]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/kvm/mips.c
Merge remote-tracking branch 'asoc/fix/intel' into asoc-linus
[mirror_ubuntu-artful-kernel.git] / arch / mips / kvm / mips.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/kdebug.h>
15 #include <linux/module.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/bootmem.h>
19 #include <asm/fpu.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/pgtable.h>
24
25 #include <linux/kvm_host.h>
26
27 #include "interrupt.h"
28 #include "commpage.h"
29
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32
33 #ifndef VECTORSPACING
34 #define VECTORSPACING 0x100 /* for EI/VI mode */
35 #endif
36
37 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38 struct kvm_stats_debugfs_item debugfs_entries[] = {
39 { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
40 { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
41 { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
42 { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
43 { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
44 { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
45 { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
46 { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
47 { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
48 { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
49 { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
50 { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
51 { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
52 { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
53 { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
54 { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
55 { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
56 { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
57 { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
58 { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
59 {NULL}
60 };
61
62 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
63 {
64 int i;
65
66 for_each_possible_cpu(i) {
67 vcpu->arch.guest_kernel_asid[i] = 0;
68 vcpu->arch.guest_user_asid[i] = 0;
69 }
70
71 return 0;
72 }
73
74 /*
75 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
76 * Config7, so we are "runnable" if interrupts are pending
77 */
78 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
79 {
80 return !!(vcpu->arch.pending_exceptions);
81 }
82
83 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
84 {
85 return 1;
86 }
87
88 int kvm_arch_hardware_enable(void)
89 {
90 return 0;
91 }
92
93 int kvm_arch_hardware_setup(void)
94 {
95 return 0;
96 }
97
98 void kvm_arch_check_processor_compat(void *rtn)
99 {
100 *(int *)rtn = 0;
101 }
102
103 static void kvm_mips_init_tlbs(struct kvm *kvm)
104 {
105 unsigned long wired;
106
107 /*
108 * Add a wired entry to the TLB, it is used to map the commpage to
109 * the Guest kernel
110 */
111 wired = read_c0_wired();
112 write_c0_wired(wired + 1);
113 mtc0_tlbw_hazard();
114 kvm->arch.commpage_tlb = wired;
115
116 kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
117 kvm->arch.commpage_tlb);
118 }
119
120 static void kvm_mips_init_vm_percpu(void *arg)
121 {
122 struct kvm *kvm = (struct kvm *)arg;
123
124 kvm_mips_init_tlbs(kvm);
125 kvm_mips_callbacks->vm_init(kvm);
126
127 }
128
129 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
130 {
131 if (atomic_inc_return(&kvm_mips_instance) == 1) {
132 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
133 __func__);
134 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
135 }
136
137 return 0;
138 }
139
140 void kvm_mips_free_vcpus(struct kvm *kvm)
141 {
142 unsigned int i;
143 struct kvm_vcpu *vcpu;
144
145 /* Put the pages we reserved for the guest pmap */
146 for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
147 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
148 kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
149 }
150 kfree(kvm->arch.guest_pmap);
151
152 kvm_for_each_vcpu(i, vcpu, kvm) {
153 kvm_arch_vcpu_free(vcpu);
154 }
155
156 mutex_lock(&kvm->lock);
157
158 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
159 kvm->vcpus[i] = NULL;
160
161 atomic_set(&kvm->online_vcpus, 0);
162
163 mutex_unlock(&kvm->lock);
164 }
165
166 static void kvm_mips_uninit_tlbs(void *arg)
167 {
168 /* Restore wired count */
169 write_c0_wired(0);
170 mtc0_tlbw_hazard();
171 /* Clear out all the TLBs */
172 kvm_local_flush_tlb_all();
173 }
174
175 void kvm_arch_destroy_vm(struct kvm *kvm)
176 {
177 kvm_mips_free_vcpus(kvm);
178
179 /* If this is the last instance, restore wired count */
180 if (atomic_dec_return(&kvm_mips_instance) == 0) {
181 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
182 __func__);
183 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
184 }
185 }
186
187 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
188 unsigned long arg)
189 {
190 return -ENOIOCTLCMD;
191 }
192
193 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
194 unsigned long npages)
195 {
196 return 0;
197 }
198
199 int kvm_arch_prepare_memory_region(struct kvm *kvm,
200 struct kvm_memory_slot *memslot,
201 struct kvm_userspace_memory_region *mem,
202 enum kvm_mr_change change)
203 {
204 return 0;
205 }
206
207 void kvm_arch_commit_memory_region(struct kvm *kvm,
208 struct kvm_userspace_memory_region *mem,
209 const struct kvm_memory_slot *old,
210 enum kvm_mr_change change)
211 {
212 unsigned long npages = 0;
213 int i;
214
215 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
216 __func__, kvm, mem->slot, mem->guest_phys_addr,
217 mem->memory_size, mem->userspace_addr);
218
219 /* Setup Guest PMAP table */
220 if (!kvm->arch.guest_pmap) {
221 if (mem->slot == 0)
222 npages = mem->memory_size >> PAGE_SHIFT;
223
224 if (npages) {
225 kvm->arch.guest_pmap_npages = npages;
226 kvm->arch.guest_pmap =
227 kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
228
229 if (!kvm->arch.guest_pmap) {
230 kvm_err("Failed to allocate guest PMAP");
231 return;
232 }
233
234 kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
235 npages, kvm->arch.guest_pmap);
236
237 /* Now setup the page table */
238 for (i = 0; i < npages; i++)
239 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
240 }
241 }
242 }
243
244 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
245 {
246 int err, size, offset;
247 void *gebase;
248 int i;
249
250 struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
251
252 if (!vcpu) {
253 err = -ENOMEM;
254 goto out;
255 }
256
257 err = kvm_vcpu_init(vcpu, kvm, id);
258
259 if (err)
260 goto out_free_cpu;
261
262 kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
263
264 /*
265 * Allocate space for host mode exception handlers that handle
266 * guest mode exits
267 */
268 if (cpu_has_veic || cpu_has_vint)
269 size = 0x200 + VECTORSPACING * 64;
270 else
271 size = 0x4000;
272
273 /* Save Linux EBASE */
274 vcpu->arch.host_ebase = (void *)read_c0_ebase();
275
276 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
277
278 if (!gebase) {
279 err = -ENOMEM;
280 goto out_free_cpu;
281 }
282 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
283 ALIGN(size, PAGE_SIZE), gebase);
284
285 /* Save new ebase */
286 vcpu->arch.guest_ebase = gebase;
287
288 /* Copy L1 Guest Exception handler to correct offset */
289
290 /* TLB Refill, EXL = 0 */
291 memcpy(gebase, mips32_exception,
292 mips32_exceptionEnd - mips32_exception);
293
294 /* General Exception Entry point */
295 memcpy(gebase + 0x180, mips32_exception,
296 mips32_exceptionEnd - mips32_exception);
297
298 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
299 for (i = 0; i < 8; i++) {
300 kvm_debug("L1 Vectored handler @ %p\n",
301 gebase + 0x200 + (i * VECTORSPACING));
302 memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
303 mips32_exceptionEnd - mips32_exception);
304 }
305
306 /* General handler, relocate to unmapped space for sanity's sake */
307 offset = 0x2000;
308 kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
309 gebase + offset,
310 mips32_GuestExceptionEnd - mips32_GuestException);
311
312 memcpy(gebase + offset, mips32_GuestException,
313 mips32_GuestExceptionEnd - mips32_GuestException);
314
315 /* Invalidate the icache for these ranges */
316 local_flush_icache_range((unsigned long)gebase,
317 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
318
319 /*
320 * Allocate comm page for guest kernel, a TLB will be reserved for
321 * mapping GVA @ 0xFFFF8000 to this page
322 */
323 vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
324
325 if (!vcpu->arch.kseg0_commpage) {
326 err = -ENOMEM;
327 goto out_free_gebase;
328 }
329
330 kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
331 kvm_mips_commpage_init(vcpu);
332
333 /* Init */
334 vcpu->arch.last_sched_cpu = -1;
335
336 /* Start off the timer */
337 kvm_mips_init_count(vcpu);
338
339 return vcpu;
340
341 out_free_gebase:
342 kfree(gebase);
343
344 out_free_cpu:
345 kfree(vcpu);
346
347 out:
348 return ERR_PTR(err);
349 }
350
351 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
352 {
353 hrtimer_cancel(&vcpu->arch.comparecount_timer);
354
355 kvm_vcpu_uninit(vcpu);
356
357 kvm_mips_dump_stats(vcpu);
358
359 kfree(vcpu->arch.guest_ebase);
360 kfree(vcpu->arch.kseg0_commpage);
361 kfree(vcpu);
362 }
363
364 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
365 {
366 kvm_arch_vcpu_free(vcpu);
367 }
368
369 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
370 struct kvm_guest_debug *dbg)
371 {
372 return -ENOIOCTLCMD;
373 }
374
375 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
376 {
377 int r = 0;
378 sigset_t sigsaved;
379
380 if (vcpu->sigset_active)
381 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
382
383 if (vcpu->mmio_needed) {
384 if (!vcpu->mmio_is_write)
385 kvm_mips_complete_mmio_load(vcpu, run);
386 vcpu->mmio_needed = 0;
387 }
388
389 lose_fpu(1);
390
391 local_irq_disable();
392 /* Check if we have any exceptions/interrupts pending */
393 kvm_mips_deliver_interrupts(vcpu,
394 kvm_read_c0_guest_cause(vcpu->arch.cop0));
395
396 kvm_guest_enter();
397
398 /* Disable hardware page table walking while in guest */
399 htw_stop();
400
401 r = __kvm_mips_vcpu_run(run, vcpu);
402
403 /* Re-enable HTW before enabling interrupts */
404 htw_start();
405
406 kvm_guest_exit();
407 local_irq_enable();
408
409 if (vcpu->sigset_active)
410 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
411
412 return r;
413 }
414
415 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
416 struct kvm_mips_interrupt *irq)
417 {
418 int intr = (int)irq->irq;
419 struct kvm_vcpu *dvcpu = NULL;
420
421 if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
422 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
423 (int)intr);
424
425 if (irq->cpu == -1)
426 dvcpu = vcpu;
427 else
428 dvcpu = vcpu->kvm->vcpus[irq->cpu];
429
430 if (intr == 2 || intr == 3 || intr == 4) {
431 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
432
433 } else if (intr == -2 || intr == -3 || intr == -4) {
434 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
435 } else {
436 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
437 irq->cpu, irq->irq);
438 return -EINVAL;
439 }
440
441 dvcpu->arch.wait = 0;
442
443 if (waitqueue_active(&dvcpu->wq))
444 wake_up_interruptible(&dvcpu->wq);
445
446 return 0;
447 }
448
449 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
450 struct kvm_mp_state *mp_state)
451 {
452 return -ENOIOCTLCMD;
453 }
454
455 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
456 struct kvm_mp_state *mp_state)
457 {
458 return -ENOIOCTLCMD;
459 }
460
461 static u64 kvm_mips_get_one_regs[] = {
462 KVM_REG_MIPS_R0,
463 KVM_REG_MIPS_R1,
464 KVM_REG_MIPS_R2,
465 KVM_REG_MIPS_R3,
466 KVM_REG_MIPS_R4,
467 KVM_REG_MIPS_R5,
468 KVM_REG_MIPS_R6,
469 KVM_REG_MIPS_R7,
470 KVM_REG_MIPS_R8,
471 KVM_REG_MIPS_R9,
472 KVM_REG_MIPS_R10,
473 KVM_REG_MIPS_R11,
474 KVM_REG_MIPS_R12,
475 KVM_REG_MIPS_R13,
476 KVM_REG_MIPS_R14,
477 KVM_REG_MIPS_R15,
478 KVM_REG_MIPS_R16,
479 KVM_REG_MIPS_R17,
480 KVM_REG_MIPS_R18,
481 KVM_REG_MIPS_R19,
482 KVM_REG_MIPS_R20,
483 KVM_REG_MIPS_R21,
484 KVM_REG_MIPS_R22,
485 KVM_REG_MIPS_R23,
486 KVM_REG_MIPS_R24,
487 KVM_REG_MIPS_R25,
488 KVM_REG_MIPS_R26,
489 KVM_REG_MIPS_R27,
490 KVM_REG_MIPS_R28,
491 KVM_REG_MIPS_R29,
492 KVM_REG_MIPS_R30,
493 KVM_REG_MIPS_R31,
494
495 KVM_REG_MIPS_HI,
496 KVM_REG_MIPS_LO,
497 KVM_REG_MIPS_PC,
498
499 KVM_REG_MIPS_CP0_INDEX,
500 KVM_REG_MIPS_CP0_CONTEXT,
501 KVM_REG_MIPS_CP0_USERLOCAL,
502 KVM_REG_MIPS_CP0_PAGEMASK,
503 KVM_REG_MIPS_CP0_WIRED,
504 KVM_REG_MIPS_CP0_HWRENA,
505 KVM_REG_MIPS_CP0_BADVADDR,
506 KVM_REG_MIPS_CP0_COUNT,
507 KVM_REG_MIPS_CP0_ENTRYHI,
508 KVM_REG_MIPS_CP0_COMPARE,
509 KVM_REG_MIPS_CP0_STATUS,
510 KVM_REG_MIPS_CP0_CAUSE,
511 KVM_REG_MIPS_CP0_EPC,
512 KVM_REG_MIPS_CP0_PRID,
513 KVM_REG_MIPS_CP0_CONFIG,
514 KVM_REG_MIPS_CP0_CONFIG1,
515 KVM_REG_MIPS_CP0_CONFIG2,
516 KVM_REG_MIPS_CP0_CONFIG3,
517 KVM_REG_MIPS_CP0_CONFIG4,
518 KVM_REG_MIPS_CP0_CONFIG5,
519 KVM_REG_MIPS_CP0_CONFIG7,
520 KVM_REG_MIPS_CP0_ERROREPC,
521
522 KVM_REG_MIPS_COUNT_CTL,
523 KVM_REG_MIPS_COUNT_RESUME,
524 KVM_REG_MIPS_COUNT_HZ,
525 };
526
527 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
528 const struct kvm_one_reg *reg)
529 {
530 struct mips_coproc *cop0 = vcpu->arch.cop0;
531 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
532 int ret;
533 s64 v;
534 s64 vs[2];
535 unsigned int idx;
536
537 switch (reg->id) {
538 /* General purpose registers */
539 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
540 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
541 break;
542 case KVM_REG_MIPS_HI:
543 v = (long)vcpu->arch.hi;
544 break;
545 case KVM_REG_MIPS_LO:
546 v = (long)vcpu->arch.lo;
547 break;
548 case KVM_REG_MIPS_PC:
549 v = (long)vcpu->arch.pc;
550 break;
551
552 /* Floating point registers */
553 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
554 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
555 return -EINVAL;
556 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
557 /* Odd singles in top of even double when FR=0 */
558 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
559 v = get_fpr32(&fpu->fpr[idx], 0);
560 else
561 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
562 break;
563 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
564 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
565 return -EINVAL;
566 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
567 /* Can't access odd doubles in FR=0 mode */
568 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
569 return -EINVAL;
570 v = get_fpr64(&fpu->fpr[idx], 0);
571 break;
572 case KVM_REG_MIPS_FCR_IR:
573 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
574 return -EINVAL;
575 v = boot_cpu_data.fpu_id;
576 break;
577 case KVM_REG_MIPS_FCR_CSR:
578 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
579 return -EINVAL;
580 v = fpu->fcr31;
581 break;
582
583 /* MIPS SIMD Architecture (MSA) registers */
584 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
585 if (!kvm_mips_guest_has_msa(&vcpu->arch))
586 return -EINVAL;
587 /* Can't access MSA registers in FR=0 mode */
588 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
589 return -EINVAL;
590 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
591 #ifdef CONFIG_CPU_LITTLE_ENDIAN
592 /* least significant byte first */
593 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
594 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
595 #else
596 /* most significant byte first */
597 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
598 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
599 #endif
600 break;
601 case KVM_REG_MIPS_MSA_IR:
602 if (!kvm_mips_guest_has_msa(&vcpu->arch))
603 return -EINVAL;
604 v = boot_cpu_data.msa_id;
605 break;
606 case KVM_REG_MIPS_MSA_CSR:
607 if (!kvm_mips_guest_has_msa(&vcpu->arch))
608 return -EINVAL;
609 v = fpu->msacsr;
610 break;
611
612 /* Co-processor 0 registers */
613 case KVM_REG_MIPS_CP0_INDEX:
614 v = (long)kvm_read_c0_guest_index(cop0);
615 break;
616 case KVM_REG_MIPS_CP0_CONTEXT:
617 v = (long)kvm_read_c0_guest_context(cop0);
618 break;
619 case KVM_REG_MIPS_CP0_USERLOCAL:
620 v = (long)kvm_read_c0_guest_userlocal(cop0);
621 break;
622 case KVM_REG_MIPS_CP0_PAGEMASK:
623 v = (long)kvm_read_c0_guest_pagemask(cop0);
624 break;
625 case KVM_REG_MIPS_CP0_WIRED:
626 v = (long)kvm_read_c0_guest_wired(cop0);
627 break;
628 case KVM_REG_MIPS_CP0_HWRENA:
629 v = (long)kvm_read_c0_guest_hwrena(cop0);
630 break;
631 case KVM_REG_MIPS_CP0_BADVADDR:
632 v = (long)kvm_read_c0_guest_badvaddr(cop0);
633 break;
634 case KVM_REG_MIPS_CP0_ENTRYHI:
635 v = (long)kvm_read_c0_guest_entryhi(cop0);
636 break;
637 case KVM_REG_MIPS_CP0_COMPARE:
638 v = (long)kvm_read_c0_guest_compare(cop0);
639 break;
640 case KVM_REG_MIPS_CP0_STATUS:
641 v = (long)kvm_read_c0_guest_status(cop0);
642 break;
643 case KVM_REG_MIPS_CP0_CAUSE:
644 v = (long)kvm_read_c0_guest_cause(cop0);
645 break;
646 case KVM_REG_MIPS_CP0_EPC:
647 v = (long)kvm_read_c0_guest_epc(cop0);
648 break;
649 case KVM_REG_MIPS_CP0_PRID:
650 v = (long)kvm_read_c0_guest_prid(cop0);
651 break;
652 case KVM_REG_MIPS_CP0_CONFIG:
653 v = (long)kvm_read_c0_guest_config(cop0);
654 break;
655 case KVM_REG_MIPS_CP0_CONFIG1:
656 v = (long)kvm_read_c0_guest_config1(cop0);
657 break;
658 case KVM_REG_MIPS_CP0_CONFIG2:
659 v = (long)kvm_read_c0_guest_config2(cop0);
660 break;
661 case KVM_REG_MIPS_CP0_CONFIG3:
662 v = (long)kvm_read_c0_guest_config3(cop0);
663 break;
664 case KVM_REG_MIPS_CP0_CONFIG4:
665 v = (long)kvm_read_c0_guest_config4(cop0);
666 break;
667 case KVM_REG_MIPS_CP0_CONFIG5:
668 v = (long)kvm_read_c0_guest_config5(cop0);
669 break;
670 case KVM_REG_MIPS_CP0_CONFIG7:
671 v = (long)kvm_read_c0_guest_config7(cop0);
672 break;
673 case KVM_REG_MIPS_CP0_ERROREPC:
674 v = (long)kvm_read_c0_guest_errorepc(cop0);
675 break;
676 /* registers to be handled specially */
677 case KVM_REG_MIPS_CP0_COUNT:
678 case KVM_REG_MIPS_COUNT_CTL:
679 case KVM_REG_MIPS_COUNT_RESUME:
680 case KVM_REG_MIPS_COUNT_HZ:
681 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
682 if (ret)
683 return ret;
684 break;
685 default:
686 return -EINVAL;
687 }
688 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
689 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
690
691 return put_user(v, uaddr64);
692 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
693 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
694 u32 v32 = (u32)v;
695
696 return put_user(v32, uaddr32);
697 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
698 void __user *uaddr = (void __user *)(long)reg->addr;
699
700 return copy_to_user(uaddr, vs, 16);
701 } else {
702 return -EINVAL;
703 }
704 }
705
706 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
707 const struct kvm_one_reg *reg)
708 {
709 struct mips_coproc *cop0 = vcpu->arch.cop0;
710 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
711 s64 v;
712 s64 vs[2];
713 unsigned int idx;
714
715 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
716 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
717
718 if (get_user(v, uaddr64) != 0)
719 return -EFAULT;
720 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
721 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
722 s32 v32;
723
724 if (get_user(v32, uaddr32) != 0)
725 return -EFAULT;
726 v = (s64)v32;
727 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
728 void __user *uaddr = (void __user *)(long)reg->addr;
729
730 return copy_from_user(vs, uaddr, 16);
731 } else {
732 return -EINVAL;
733 }
734
735 switch (reg->id) {
736 /* General purpose registers */
737 case KVM_REG_MIPS_R0:
738 /* Silently ignore requests to set $0 */
739 break;
740 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
741 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
742 break;
743 case KVM_REG_MIPS_HI:
744 vcpu->arch.hi = v;
745 break;
746 case KVM_REG_MIPS_LO:
747 vcpu->arch.lo = v;
748 break;
749 case KVM_REG_MIPS_PC:
750 vcpu->arch.pc = v;
751 break;
752
753 /* Floating point registers */
754 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
755 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
756 return -EINVAL;
757 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
758 /* Odd singles in top of even double when FR=0 */
759 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
760 set_fpr32(&fpu->fpr[idx], 0, v);
761 else
762 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
763 break;
764 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
765 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
766 return -EINVAL;
767 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
768 /* Can't access odd doubles in FR=0 mode */
769 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
770 return -EINVAL;
771 set_fpr64(&fpu->fpr[idx], 0, v);
772 break;
773 case KVM_REG_MIPS_FCR_IR:
774 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
775 return -EINVAL;
776 /* Read-only */
777 break;
778 case KVM_REG_MIPS_FCR_CSR:
779 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
780 return -EINVAL;
781 fpu->fcr31 = v;
782 break;
783
784 /* MIPS SIMD Architecture (MSA) registers */
785 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
786 if (!kvm_mips_guest_has_msa(&vcpu->arch))
787 return -EINVAL;
788 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
789 #ifdef CONFIG_CPU_LITTLE_ENDIAN
790 /* least significant byte first */
791 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
792 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
793 #else
794 /* most significant byte first */
795 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
796 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
797 #endif
798 break;
799 case KVM_REG_MIPS_MSA_IR:
800 if (!kvm_mips_guest_has_msa(&vcpu->arch))
801 return -EINVAL;
802 /* Read-only */
803 break;
804 case KVM_REG_MIPS_MSA_CSR:
805 if (!kvm_mips_guest_has_msa(&vcpu->arch))
806 return -EINVAL;
807 fpu->msacsr = v;
808 break;
809
810 /* Co-processor 0 registers */
811 case KVM_REG_MIPS_CP0_INDEX:
812 kvm_write_c0_guest_index(cop0, v);
813 break;
814 case KVM_REG_MIPS_CP0_CONTEXT:
815 kvm_write_c0_guest_context(cop0, v);
816 break;
817 case KVM_REG_MIPS_CP0_USERLOCAL:
818 kvm_write_c0_guest_userlocal(cop0, v);
819 break;
820 case KVM_REG_MIPS_CP0_PAGEMASK:
821 kvm_write_c0_guest_pagemask(cop0, v);
822 break;
823 case KVM_REG_MIPS_CP0_WIRED:
824 kvm_write_c0_guest_wired(cop0, v);
825 break;
826 case KVM_REG_MIPS_CP0_HWRENA:
827 kvm_write_c0_guest_hwrena(cop0, v);
828 break;
829 case KVM_REG_MIPS_CP0_BADVADDR:
830 kvm_write_c0_guest_badvaddr(cop0, v);
831 break;
832 case KVM_REG_MIPS_CP0_ENTRYHI:
833 kvm_write_c0_guest_entryhi(cop0, v);
834 break;
835 case KVM_REG_MIPS_CP0_STATUS:
836 kvm_write_c0_guest_status(cop0, v);
837 break;
838 case KVM_REG_MIPS_CP0_EPC:
839 kvm_write_c0_guest_epc(cop0, v);
840 break;
841 case KVM_REG_MIPS_CP0_PRID:
842 kvm_write_c0_guest_prid(cop0, v);
843 break;
844 case KVM_REG_MIPS_CP0_ERROREPC:
845 kvm_write_c0_guest_errorepc(cop0, v);
846 break;
847 /* registers to be handled specially */
848 case KVM_REG_MIPS_CP0_COUNT:
849 case KVM_REG_MIPS_CP0_COMPARE:
850 case KVM_REG_MIPS_CP0_CAUSE:
851 case KVM_REG_MIPS_CP0_CONFIG:
852 case KVM_REG_MIPS_CP0_CONFIG1:
853 case KVM_REG_MIPS_CP0_CONFIG2:
854 case KVM_REG_MIPS_CP0_CONFIG3:
855 case KVM_REG_MIPS_CP0_CONFIG4:
856 case KVM_REG_MIPS_CP0_CONFIG5:
857 case KVM_REG_MIPS_COUNT_CTL:
858 case KVM_REG_MIPS_COUNT_RESUME:
859 case KVM_REG_MIPS_COUNT_HZ:
860 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
861 default:
862 return -EINVAL;
863 }
864 return 0;
865 }
866
867 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
868 struct kvm_enable_cap *cap)
869 {
870 int r = 0;
871
872 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
873 return -EINVAL;
874 if (cap->flags)
875 return -EINVAL;
876 if (cap->args[0])
877 return -EINVAL;
878
879 switch (cap->cap) {
880 case KVM_CAP_MIPS_FPU:
881 vcpu->arch.fpu_enabled = true;
882 break;
883 case KVM_CAP_MIPS_MSA:
884 vcpu->arch.msa_enabled = true;
885 break;
886 default:
887 r = -EINVAL;
888 break;
889 }
890
891 return r;
892 }
893
894 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
895 unsigned long arg)
896 {
897 struct kvm_vcpu *vcpu = filp->private_data;
898 void __user *argp = (void __user *)arg;
899 long r;
900
901 switch (ioctl) {
902 case KVM_SET_ONE_REG:
903 case KVM_GET_ONE_REG: {
904 struct kvm_one_reg reg;
905
906 if (copy_from_user(&reg, argp, sizeof(reg)))
907 return -EFAULT;
908 if (ioctl == KVM_SET_ONE_REG)
909 return kvm_mips_set_reg(vcpu, &reg);
910 else
911 return kvm_mips_get_reg(vcpu, &reg);
912 }
913 case KVM_GET_REG_LIST: {
914 struct kvm_reg_list __user *user_list = argp;
915 u64 __user *reg_dest;
916 struct kvm_reg_list reg_list;
917 unsigned n;
918
919 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
920 return -EFAULT;
921 n = reg_list.n;
922 reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
923 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
924 return -EFAULT;
925 if (n < reg_list.n)
926 return -E2BIG;
927 reg_dest = user_list->reg;
928 if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
929 sizeof(kvm_mips_get_one_regs)))
930 return -EFAULT;
931 return 0;
932 }
933 case KVM_NMI:
934 /* Treat the NMI as a CPU reset */
935 r = kvm_mips_reset_vcpu(vcpu);
936 break;
937 case KVM_INTERRUPT:
938 {
939 struct kvm_mips_interrupt irq;
940
941 r = -EFAULT;
942 if (copy_from_user(&irq, argp, sizeof(irq)))
943 goto out;
944
945 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
946 irq.irq);
947
948 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
949 break;
950 }
951 case KVM_ENABLE_CAP: {
952 struct kvm_enable_cap cap;
953
954 r = -EFAULT;
955 if (copy_from_user(&cap, argp, sizeof(cap)))
956 goto out;
957 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
958 break;
959 }
960 default:
961 r = -ENOIOCTLCMD;
962 }
963
964 out:
965 return r;
966 }
967
968 /* Get (and clear) the dirty memory log for a memory slot. */
969 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
970 {
971 struct kvm_memory_slot *memslot;
972 unsigned long ga, ga_end;
973 int is_dirty = 0;
974 int r;
975 unsigned long n;
976
977 mutex_lock(&kvm->slots_lock);
978
979 r = kvm_get_dirty_log(kvm, log, &is_dirty);
980 if (r)
981 goto out;
982
983 /* If nothing is dirty, don't bother messing with page tables. */
984 if (is_dirty) {
985 memslot = &kvm->memslots->memslots[log->slot];
986
987 ga = memslot->base_gfn << PAGE_SHIFT;
988 ga_end = ga + (memslot->npages << PAGE_SHIFT);
989
990 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
991 ga_end);
992
993 n = kvm_dirty_bitmap_bytes(memslot);
994 memset(memslot->dirty_bitmap, 0, n);
995 }
996
997 r = 0;
998 out:
999 mutex_unlock(&kvm->slots_lock);
1000 return r;
1001
1002 }
1003
1004 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1005 {
1006 long r;
1007
1008 switch (ioctl) {
1009 default:
1010 r = -ENOIOCTLCMD;
1011 }
1012
1013 return r;
1014 }
1015
1016 int kvm_arch_init(void *opaque)
1017 {
1018 if (kvm_mips_callbacks) {
1019 kvm_err("kvm: module already exists\n");
1020 return -EEXIST;
1021 }
1022
1023 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1024 }
1025
1026 void kvm_arch_exit(void)
1027 {
1028 kvm_mips_callbacks = NULL;
1029 }
1030
1031 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1032 struct kvm_sregs *sregs)
1033 {
1034 return -ENOIOCTLCMD;
1035 }
1036
1037 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1038 struct kvm_sregs *sregs)
1039 {
1040 return -ENOIOCTLCMD;
1041 }
1042
1043 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1044 {
1045 }
1046
1047 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1048 {
1049 return -ENOIOCTLCMD;
1050 }
1051
1052 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1053 {
1054 return -ENOIOCTLCMD;
1055 }
1056
1057 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1058 {
1059 return VM_FAULT_SIGBUS;
1060 }
1061
1062 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1063 {
1064 int r;
1065
1066 switch (ext) {
1067 case KVM_CAP_ONE_REG:
1068 case KVM_CAP_ENABLE_CAP:
1069 r = 1;
1070 break;
1071 case KVM_CAP_COALESCED_MMIO:
1072 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1073 break;
1074 case KVM_CAP_MIPS_FPU:
1075 r = !!cpu_has_fpu;
1076 break;
1077 case KVM_CAP_MIPS_MSA:
1078 /*
1079 * We don't support MSA vector partitioning yet:
1080 * 1) It would require explicit support which can't be tested
1081 * yet due to lack of support in current hardware.
1082 * 2) It extends the state that would need to be saved/restored
1083 * by e.g. QEMU for migration.
1084 *
1085 * When vector partitioning hardware becomes available, support
1086 * could be added by requiring a flag when enabling
1087 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1088 * to save/restore the appropriate extra state.
1089 */
1090 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1091 break;
1092 default:
1093 r = 0;
1094 break;
1095 }
1096 return r;
1097 }
1098
1099 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1100 {
1101 return kvm_mips_pending_timer(vcpu);
1102 }
1103
1104 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1105 {
1106 int i;
1107 struct mips_coproc *cop0;
1108
1109 if (!vcpu)
1110 return -1;
1111
1112 kvm_debug("VCPU Register Dump:\n");
1113 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1114 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1115
1116 for (i = 0; i < 32; i += 4) {
1117 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1118 vcpu->arch.gprs[i],
1119 vcpu->arch.gprs[i + 1],
1120 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1121 }
1122 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1123 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1124
1125 cop0 = vcpu->arch.cop0;
1126 kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1127 kvm_read_c0_guest_status(cop0),
1128 kvm_read_c0_guest_cause(cop0));
1129
1130 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1131
1132 return 0;
1133 }
1134
1135 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1136 {
1137 int i;
1138
1139 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1140 vcpu->arch.gprs[i] = regs->gpr[i];
1141 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1142 vcpu->arch.hi = regs->hi;
1143 vcpu->arch.lo = regs->lo;
1144 vcpu->arch.pc = regs->pc;
1145
1146 return 0;
1147 }
1148
1149 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1150 {
1151 int i;
1152
1153 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1154 regs->gpr[i] = vcpu->arch.gprs[i];
1155
1156 regs->hi = vcpu->arch.hi;
1157 regs->lo = vcpu->arch.lo;
1158 regs->pc = vcpu->arch.pc;
1159
1160 return 0;
1161 }
1162
1163 static void kvm_mips_comparecount_func(unsigned long data)
1164 {
1165 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1166
1167 kvm_mips_callbacks->queue_timer_int(vcpu);
1168
1169 vcpu->arch.wait = 0;
1170 if (waitqueue_active(&vcpu->wq))
1171 wake_up_interruptible(&vcpu->wq);
1172 }
1173
1174 /* low level hrtimer wake routine */
1175 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1176 {
1177 struct kvm_vcpu *vcpu;
1178
1179 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1180 kvm_mips_comparecount_func((unsigned long) vcpu);
1181 return kvm_mips_count_timeout(vcpu);
1182 }
1183
1184 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1185 {
1186 kvm_mips_callbacks->vcpu_init(vcpu);
1187 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1188 HRTIMER_MODE_REL);
1189 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1190 return 0;
1191 }
1192
1193 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1194 struct kvm_translation *tr)
1195 {
1196 return 0;
1197 }
1198
1199 /* Initial guest state */
1200 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1201 {
1202 return kvm_mips_callbacks->vcpu_setup(vcpu);
1203 }
1204
1205 static void kvm_mips_set_c0_status(void)
1206 {
1207 uint32_t status = read_c0_status();
1208
1209 if (cpu_has_dsp)
1210 status |= (ST0_MX);
1211
1212 write_c0_status(status);
1213 ehb();
1214 }
1215
1216 /*
1217 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1218 */
1219 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1220 {
1221 uint32_t cause = vcpu->arch.host_cp0_cause;
1222 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1223 uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
1224 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1225 enum emulation_result er = EMULATE_DONE;
1226 int ret = RESUME_GUEST;
1227
1228 /* re-enable HTW before enabling interrupts */
1229 htw_start();
1230
1231 /* Set a default exit reason */
1232 run->exit_reason = KVM_EXIT_UNKNOWN;
1233 run->ready_for_interrupt_injection = 1;
1234
1235 /*
1236 * Set the appropriate status bits based on host CPU features,
1237 * before we hit the scheduler
1238 */
1239 kvm_mips_set_c0_status();
1240
1241 local_irq_enable();
1242
1243 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1244 cause, opc, run, vcpu);
1245
1246 /*
1247 * Do a privilege check, if in UM most of these exit conditions end up
1248 * causing an exception to be delivered to the Guest Kernel
1249 */
1250 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1251 if (er == EMULATE_PRIV_FAIL) {
1252 goto skip_emul;
1253 } else if (er == EMULATE_FAIL) {
1254 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1255 ret = RESUME_HOST;
1256 goto skip_emul;
1257 }
1258
1259 switch (exccode) {
1260 case T_INT:
1261 kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
1262
1263 ++vcpu->stat.int_exits;
1264 trace_kvm_exit(vcpu, INT_EXITS);
1265
1266 if (need_resched())
1267 cond_resched();
1268
1269 ret = RESUME_GUEST;
1270 break;
1271
1272 case T_COP_UNUSABLE:
1273 kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
1274
1275 ++vcpu->stat.cop_unusable_exits;
1276 trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1277 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1278 /* XXXKYMA: Might need to return to user space */
1279 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1280 ret = RESUME_HOST;
1281 break;
1282
1283 case T_TLB_MOD:
1284 ++vcpu->stat.tlbmod_exits;
1285 trace_kvm_exit(vcpu, TLBMOD_EXITS);
1286 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1287 break;
1288
1289 case T_TLB_ST_MISS:
1290 kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1291 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1292 badvaddr);
1293
1294 ++vcpu->stat.tlbmiss_st_exits;
1295 trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1296 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1297 break;
1298
1299 case T_TLB_LD_MISS:
1300 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1301 cause, opc, badvaddr);
1302
1303 ++vcpu->stat.tlbmiss_ld_exits;
1304 trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1305 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1306 break;
1307
1308 case T_ADDR_ERR_ST:
1309 ++vcpu->stat.addrerr_st_exits;
1310 trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1311 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1312 break;
1313
1314 case T_ADDR_ERR_LD:
1315 ++vcpu->stat.addrerr_ld_exits;
1316 trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1317 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1318 break;
1319
1320 case T_SYSCALL:
1321 ++vcpu->stat.syscall_exits;
1322 trace_kvm_exit(vcpu, SYSCALL_EXITS);
1323 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1324 break;
1325
1326 case T_RES_INST:
1327 ++vcpu->stat.resvd_inst_exits;
1328 trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1329 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1330 break;
1331
1332 case T_BREAK:
1333 ++vcpu->stat.break_inst_exits;
1334 trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1335 ret = kvm_mips_callbacks->handle_break(vcpu);
1336 break;
1337
1338 case T_TRAP:
1339 ++vcpu->stat.trap_inst_exits;
1340 trace_kvm_exit(vcpu, TRAP_INST_EXITS);
1341 ret = kvm_mips_callbacks->handle_trap(vcpu);
1342 break;
1343
1344 case T_MSAFPE:
1345 ++vcpu->stat.msa_fpe_exits;
1346 trace_kvm_exit(vcpu, MSA_FPE_EXITS);
1347 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1348 break;
1349
1350 case T_FPE:
1351 ++vcpu->stat.fpe_exits;
1352 trace_kvm_exit(vcpu, FPE_EXITS);
1353 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1354 break;
1355
1356 case T_MSADIS:
1357 ++vcpu->stat.msa_disabled_exits;
1358 trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1359 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1360 break;
1361
1362 default:
1363 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
1364 exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1365 kvm_read_c0_guest_status(vcpu->arch.cop0));
1366 kvm_arch_vcpu_dump_regs(vcpu);
1367 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1368 ret = RESUME_HOST;
1369 break;
1370
1371 }
1372
1373 skip_emul:
1374 local_irq_disable();
1375
1376 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1377 kvm_mips_deliver_interrupts(vcpu, cause);
1378
1379 if (!(ret & RESUME_HOST)) {
1380 /* Only check for signals if not already exiting to userspace */
1381 if (signal_pending(current)) {
1382 run->exit_reason = KVM_EXIT_INTR;
1383 ret = (-EINTR << 2) | RESUME_HOST;
1384 ++vcpu->stat.signal_exits;
1385 trace_kvm_exit(vcpu, SIGNAL_EXITS);
1386 }
1387 }
1388
1389 if (ret == RESUME_GUEST) {
1390 /*
1391 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1392 * is live), restore FCR31 / MSACSR.
1393 *
1394 * This should be before returning to the guest exception
1395 * vector, as it may well cause an [MSA] FP exception if there
1396 * are pending exception bits unmasked. (see
1397 * kvm_mips_csr_die_notifier() for how that is handled).
1398 */
1399 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1400 read_c0_status() & ST0_CU1)
1401 __kvm_restore_fcsr(&vcpu->arch);
1402
1403 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1404 read_c0_config5() & MIPS_CONF5_MSAEN)
1405 __kvm_restore_msacsr(&vcpu->arch);
1406 }
1407
1408 /* Disable HTW before returning to guest or host */
1409 htw_stop();
1410
1411 return ret;
1412 }
1413
1414 /* Enable FPU for guest and restore context */
1415 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1416 {
1417 struct mips_coproc *cop0 = vcpu->arch.cop0;
1418 unsigned int sr, cfg5;
1419
1420 preempt_disable();
1421
1422 sr = kvm_read_c0_guest_status(cop0);
1423
1424 /*
1425 * If MSA state is already live, it is undefined how it interacts with
1426 * FR=0 FPU state, and we don't want to hit reserved instruction
1427 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1428 * play it safe and save it first.
1429 *
1430 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1431 * get called when guest CU1 is set, however we can't trust the guest
1432 * not to clobber the status register directly via the commpage.
1433 */
1434 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1435 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1436 kvm_lose_fpu(vcpu);
1437
1438 /*
1439 * Enable FPU for guest
1440 * We set FR and FRE according to guest context
1441 */
1442 change_c0_status(ST0_CU1 | ST0_FR, sr);
1443 if (cpu_has_fre) {
1444 cfg5 = kvm_read_c0_guest_config5(cop0);
1445 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1446 }
1447 enable_fpu_hazard();
1448
1449 /* If guest FPU state not active, restore it now */
1450 if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
1451 __kvm_restore_fpu(&vcpu->arch);
1452 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1453 }
1454
1455 preempt_enable();
1456 }
1457
1458 #ifdef CONFIG_CPU_HAS_MSA
1459 /* Enable MSA for guest and restore context */
1460 void kvm_own_msa(struct kvm_vcpu *vcpu)
1461 {
1462 struct mips_coproc *cop0 = vcpu->arch.cop0;
1463 unsigned int sr, cfg5;
1464
1465 preempt_disable();
1466
1467 /*
1468 * Enable FPU if enabled in guest, since we're restoring FPU context
1469 * anyway. We set FR and FRE according to guest context.
1470 */
1471 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1472 sr = kvm_read_c0_guest_status(cop0);
1473
1474 /*
1475 * If FR=0 FPU state is already live, it is undefined how it
1476 * interacts with MSA state, so play it safe and save it first.
1477 */
1478 if (!(sr & ST0_FR) &&
1479 (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
1480 KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
1481 kvm_lose_fpu(vcpu);
1482
1483 change_c0_status(ST0_CU1 | ST0_FR, sr);
1484 if (sr & ST0_CU1 && cpu_has_fre) {
1485 cfg5 = kvm_read_c0_guest_config5(cop0);
1486 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1487 }
1488 }
1489
1490 /* Enable MSA for guest */
1491 set_c0_config5(MIPS_CONF5_MSAEN);
1492 enable_fpu_hazard();
1493
1494 switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
1495 case KVM_MIPS_FPU_FPU:
1496 /*
1497 * Guest FPU state already loaded, only restore upper MSA state
1498 */
1499 __kvm_restore_msa_upper(&vcpu->arch);
1500 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1501 break;
1502 case 0:
1503 /* Neither FPU or MSA already active, restore full MSA state */
1504 __kvm_restore_msa(&vcpu->arch);
1505 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1506 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1507 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1508 break;
1509 default:
1510 break;
1511 }
1512
1513 preempt_enable();
1514 }
1515 #endif
1516
1517 /* Drop FPU & MSA without saving it */
1518 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1519 {
1520 preempt_disable();
1521 if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1522 disable_msa();
1523 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
1524 }
1525 if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1526 clear_c0_status(ST0_CU1 | ST0_FR);
1527 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1528 }
1529 preempt_enable();
1530 }
1531
1532 /* Save and disable FPU & MSA */
1533 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1534 {
1535 /*
1536 * FPU & MSA get disabled in root context (hardware) when it is disabled
1537 * in guest context (software), but the register state in the hardware
1538 * may still be in use. This is why we explicitly re-enable the hardware
1539 * before saving.
1540 */
1541
1542 preempt_disable();
1543 if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1544 set_c0_config5(MIPS_CONF5_MSAEN);
1545 enable_fpu_hazard();
1546
1547 __kvm_save_msa(&vcpu->arch);
1548
1549 /* Disable MSA & FPU */
1550 disable_msa();
1551 if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1552 clear_c0_status(ST0_CU1 | ST0_FR);
1553 vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
1554 } else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1555 set_c0_status(ST0_CU1);
1556 enable_fpu_hazard();
1557
1558 __kvm_save_fpu(&vcpu->arch);
1559 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1560
1561 /* Disable FPU */
1562 clear_c0_status(ST0_CU1 | ST0_FR);
1563 }
1564 preempt_enable();
1565 }
1566
1567 /*
1568 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1569 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1570 * exception if cause bits are set in the value being written.
1571 */
1572 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1573 unsigned long cmd, void *ptr)
1574 {
1575 struct die_args *args = (struct die_args *)ptr;
1576 struct pt_regs *regs = args->regs;
1577 unsigned long pc;
1578
1579 /* Only interested in FPE and MSAFPE */
1580 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1581 return NOTIFY_DONE;
1582
1583 /* Return immediately if guest context isn't active */
1584 if (!(current->flags & PF_VCPU))
1585 return NOTIFY_DONE;
1586
1587 /* Should never get here from user mode */
1588 BUG_ON(user_mode(regs));
1589
1590 pc = instruction_pointer(regs);
1591 switch (cmd) {
1592 case DIE_FP:
1593 /* match 2nd instruction in __kvm_restore_fcsr */
1594 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1595 return NOTIFY_DONE;
1596 break;
1597 case DIE_MSAFP:
1598 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1599 if (!cpu_has_msa ||
1600 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1601 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1602 return NOTIFY_DONE;
1603 break;
1604 }
1605
1606 /* Move PC forward a little and continue executing */
1607 instruction_pointer(regs) += 4;
1608
1609 return NOTIFY_STOP;
1610 }
1611
1612 static struct notifier_block kvm_mips_csr_die_notifier = {
1613 .notifier_call = kvm_mips_csr_die_notify,
1614 };
1615
1616 int __init kvm_mips_init(void)
1617 {
1618 int ret;
1619
1620 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1621
1622 if (ret)
1623 return ret;
1624
1625 register_die_notifier(&kvm_mips_csr_die_notifier);
1626
1627 /*
1628 * On MIPS, kernel modules are executed from "mapped space", which
1629 * requires TLBs. The TLB handling code is statically linked with
1630 * the rest of the kernel (tlb.c) to avoid the possibility of
1631 * double faulting. The issue is that the TLB code references
1632 * routines that are part of the the KVM module, which are only
1633 * available once the module is loaded.
1634 */
1635 kvm_mips_gfn_to_pfn = gfn_to_pfn;
1636 kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
1637 kvm_mips_is_error_pfn = is_error_pfn;
1638
1639 return 0;
1640 }
1641
1642 void __exit kvm_mips_exit(void)
1643 {
1644 kvm_exit();
1645
1646 kvm_mips_gfn_to_pfn = NULL;
1647 kvm_mips_release_pfn_clean = NULL;
1648 kvm_mips_is_error_pfn = NULL;
1649
1650 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1651 }
1652
1653 module_init(kvm_mips_init);
1654 module_exit(kvm_mips_exit);
1655
1656 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);