489 struct mips_coproc *cop0 = vcpu->arch.cop0;
2490 struct kvm_vcpu_arch *arch = &vcpu->arch;
2491 enum emulation_result er = EMULATE_DONE;
2492 unsigned long curr_pc;
2493 union mips_instruction inst;
2494 int err;
2495
2496 /*
2497 * Update PC and hold onto current PC in case there is
2498 * an error and we want to rollback the PC
2499 */
2500 curr_pc = vcpu->arch.pc;
2501 er = update_pc(vcpu, cause);
2502 if (er == EMULATE_FAIL)
2503 return er;
2504
2505 /* Fetch the instruction. */
2506 if (cause & CAUSEF_BD)
2507 opc += 1;
2508 err = kvm_get_badinstr(opc, vcpu, &inst.word);
2509 if (err) {
2510 kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__, opc, err);
2511 return EMULATE_FAIL;
2512 }
2513
2514 if (inst.r_format.opcode == spec3_op &&
2515 inst.r_format.func == rdhwr_op &&
2516 inst.r_format.rs == 0 &&
2517 (inst.r_format.re >> 3) == 0) {
2518 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2519 int rd = inst.r_format.rd;
2520 int rt = inst.r_format.rt;
2521 int sel = inst.r_format.re & 0x7;
2522
2523 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2524 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2525 kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2526 rd, opc);
2527 goto emulate_ri;
2528 }
2529 switch (rd) {
2530 case MIPS_HWR_CPUNUM: /* CPU number */
2531 arch->gprs[rt] = vcpu->vcpu_id;
2532 break;
2533 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
2534 arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2535 current_cpu_data.icache.linesz);
2536 break;
2537 case MIPS_HWR_CC: /* Read count register */
2538 arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
2539 break;
2540 case MIPS_HWR_CCRES: /* Count register resolution */
2541 switch (current_cpu_data.cputype) {
2542 case CPU_20KC:
2543 case CPU_25KF:
2544 arch->gprs[rt] = 1;
2545 break;
2546 default:
2547 arch->gprs[rt] = 2;
2548 }
2549 break;
2550 case MIPS_HWR_ULR: /* Read UserLocal register */
2551 arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2552 break;
2553
2554 default:
2555 kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2556 goto emulate_ri;
2557 }
2558
2559 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
2560 vcpu->arch.gprs[rt]);
2561 } else {
2562 kvm_debug("Emulate RI not supported @ %p: %#x\n",
2563 opc, inst.word);
2564 goto emulate_ri;
2565 }
2566
2567 return EMULATE_DONE;
2568
2569 emulate_ri:
2570 /*
2571 * Rollback PC (if in branch delay slot then the PC already points to
2572 * branch target), and pass the RI exception to the guest OS.
2573 */
2574 vcpu->arch.pc = curr_pc;
2575 return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2576 }
2577
2578 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2579 struct kvm_run *run)
2580 {
2581 unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2582 enum emulation_result er = EMULATE_DONE;
2583
2584 if (run->mmio.len > sizeof(*gpr)) {
2585 kvm_err("Bad MMIO length: %d", run->mmio.len);
2586 er = EMULATE_FAIL;
2587 goto done;
2588 }
2589
2590 /* Restore saved resume PC */
2591 vcpu->arch.pc = vcpu->arch.io_pc;
2592
2593 switch (run->mmio.len) {
2594 case 8:
2595 *gpr = *(s64 *)run->mmio.data;
2596 break;
2597
2598 case 4:
2599 if (vcpu->mmio_needed == 2)
2600 *gpr = *(s32 *)run->mmio.data;
2601 else
2602 *gpr = *(u32 *)run->mmio.data;
2603 break;
2604
2605 case 2:
2606 if (vcpu->mmio_needed == 2)
2607 *gpr = *(s16 *) run->mmio.data;
2608 else
2609 *gpr = *(u16 *)run->mmio.data;
2610
2611 break;
2612 case 1:
2613 if (vcpu->mmio_needed == 2)
2614 *gpr = *(s8 *) run->mmio.data;
2615 else
2616 *gpr = *(u8 *) run->mmio.data;
2617 break;
2618 }
2619
2620 done:
2621 return er;
2622 }
2623
2624 static enum emulation_result kvm_mips_emulate_exc(u32 cause,
2625 u32 *opc,
2626 struct kvm_run *run,
2627 struct kvm_vcpu *vcpu)
2628 {
2629 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2630 struct mips_coproc *cop0 = vcpu->arch.cop0;
2631 struct kvm_vcpu_arch *arch = &vcpu->arch;
2632 enum emulation_result er = EMULATE_DONE;
2633
2634 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2635 /* save old pc */
2636 kvm_write_c0_guest_epc(cop0, arch->pc);
2637 kvm_set_c0_guest_status(cop0, ST0_EXL);
2638
2639 if (cause & CAUSEF_BD)
2640 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2641 else
2642 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2643
2644 kvm_change_c0_guest_cause(cop0, (0xff),
2645 (exccode << CAUSEB_EXCCODE));
2646
2647 /* Set PC to the exception entry point */
2648 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2649 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2650
2651 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2652 exccode, kvm_read_c0_guest_epc(cop0),
2653 kvm_read_c0_guest_badvaddr(cop0));
2654 } else {
2655 kvm_err("Trying to deliver EXC when EXL is already set\n");
2656 er = EMULATE_FAIL;
2657 }
2658
2659 return er;
2660 }
2661
2662 enum emulation_result kvm_mips_check_privilege(u32 cause,
2663 u32 *opc,
2664 struct kvm_run *run,
2665 struct kvm_vcpu *vcpu)
2666 {
2667 enum emulation_result er = EMULATE_DONE;
2668 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2669 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2670
2671 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2672
2673 if (usermode) {
2674 switch (exccode) {
2675 case EXCCODE_INT:
2676 case EXCCODE_SYS:
2677 case EXCCODE_BP:
2678 case EXCCODE_RI:
2679 case EXCCODE_TR:
2680 case EXCCODE_MSAFPE:
2681 case EXCCODE_FPE:
2682 case EXCCODE_MSADIS:
2683 break;
2684
2685 case EXCCODE_CPU:
2686 if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2687 er = EMULATE_PRIV_FAIL;
2688 break;
2689
2690 case EXCCODE_MOD:
2691 break;
2692
2693 case EXCCODE_TLBL:
2694 /*
2695 * We we are accessing Guest kernel space, then send an
2696 * address error exception to the guest
2697 */
2698 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2699 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2700 badvaddr);
2701 cause &= ~0xff;
2702 cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2703 er = EMULATE_PRIV_FAIL;
2704 }
2705 break;
2706
2707 case EXCCODE_TLBS:
2708 /*
2709 * We we are accessing Guest kernel space, then send an
2710 * address error exception to the guest
2711 */
2712 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2713 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2714 badvaddr);
2715 cause &= ~0xff;
2716 cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2717 er = EMULATE_PRIV_FAIL;
2718 }
2719 break;
2720
2721 case EXCCODE_ADES:
2722 kvm_debug("%s: address error ST @ %#lx\n", __func__,
2723 badvaddr);
2724 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2725 cause &= ~0xff;
2726 cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2727 }
2728 er = EMULATE_PRIV_FAIL;
2729 break;
2730 case EXCCODE_ADEL:
2731 kvm_debug("%s: address error LD @ %#lx\n", __func__,
2732 badvaddr);
2733 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2734 cause &= ~0xff;
2735 cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2736 }
2737 er = EMULATE_PRIV_FAIL;
2738 break;
2739 default:
2740 er = EMULATE_PRIV_FAIL;
2741 break;
2742 }
2743 }
2744
2745 if (er == EMULATE_PRIV_FAIL)
2746 kvm_mips_emulate_exc(cause, opc, run, vcpu);
2747
2748 return er;
2749 }
2750
2751 /*
2752 * User Address (UA) fault, this could happen if
2753 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2754 * case we pass on the fault to the guest kernel and let it handle it.
2755 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2756 * case we inject the TLB from the Guest TLB into the shadow host TLB
2757 */
2758 enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
2759 u32 *opc,
2760 struct kvm_run *run,
2761 struct kvm_vcpu *vcpu,
2762 bool write_fault)
2763 {
2764 enum emulation_result er = EMULATE_DONE;
2765 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2766 unsigned long va = vcpu->arch.host_cp0_badvaddr;
2767 int index;
2768
2769 kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
2770 vcpu->arch.host_cp0_badvaddr);
2771
2772 /*
2773 * KVM would not have got the exception if this entry was valid in the
2774 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2775 * send the guest an exception. The guest exc handler should then inject
2776 * an entry into the guest TLB.
2777 */
2778 index = kvm_mips_guest_tlb_lookup(vcpu,
2779 (va & VPN2_MASK) |
2780 (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
2781 KVM_ENTRYHI_ASID));
2782 if (index < 0) {
2783 if (exccode == EXCCODE_TLBL) {
2784 er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2785 } else if (exccode == EXCCODE_TLBS) {
2786 er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2787 } else {
2788 kvm_err("%s: invalid exc code: %d\n", __func__,
2789 exccode);
2790 er = EMULATE_FAIL;
2791 }
2792 } else {
2793 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2794
2795 /*
2796 * Check if the entry is valid, if not then setup a TLB invalid
2797 * exception to the guest
2798 */
2799 if (!TLB_IS_VALID(*tlb, va)) {
2800 if (exccode == EXCCODE_TLBL) {
2801 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2802 vcpu);
2803 } else if (exccode == EXCCODE_TLBS) {
2804 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2805 vcpu);
2806 } else {
2807 kvm_err("%s: invalid exc code: %d\n", __func__,
2808 exccode);
2809 er = EMULATE_FAIL;
2810 }
2811 } else {
2812 kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2813 tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
2814 /*
2815 * OK we have a Guest TLB entry, now inject it into the
2816 * shadow host TLB
2817 */
2818 if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, va,
2819 write_fault)) {
2820 kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
2821 __func__, va, index, vcpu,
2822 read_c0_entryhi());
2823 er = EMULATE_FAIL;
2824 }
2825 }
2826 }
2827
2828 return er;
2829 }