]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/mips/kvm/kvm_mips.c
Merge tag 'pwm/for-3.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[mirror_ubuntu-zesty-kernel.git] / arch / mips / kvm / kvm_mips.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/bootmem.h>
18 #include <asm/page.h>
19 #include <asm/cacheflush.h>
20 #include <asm/mmu_context.h>
21
22 #include <linux/kvm_host.h>
23
24 #include "kvm_mips_int.h"
25 #include "kvm_mips_comm.h"
26
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29
30 #ifndef VECTORSPACING
31 #define VECTORSPACING 0x100 /* for EI/VI mode */
32 #endif
33
34 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
35 struct kvm_stats_debugfs_item debugfs_entries[] = {
36 { "wait", VCPU_STAT(wait_exits) },
37 { "cache", VCPU_STAT(cache_exits) },
38 { "signal", VCPU_STAT(signal_exits) },
39 { "interrupt", VCPU_STAT(int_exits) },
40 { "cop_unsuable", VCPU_STAT(cop_unusable_exits) },
41 { "tlbmod", VCPU_STAT(tlbmod_exits) },
42 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits) },
43 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits) },
44 { "addrerr_st", VCPU_STAT(addrerr_st_exits) },
45 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits) },
46 { "syscall", VCPU_STAT(syscall_exits) },
47 { "resvd_inst", VCPU_STAT(resvd_inst_exits) },
48 { "break_inst", VCPU_STAT(break_inst_exits) },
49 { "flush_dcache", VCPU_STAT(flush_dcache_exits) },
50 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
51 {NULL}
52 };
53
54 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
55 {
56 int i;
57 for_each_possible_cpu(i) {
58 vcpu->arch.guest_kernel_asid[i] = 0;
59 vcpu->arch.guest_user_asid[i] = 0;
60 }
61 return 0;
62 }
63
64 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
65 {
66 return gfn;
67 }
68
69 /* XXXKYMA: We are simulatoring a processor that has the WII bit set in Config7, so we
70 * are "runnable" if interrupts are pending
71 */
72 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
73 {
74 return !!(vcpu->arch.pending_exceptions);
75 }
76
77 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
78 {
79 return 1;
80 }
81
82 int kvm_arch_hardware_enable(void *garbage)
83 {
84 return 0;
85 }
86
87 void kvm_arch_hardware_disable(void *garbage)
88 {
89 }
90
91 int kvm_arch_hardware_setup(void)
92 {
93 return 0;
94 }
95
96 void kvm_arch_hardware_unsetup(void)
97 {
98 }
99
100 void kvm_arch_check_processor_compat(void *rtn)
101 {
102 int *r = (int *)rtn;
103 *r = 0;
104 return;
105 }
106
107 static void kvm_mips_init_tlbs(struct kvm *kvm)
108 {
109 unsigned long wired;
110
111 /* Add a wired entry to the TLB, it is used to map the commpage to the Guest kernel */
112 wired = read_c0_wired();
113 write_c0_wired(wired + 1);
114 mtc0_tlbw_hazard();
115 kvm->arch.commpage_tlb = wired;
116
117 kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
118 kvm->arch.commpage_tlb);
119 }
120
121 static void kvm_mips_init_vm_percpu(void *arg)
122 {
123 struct kvm *kvm = (struct kvm *)arg;
124
125 kvm_mips_init_tlbs(kvm);
126 kvm_mips_callbacks->vm_init(kvm);
127
128 }
129
130 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
131 {
132 if (atomic_inc_return(&kvm_mips_instance) == 1) {
133 kvm_info("%s: 1st KVM instance, setup host TLB parameters\n",
134 __func__);
135 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
136 }
137
138
139 return 0;
140 }
141
142 void kvm_mips_free_vcpus(struct kvm *kvm)
143 {
144 unsigned int i;
145 struct kvm_vcpu *vcpu;
146
147 /* Put the pages we reserved for the guest pmap */
148 for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
149 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
150 kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
151 }
152
153 if (kvm->arch.guest_pmap)
154 kfree(kvm->arch.guest_pmap);
155
156 kvm_for_each_vcpu(i, vcpu, kvm) {
157 kvm_arch_vcpu_free(vcpu);
158 }
159
160 mutex_lock(&kvm->lock);
161
162 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
163 kvm->vcpus[i] = NULL;
164
165 atomic_set(&kvm->online_vcpus, 0);
166
167 mutex_unlock(&kvm->lock);
168 }
169
170 void kvm_arch_sync_events(struct kvm *kvm)
171 {
172 }
173
174 static void kvm_mips_uninit_tlbs(void *arg)
175 {
176 /* Restore wired count */
177 write_c0_wired(0);
178 mtc0_tlbw_hazard();
179 /* Clear out all the TLBs */
180 kvm_local_flush_tlb_all();
181 }
182
183 void kvm_arch_destroy_vm(struct kvm *kvm)
184 {
185 kvm_mips_free_vcpus(kvm);
186
187 /* If this is the last instance, restore wired count */
188 if (atomic_dec_return(&kvm_mips_instance) == 0) {
189 kvm_info("%s: last KVM instance, restoring TLB parameters\n",
190 __func__);
191 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
192 }
193 }
194
195 long
196 kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
197 {
198 return -ENOIOCTLCMD;
199 }
200
201 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
202 struct kvm_memory_slot *dont)
203 {
204 }
205
206 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
207 unsigned long npages)
208 {
209 return 0;
210 }
211
212 void kvm_arch_memslots_updated(struct kvm *kvm)
213 {
214 }
215
216 int kvm_arch_prepare_memory_region(struct kvm *kvm,
217 struct kvm_memory_slot *memslot,
218 struct kvm_userspace_memory_region *mem,
219 enum kvm_mr_change change)
220 {
221 return 0;
222 }
223
224 void kvm_arch_commit_memory_region(struct kvm *kvm,
225 struct kvm_userspace_memory_region *mem,
226 const struct kvm_memory_slot *old,
227 enum kvm_mr_change change)
228 {
229 unsigned long npages = 0;
230 int i, err = 0;
231
232 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
233 __func__, kvm, mem->slot, mem->guest_phys_addr,
234 mem->memory_size, mem->userspace_addr);
235
236 /* Setup Guest PMAP table */
237 if (!kvm->arch.guest_pmap) {
238 if (mem->slot == 0)
239 npages = mem->memory_size >> PAGE_SHIFT;
240
241 if (npages) {
242 kvm->arch.guest_pmap_npages = npages;
243 kvm->arch.guest_pmap =
244 kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
245
246 if (!kvm->arch.guest_pmap) {
247 kvm_err("Failed to allocate guest PMAP");
248 err = -ENOMEM;
249 goto out;
250 }
251
252 kvm_info
253 ("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
254 npages, kvm->arch.guest_pmap);
255
256 /* Now setup the page table */
257 for (i = 0; i < npages; i++) {
258 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
259 }
260 }
261 }
262 out:
263 return;
264 }
265
266 void kvm_arch_flush_shadow_all(struct kvm *kvm)
267 {
268 }
269
270 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
271 struct kvm_memory_slot *slot)
272 {
273 }
274
275 void kvm_arch_flush_shadow(struct kvm *kvm)
276 {
277 }
278
279 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
280 {
281 extern char mips32_exception[], mips32_exceptionEnd[];
282 extern char mips32_GuestException[], mips32_GuestExceptionEnd[];
283 int err, size, offset;
284 void *gebase;
285 int i;
286
287 struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
288
289 if (!vcpu) {
290 err = -ENOMEM;
291 goto out;
292 }
293
294 err = kvm_vcpu_init(vcpu, kvm, id);
295
296 if (err)
297 goto out_free_cpu;
298
299 kvm_info("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
300
301 /* Allocate space for host mode exception handlers that handle
302 * guest mode exits
303 */
304 if (cpu_has_veic || cpu_has_vint) {
305 size = 0x200 + VECTORSPACING * 64;
306 } else {
307 size = 0x200;
308 }
309
310 /* Save Linux EBASE */
311 vcpu->arch.host_ebase = (void *)read_c0_ebase();
312
313 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
314
315 if (!gebase) {
316 err = -ENOMEM;
317 goto out_free_cpu;
318 }
319 kvm_info("Allocated %d bytes for KVM Exception Handlers @ %p\n",
320 ALIGN(size, PAGE_SIZE), gebase);
321
322 /* Save new ebase */
323 vcpu->arch.guest_ebase = gebase;
324
325 /* Copy L1 Guest Exception handler to correct offset */
326
327 /* TLB Refill, EXL = 0 */
328 memcpy(gebase, mips32_exception,
329 mips32_exceptionEnd - mips32_exception);
330
331 /* General Exception Entry point */
332 memcpy(gebase + 0x180, mips32_exception,
333 mips32_exceptionEnd - mips32_exception);
334
335 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
336 for (i = 0; i < 8; i++) {
337 kvm_debug("L1 Vectored handler @ %p\n",
338 gebase + 0x200 + (i * VECTORSPACING));
339 memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
340 mips32_exceptionEnd - mips32_exception);
341 }
342
343 /* General handler, relocate to unmapped space for sanity's sake */
344 offset = 0x2000;
345 kvm_info("Installing KVM Exception handlers @ %p, %#x bytes\n",
346 gebase + offset,
347 mips32_GuestExceptionEnd - mips32_GuestException);
348
349 memcpy(gebase + offset, mips32_GuestException,
350 mips32_GuestExceptionEnd - mips32_GuestException);
351
352 /* Invalidate the icache for these ranges */
353 mips32_SyncICache((unsigned long) gebase, ALIGN(size, PAGE_SIZE));
354
355 /* Allocate comm page for guest kernel, a TLB will be reserved for mapping GVA @ 0xFFFF8000 to this page */
356 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
357
358 if (!vcpu->arch.kseg0_commpage) {
359 err = -ENOMEM;
360 goto out_free_gebase;
361 }
362
363 kvm_info("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
364 kvm_mips_commpage_init(vcpu);
365
366 /* Init */
367 vcpu->arch.last_sched_cpu = -1;
368
369 /* Start off the timer */
370 kvm_mips_emulate_count(vcpu);
371
372 return vcpu;
373
374 out_free_gebase:
375 kfree(gebase);
376
377 out_free_cpu:
378 kfree(vcpu);
379
380 out:
381 return ERR_PTR(err);
382 }
383
384 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
385 {
386 hrtimer_cancel(&vcpu->arch.comparecount_timer);
387
388 kvm_vcpu_uninit(vcpu);
389
390 kvm_mips_dump_stats(vcpu);
391
392 if (vcpu->arch.guest_ebase)
393 kfree(vcpu->arch.guest_ebase);
394
395 if (vcpu->arch.kseg0_commpage)
396 kfree(vcpu->arch.kseg0_commpage);
397
398 }
399
400 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
401 {
402 kvm_arch_vcpu_free(vcpu);
403 }
404
405 int
406 kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
407 struct kvm_guest_debug *dbg)
408 {
409 return -ENOIOCTLCMD;
410 }
411
412 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
413 {
414 int r = 0;
415 sigset_t sigsaved;
416
417 if (vcpu->sigset_active)
418 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
419
420 if (vcpu->mmio_needed) {
421 if (!vcpu->mmio_is_write)
422 kvm_mips_complete_mmio_load(vcpu, run);
423 vcpu->mmio_needed = 0;
424 }
425
426 /* Check if we have any exceptions/interrupts pending */
427 kvm_mips_deliver_interrupts(vcpu,
428 kvm_read_c0_guest_cause(vcpu->arch.cop0));
429
430 local_irq_disable();
431 kvm_guest_enter();
432
433 r = __kvm_mips_vcpu_run(run, vcpu);
434
435 kvm_guest_exit();
436 local_irq_enable();
437
438 if (vcpu->sigset_active)
439 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
440
441 return r;
442 }
443
444 int
445 kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_mips_interrupt *irq)
446 {
447 int intr = (int)irq->irq;
448 struct kvm_vcpu *dvcpu = NULL;
449
450 if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
451 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
452 (int)intr);
453
454 if (irq->cpu == -1)
455 dvcpu = vcpu;
456 else
457 dvcpu = vcpu->kvm->vcpus[irq->cpu];
458
459 if (intr == 2 || intr == 3 || intr == 4) {
460 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
461
462 } else if (intr == -2 || intr == -3 || intr == -4) {
463 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
464 } else {
465 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
466 irq->cpu, irq->irq);
467 return -EINVAL;
468 }
469
470 dvcpu->arch.wait = 0;
471
472 if (waitqueue_active(&dvcpu->wq)) {
473 wake_up_interruptible(&dvcpu->wq);
474 }
475
476 return 0;
477 }
478
479 int
480 kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
481 struct kvm_mp_state *mp_state)
482 {
483 return -ENOIOCTLCMD;
484 }
485
486 int
487 kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
488 struct kvm_mp_state *mp_state)
489 {
490 return -ENOIOCTLCMD;
491 }
492
493 #define MIPS_CP0_32(_R, _S) \
494 (KVM_REG_MIPS | KVM_REG_SIZE_U32 | 0x10000 | (8 * (_R) + (_S)))
495
496 #define MIPS_CP0_64(_R, _S) \
497 (KVM_REG_MIPS | KVM_REG_SIZE_U64 | 0x10000 | (8 * (_R) + (_S)))
498
499 #define KVM_REG_MIPS_CP0_INDEX MIPS_CP0_32(0, 0)
500 #define KVM_REG_MIPS_CP0_ENTRYLO0 MIPS_CP0_64(2, 0)
501 #define KVM_REG_MIPS_CP0_ENTRYLO1 MIPS_CP0_64(3, 0)
502 #define KVM_REG_MIPS_CP0_CONTEXT MIPS_CP0_64(4, 0)
503 #define KVM_REG_MIPS_CP0_USERLOCAL MIPS_CP0_64(4, 2)
504 #define KVM_REG_MIPS_CP0_PAGEMASK MIPS_CP0_32(5, 0)
505 #define KVM_REG_MIPS_CP0_PAGEGRAIN MIPS_CP0_32(5, 1)
506 #define KVM_REG_MIPS_CP0_WIRED MIPS_CP0_32(6, 0)
507 #define KVM_REG_MIPS_CP0_HWRENA MIPS_CP0_32(7, 0)
508 #define KVM_REG_MIPS_CP0_BADVADDR MIPS_CP0_64(8, 0)
509 #define KVM_REG_MIPS_CP0_COUNT MIPS_CP0_32(9, 0)
510 #define KVM_REG_MIPS_CP0_ENTRYHI MIPS_CP0_64(10, 0)
511 #define KVM_REG_MIPS_CP0_COMPARE MIPS_CP0_32(11, 0)
512 #define KVM_REG_MIPS_CP0_STATUS MIPS_CP0_32(12, 0)
513 #define KVM_REG_MIPS_CP0_CAUSE MIPS_CP0_32(13, 0)
514 #define KVM_REG_MIPS_CP0_EBASE MIPS_CP0_64(15, 1)
515 #define KVM_REG_MIPS_CP0_CONFIG MIPS_CP0_32(16, 0)
516 #define KVM_REG_MIPS_CP0_CONFIG1 MIPS_CP0_32(16, 1)
517 #define KVM_REG_MIPS_CP0_CONFIG2 MIPS_CP0_32(16, 2)
518 #define KVM_REG_MIPS_CP0_CONFIG3 MIPS_CP0_32(16, 3)
519 #define KVM_REG_MIPS_CP0_CONFIG7 MIPS_CP0_32(16, 7)
520 #define KVM_REG_MIPS_CP0_XCONTEXT MIPS_CP0_64(20, 0)
521 #define KVM_REG_MIPS_CP0_ERROREPC MIPS_CP0_64(30, 0)
522
523 static u64 kvm_mips_get_one_regs[] = {
524 KVM_REG_MIPS_R0,
525 KVM_REG_MIPS_R1,
526 KVM_REG_MIPS_R2,
527 KVM_REG_MIPS_R3,
528 KVM_REG_MIPS_R4,
529 KVM_REG_MIPS_R5,
530 KVM_REG_MIPS_R6,
531 KVM_REG_MIPS_R7,
532 KVM_REG_MIPS_R8,
533 KVM_REG_MIPS_R9,
534 KVM_REG_MIPS_R10,
535 KVM_REG_MIPS_R11,
536 KVM_REG_MIPS_R12,
537 KVM_REG_MIPS_R13,
538 KVM_REG_MIPS_R14,
539 KVM_REG_MIPS_R15,
540 KVM_REG_MIPS_R16,
541 KVM_REG_MIPS_R17,
542 KVM_REG_MIPS_R18,
543 KVM_REG_MIPS_R19,
544 KVM_REG_MIPS_R20,
545 KVM_REG_MIPS_R21,
546 KVM_REG_MIPS_R22,
547 KVM_REG_MIPS_R23,
548 KVM_REG_MIPS_R24,
549 KVM_REG_MIPS_R25,
550 KVM_REG_MIPS_R26,
551 KVM_REG_MIPS_R27,
552 KVM_REG_MIPS_R28,
553 KVM_REG_MIPS_R29,
554 KVM_REG_MIPS_R30,
555 KVM_REG_MIPS_R31,
556
557 KVM_REG_MIPS_HI,
558 KVM_REG_MIPS_LO,
559 KVM_REG_MIPS_PC,
560
561 KVM_REG_MIPS_CP0_INDEX,
562 KVM_REG_MIPS_CP0_CONTEXT,
563 KVM_REG_MIPS_CP0_PAGEMASK,
564 KVM_REG_MIPS_CP0_WIRED,
565 KVM_REG_MIPS_CP0_BADVADDR,
566 KVM_REG_MIPS_CP0_ENTRYHI,
567 KVM_REG_MIPS_CP0_STATUS,
568 KVM_REG_MIPS_CP0_CAUSE,
569 /* EPC set via kvm_regs, et al. */
570 KVM_REG_MIPS_CP0_CONFIG,
571 KVM_REG_MIPS_CP0_CONFIG1,
572 KVM_REG_MIPS_CP0_CONFIG2,
573 KVM_REG_MIPS_CP0_CONFIG3,
574 KVM_REG_MIPS_CP0_CONFIG7,
575 KVM_REG_MIPS_CP0_ERROREPC
576 };
577
578 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
579 const struct kvm_one_reg *reg)
580 {
581 struct mips_coproc *cop0 = vcpu->arch.cop0;
582 s64 v;
583
584 switch (reg->id) {
585 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
586 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
587 break;
588 case KVM_REG_MIPS_HI:
589 v = (long)vcpu->arch.hi;
590 break;
591 case KVM_REG_MIPS_LO:
592 v = (long)vcpu->arch.lo;
593 break;
594 case KVM_REG_MIPS_PC:
595 v = (long)vcpu->arch.pc;
596 break;
597
598 case KVM_REG_MIPS_CP0_INDEX:
599 v = (long)kvm_read_c0_guest_index(cop0);
600 break;
601 case KVM_REG_MIPS_CP0_CONTEXT:
602 v = (long)kvm_read_c0_guest_context(cop0);
603 break;
604 case KVM_REG_MIPS_CP0_PAGEMASK:
605 v = (long)kvm_read_c0_guest_pagemask(cop0);
606 break;
607 case KVM_REG_MIPS_CP0_WIRED:
608 v = (long)kvm_read_c0_guest_wired(cop0);
609 break;
610 case KVM_REG_MIPS_CP0_BADVADDR:
611 v = (long)kvm_read_c0_guest_badvaddr(cop0);
612 break;
613 case KVM_REG_MIPS_CP0_ENTRYHI:
614 v = (long)kvm_read_c0_guest_entryhi(cop0);
615 break;
616 case KVM_REG_MIPS_CP0_STATUS:
617 v = (long)kvm_read_c0_guest_status(cop0);
618 break;
619 case KVM_REG_MIPS_CP0_CAUSE:
620 v = (long)kvm_read_c0_guest_cause(cop0);
621 break;
622 case KVM_REG_MIPS_CP0_ERROREPC:
623 v = (long)kvm_read_c0_guest_errorepc(cop0);
624 break;
625 case KVM_REG_MIPS_CP0_CONFIG:
626 v = (long)kvm_read_c0_guest_config(cop0);
627 break;
628 case KVM_REG_MIPS_CP0_CONFIG1:
629 v = (long)kvm_read_c0_guest_config1(cop0);
630 break;
631 case KVM_REG_MIPS_CP0_CONFIG2:
632 v = (long)kvm_read_c0_guest_config2(cop0);
633 break;
634 case KVM_REG_MIPS_CP0_CONFIG3:
635 v = (long)kvm_read_c0_guest_config3(cop0);
636 break;
637 case KVM_REG_MIPS_CP0_CONFIG7:
638 v = (long)kvm_read_c0_guest_config7(cop0);
639 break;
640 default:
641 return -EINVAL;
642 }
643 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
644 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
645 return put_user(v, uaddr64);
646 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
647 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
648 u32 v32 = (u32)v;
649 return put_user(v32, uaddr32);
650 } else {
651 return -EINVAL;
652 }
653 }
654
655 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
656 const struct kvm_one_reg *reg)
657 {
658 struct mips_coproc *cop0 = vcpu->arch.cop0;
659 u64 v;
660
661 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
662 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
663
664 if (get_user(v, uaddr64) != 0)
665 return -EFAULT;
666 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
667 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
668 s32 v32;
669
670 if (get_user(v32, uaddr32) != 0)
671 return -EFAULT;
672 v = (s64)v32;
673 } else {
674 return -EINVAL;
675 }
676
677 switch (reg->id) {
678 case KVM_REG_MIPS_R0:
679 /* Silently ignore requests to set $0 */
680 break;
681 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
682 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
683 break;
684 case KVM_REG_MIPS_HI:
685 vcpu->arch.hi = v;
686 break;
687 case KVM_REG_MIPS_LO:
688 vcpu->arch.lo = v;
689 break;
690 case KVM_REG_MIPS_PC:
691 vcpu->arch.pc = v;
692 break;
693
694 case KVM_REG_MIPS_CP0_INDEX:
695 kvm_write_c0_guest_index(cop0, v);
696 break;
697 case KVM_REG_MIPS_CP0_CONTEXT:
698 kvm_write_c0_guest_context(cop0, v);
699 break;
700 case KVM_REG_MIPS_CP0_PAGEMASK:
701 kvm_write_c0_guest_pagemask(cop0, v);
702 break;
703 case KVM_REG_MIPS_CP0_WIRED:
704 kvm_write_c0_guest_wired(cop0, v);
705 break;
706 case KVM_REG_MIPS_CP0_BADVADDR:
707 kvm_write_c0_guest_badvaddr(cop0, v);
708 break;
709 case KVM_REG_MIPS_CP0_ENTRYHI:
710 kvm_write_c0_guest_entryhi(cop0, v);
711 break;
712 case KVM_REG_MIPS_CP0_STATUS:
713 kvm_write_c0_guest_status(cop0, v);
714 break;
715 case KVM_REG_MIPS_CP0_CAUSE:
716 kvm_write_c0_guest_cause(cop0, v);
717 break;
718 case KVM_REG_MIPS_CP0_ERROREPC:
719 kvm_write_c0_guest_errorepc(cop0, v);
720 break;
721 default:
722 return -EINVAL;
723 }
724 return 0;
725 }
726
727 long
728 kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
729 {
730 struct kvm_vcpu *vcpu = filp->private_data;
731 void __user *argp = (void __user *)arg;
732 long r;
733
734 switch (ioctl) {
735 case KVM_SET_ONE_REG:
736 case KVM_GET_ONE_REG: {
737 struct kvm_one_reg reg;
738 if (copy_from_user(&reg, argp, sizeof(reg)))
739 return -EFAULT;
740 if (ioctl == KVM_SET_ONE_REG)
741 return kvm_mips_set_reg(vcpu, &reg);
742 else
743 return kvm_mips_get_reg(vcpu, &reg);
744 }
745 case KVM_GET_REG_LIST: {
746 struct kvm_reg_list __user *user_list = argp;
747 u64 __user *reg_dest;
748 struct kvm_reg_list reg_list;
749 unsigned n;
750
751 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
752 return -EFAULT;
753 n = reg_list.n;
754 reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
755 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
756 return -EFAULT;
757 if (n < reg_list.n)
758 return -E2BIG;
759 reg_dest = user_list->reg;
760 if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
761 sizeof(kvm_mips_get_one_regs)))
762 return -EFAULT;
763 return 0;
764 }
765 case KVM_NMI:
766 /* Treat the NMI as a CPU reset */
767 r = kvm_mips_reset_vcpu(vcpu);
768 break;
769 case KVM_INTERRUPT:
770 {
771 struct kvm_mips_interrupt irq;
772 r = -EFAULT;
773 if (copy_from_user(&irq, argp, sizeof(irq)))
774 goto out;
775
776 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
777 irq.irq);
778
779 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
780 break;
781 }
782 default:
783 r = -ENOIOCTLCMD;
784 }
785
786 out:
787 return r;
788 }
789
790 /*
791 * Get (and clear) the dirty memory log for a memory slot.
792 */
793 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
794 {
795 struct kvm_memory_slot *memslot;
796 unsigned long ga, ga_end;
797 int is_dirty = 0;
798 int r;
799 unsigned long n;
800
801 mutex_lock(&kvm->slots_lock);
802
803 r = kvm_get_dirty_log(kvm, log, &is_dirty);
804 if (r)
805 goto out;
806
807 /* If nothing is dirty, don't bother messing with page tables. */
808 if (is_dirty) {
809 memslot = &kvm->memslots->memslots[log->slot];
810
811 ga = memslot->base_gfn << PAGE_SHIFT;
812 ga_end = ga + (memslot->npages << PAGE_SHIFT);
813
814 printk("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
815 ga_end);
816
817 n = kvm_dirty_bitmap_bytes(memslot);
818 memset(memslot->dirty_bitmap, 0, n);
819 }
820
821 r = 0;
822 out:
823 mutex_unlock(&kvm->slots_lock);
824 return r;
825
826 }
827
828 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
829 {
830 long r;
831
832 switch (ioctl) {
833 default:
834 r = -ENOIOCTLCMD;
835 }
836
837 return r;
838 }
839
840 int kvm_arch_init(void *opaque)
841 {
842 int ret;
843
844 if (kvm_mips_callbacks) {
845 kvm_err("kvm: module already exists\n");
846 return -EEXIST;
847 }
848
849 ret = kvm_mips_emulation_init(&kvm_mips_callbacks);
850
851 return ret;
852 }
853
854 void kvm_arch_exit(void)
855 {
856 kvm_mips_callbacks = NULL;
857 }
858
859 int
860 kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
861 {
862 return -ENOIOCTLCMD;
863 }
864
865 int
866 kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
867 {
868 return -ENOIOCTLCMD;
869 }
870
871 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
872 {
873 return 0;
874 }
875
876 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
877 {
878 return -ENOIOCTLCMD;
879 }
880
881 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
882 {
883 return -ENOIOCTLCMD;
884 }
885
886 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
887 {
888 return VM_FAULT_SIGBUS;
889 }
890
891 int kvm_dev_ioctl_check_extension(long ext)
892 {
893 int r;
894
895 switch (ext) {
896 case KVM_CAP_ONE_REG:
897 r = 1;
898 break;
899 case KVM_CAP_COALESCED_MMIO:
900 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
901 break;
902 default:
903 r = 0;
904 break;
905 }
906 return r;
907 }
908
909 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
910 {
911 return kvm_mips_pending_timer(vcpu);
912 }
913
914 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
915 {
916 int i;
917 struct mips_coproc *cop0;
918
919 if (!vcpu)
920 return -1;
921
922 printk("VCPU Register Dump:\n");
923 printk("\tpc = 0x%08lx\n", vcpu->arch.pc);;
924 printk("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
925
926 for (i = 0; i < 32; i += 4) {
927 printk("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
928 vcpu->arch.gprs[i],
929 vcpu->arch.gprs[i + 1],
930 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
931 }
932 printk("\thi: 0x%08lx\n", vcpu->arch.hi);
933 printk("\tlo: 0x%08lx\n", vcpu->arch.lo);
934
935 cop0 = vcpu->arch.cop0;
936 printk("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
937 kvm_read_c0_guest_status(cop0), kvm_read_c0_guest_cause(cop0));
938
939 printk("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
940
941 return 0;
942 }
943
944 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
945 {
946 int i;
947
948 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
949 vcpu->arch.gprs[i] = regs->gpr[i];
950 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
951 vcpu->arch.hi = regs->hi;
952 vcpu->arch.lo = regs->lo;
953 vcpu->arch.pc = regs->pc;
954
955 return 0;
956 }
957
958 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
959 {
960 int i;
961
962 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
963 regs->gpr[i] = vcpu->arch.gprs[i];
964
965 regs->hi = vcpu->arch.hi;
966 regs->lo = vcpu->arch.lo;
967 regs->pc = vcpu->arch.pc;
968
969 return 0;
970 }
971
972 void kvm_mips_comparecount_func(unsigned long data)
973 {
974 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
975
976 kvm_mips_callbacks->queue_timer_int(vcpu);
977
978 vcpu->arch.wait = 0;
979 if (waitqueue_active(&vcpu->wq)) {
980 wake_up_interruptible(&vcpu->wq);
981 }
982 }
983
984 /*
985 * low level hrtimer wake routine.
986 */
987 enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
988 {
989 struct kvm_vcpu *vcpu;
990
991 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
992 kvm_mips_comparecount_func((unsigned long) vcpu);
993 hrtimer_forward_now(&vcpu->arch.comparecount_timer,
994 ktime_set(0, MS_TO_NS(10)));
995 return HRTIMER_RESTART;
996 }
997
998 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
999 {
1000 kvm_mips_callbacks->vcpu_init(vcpu);
1001 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1002 HRTIMER_MODE_REL);
1003 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1004 kvm_mips_init_shadow_tlb(vcpu);
1005 return 0;
1006 }
1007
1008 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1009 {
1010 return;
1011 }
1012
1013 int
1014 kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr)
1015 {
1016 return 0;
1017 }
1018
1019 /* Initial guest state */
1020 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1021 {
1022 return kvm_mips_callbacks->vcpu_setup(vcpu);
1023 }
1024
1025 static
1026 void kvm_mips_set_c0_status(void)
1027 {
1028 uint32_t status = read_c0_status();
1029
1030 if (cpu_has_fpu)
1031 status |= (ST0_CU1);
1032
1033 if (cpu_has_dsp)
1034 status |= (ST0_MX);
1035
1036 write_c0_status(status);
1037 ehb();
1038 }
1039
1040 /*
1041 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1042 */
1043 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1044 {
1045 uint32_t cause = vcpu->arch.host_cp0_cause;
1046 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1047 uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
1048 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1049 enum emulation_result er = EMULATE_DONE;
1050 int ret = RESUME_GUEST;
1051
1052 /* Set a default exit reason */
1053 run->exit_reason = KVM_EXIT_UNKNOWN;
1054 run->ready_for_interrupt_injection = 1;
1055
1056 /* Set the appropriate status bits based on host CPU features, before we hit the scheduler */
1057 kvm_mips_set_c0_status();
1058
1059 local_irq_enable();
1060
1061 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1062 cause, opc, run, vcpu);
1063
1064 /* Do a privilege check, if in UM most of these exit conditions end up
1065 * causing an exception to be delivered to the Guest Kernel
1066 */
1067 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1068 if (er == EMULATE_PRIV_FAIL) {
1069 goto skip_emul;
1070 } else if (er == EMULATE_FAIL) {
1071 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1072 ret = RESUME_HOST;
1073 goto skip_emul;
1074 }
1075
1076 switch (exccode) {
1077 case T_INT:
1078 kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
1079
1080 ++vcpu->stat.int_exits;
1081 trace_kvm_exit(vcpu, INT_EXITS);
1082
1083 if (need_resched()) {
1084 cond_resched();
1085 }
1086
1087 ret = RESUME_GUEST;
1088 break;
1089
1090 case T_COP_UNUSABLE:
1091 kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
1092
1093 ++vcpu->stat.cop_unusable_exits;
1094 trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1095 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1096 /* XXXKYMA: Might need to return to user space */
1097 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN) {
1098 ret = RESUME_HOST;
1099 }
1100 break;
1101
1102 case T_TLB_MOD:
1103 ++vcpu->stat.tlbmod_exits;
1104 trace_kvm_exit(vcpu, TLBMOD_EXITS);
1105 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1106 break;
1107
1108 case T_TLB_ST_MISS:
1109 kvm_debug
1110 ("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1111 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1112 badvaddr);
1113
1114 ++vcpu->stat.tlbmiss_st_exits;
1115 trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1116 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1117 break;
1118
1119 case T_TLB_LD_MISS:
1120 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1121 cause, opc, badvaddr);
1122
1123 ++vcpu->stat.tlbmiss_ld_exits;
1124 trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1125 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1126 break;
1127
1128 case T_ADDR_ERR_ST:
1129 ++vcpu->stat.addrerr_st_exits;
1130 trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1131 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1132 break;
1133
1134 case T_ADDR_ERR_LD:
1135 ++vcpu->stat.addrerr_ld_exits;
1136 trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1137 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1138 break;
1139
1140 case T_SYSCALL:
1141 ++vcpu->stat.syscall_exits;
1142 trace_kvm_exit(vcpu, SYSCALL_EXITS);
1143 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1144 break;
1145
1146 case T_RES_INST:
1147 ++vcpu->stat.resvd_inst_exits;
1148 trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1149 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1150 break;
1151
1152 case T_BREAK:
1153 ++vcpu->stat.break_inst_exits;
1154 trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1155 ret = kvm_mips_callbacks->handle_break(vcpu);
1156 break;
1157
1158 default:
1159 kvm_err
1160 ("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
1161 exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1162 kvm_read_c0_guest_status(vcpu->arch.cop0));
1163 kvm_arch_vcpu_dump_regs(vcpu);
1164 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1165 ret = RESUME_HOST;
1166 break;
1167
1168 }
1169
1170 skip_emul:
1171 local_irq_disable();
1172
1173 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1174 kvm_mips_deliver_interrupts(vcpu, cause);
1175
1176 if (!(ret & RESUME_HOST)) {
1177 /* Only check for signals if not already exiting to userspace */
1178 if (signal_pending(current)) {
1179 run->exit_reason = KVM_EXIT_INTR;
1180 ret = (-EINTR << 2) | RESUME_HOST;
1181 ++vcpu->stat.signal_exits;
1182 trace_kvm_exit(vcpu, SIGNAL_EXITS);
1183 }
1184 }
1185
1186 return ret;
1187 }
1188
1189 int __init kvm_mips_init(void)
1190 {
1191 int ret;
1192
1193 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1194
1195 if (ret)
1196 return ret;
1197
1198 /* On MIPS, kernel modules are executed from "mapped space", which requires TLBs.
1199 * The TLB handling code is statically linked with the rest of the kernel (kvm_tlb.c)
1200 * to avoid the possibility of double faulting. The issue is that the TLB code
1201 * references routines that are part of the the KVM module,
1202 * which are only available once the module is loaded.
1203 */
1204 kvm_mips_gfn_to_pfn = gfn_to_pfn;
1205 kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
1206 kvm_mips_is_error_pfn = is_error_pfn;
1207
1208 pr_info("KVM/MIPS Initialized\n");
1209 return 0;
1210 }
1211
1212 void __exit kvm_mips_exit(void)
1213 {
1214 kvm_exit();
1215
1216 kvm_mips_gfn_to_pfn = NULL;
1217 kvm_mips_release_pfn_clean = NULL;
1218 kvm_mips_is_error_pfn = NULL;
1219
1220 pr_info("KVM/MIPS unloaded\n");
1221 }
1222
1223 module_init(kvm_mips_init);
1224 module_exit(kvm_mips_exit);
1225
1226 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);