]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/mips/kvm/mips.c
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / arch / mips / kvm / mips.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: MIPS specific KVM APIs
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/memblock.h>
22 #include <linux/pgtable.h>
23
24 #include <asm/fpu.h>
25 #include <asm/page.h>
26 #include <asm/cacheflush.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgalloc.h>
29
30 #include <linux/kvm_host.h>
31
32 #include "interrupt.h"
33
34 #define CREATE_TRACE_POINTS
35 #include "trace.h"
36
37 #ifndef VECTORSPACING
38 #define VECTORSPACING 0x100 /* for EI/VI mode */
39 #endif
40
41 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
42 KVM_GENERIC_VM_STATS()
43 };
44
45 const struct kvm_stats_header kvm_vm_stats_header = {
46 .name_size = KVM_STATS_NAME_SIZE,
47 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
48 .id_offset = sizeof(struct kvm_stats_header),
49 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
50 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
51 sizeof(kvm_vm_stats_desc),
52 };
53
54 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
55 KVM_GENERIC_VCPU_STATS(),
56 STATS_DESC_COUNTER(VCPU, wait_exits),
57 STATS_DESC_COUNTER(VCPU, cache_exits),
58 STATS_DESC_COUNTER(VCPU, signal_exits),
59 STATS_DESC_COUNTER(VCPU, int_exits),
60 STATS_DESC_COUNTER(VCPU, cop_unusable_exits),
61 STATS_DESC_COUNTER(VCPU, tlbmod_exits),
62 STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits),
63 STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits),
64 STATS_DESC_COUNTER(VCPU, addrerr_st_exits),
65 STATS_DESC_COUNTER(VCPU, addrerr_ld_exits),
66 STATS_DESC_COUNTER(VCPU, syscall_exits),
67 STATS_DESC_COUNTER(VCPU, resvd_inst_exits),
68 STATS_DESC_COUNTER(VCPU, break_inst_exits),
69 STATS_DESC_COUNTER(VCPU, trap_inst_exits),
70 STATS_DESC_COUNTER(VCPU, msa_fpe_exits),
71 STATS_DESC_COUNTER(VCPU, fpe_exits),
72 STATS_DESC_COUNTER(VCPU, msa_disabled_exits),
73 STATS_DESC_COUNTER(VCPU, flush_dcache_exits),
74 STATS_DESC_COUNTER(VCPU, vz_gpsi_exits),
75 STATS_DESC_COUNTER(VCPU, vz_gsfc_exits),
76 STATS_DESC_COUNTER(VCPU, vz_hc_exits),
77 STATS_DESC_COUNTER(VCPU, vz_grr_exits),
78 STATS_DESC_COUNTER(VCPU, vz_gva_exits),
79 STATS_DESC_COUNTER(VCPU, vz_ghfc_exits),
80 STATS_DESC_COUNTER(VCPU, vz_gpa_exits),
81 STATS_DESC_COUNTER(VCPU, vz_resvd_exits),
82 #ifdef CONFIG_CPU_LOONGSON64
83 STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits),
84 #endif
85 };
86
87 const struct kvm_stats_header kvm_vcpu_stats_header = {
88 .name_size = KVM_STATS_NAME_SIZE,
89 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
90 .id_offset = sizeof(struct kvm_stats_header),
91 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
92 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
93 sizeof(kvm_vcpu_stats_desc),
94 };
95
96 bool kvm_trace_guest_mode_change;
97
98 int kvm_guest_mode_change_trace_reg(void)
99 {
100 kvm_trace_guest_mode_change = true;
101 return 0;
102 }
103
104 void kvm_guest_mode_change_trace_unreg(void)
105 {
106 kvm_trace_guest_mode_change = false;
107 }
108
109 /*
110 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
111 * Config7, so we are "runnable" if interrupts are pending
112 */
113 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
114 {
115 return !!(vcpu->arch.pending_exceptions);
116 }
117
118 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
119 {
120 return false;
121 }
122
123 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
124 {
125 return 1;
126 }
127
128 int kvm_arch_hardware_enable(void)
129 {
130 return kvm_mips_callbacks->hardware_enable();
131 }
132
133 void kvm_arch_hardware_disable(void)
134 {
135 kvm_mips_callbacks->hardware_disable();
136 }
137
138 int kvm_arch_hardware_setup(void *opaque)
139 {
140 return 0;
141 }
142
143 int kvm_arch_check_processor_compat(void *opaque)
144 {
145 return 0;
146 }
147
148 extern void kvm_init_loongson_ipi(struct kvm *kvm);
149
150 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
151 {
152 switch (type) {
153 case KVM_VM_MIPS_AUTO:
154 break;
155 case KVM_VM_MIPS_VZ:
156 break;
157 default:
158 /* Unsupported KVM type */
159 return -EINVAL;
160 }
161
162 /* Allocate page table to map GPA -> RPA */
163 kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
164 if (!kvm->arch.gpa_mm.pgd)
165 return -ENOMEM;
166
167 #ifdef CONFIG_CPU_LOONGSON64
168 kvm_init_loongson_ipi(kvm);
169 #endif
170
171 return 0;
172 }
173
174 void kvm_mips_free_vcpus(struct kvm *kvm)
175 {
176 unsigned int i;
177 struct kvm_vcpu *vcpu;
178
179 kvm_for_each_vcpu(i, vcpu, kvm) {
180 kvm_vcpu_destroy(vcpu);
181 }
182
183 mutex_lock(&kvm->lock);
184
185 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
186 kvm->vcpus[i] = NULL;
187
188 atomic_set(&kvm->online_vcpus, 0);
189
190 mutex_unlock(&kvm->lock);
191 }
192
193 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
194 {
195 /* It should always be safe to remove after flushing the whole range */
196 WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
197 pgd_free(NULL, kvm->arch.gpa_mm.pgd);
198 }
199
200 void kvm_arch_destroy_vm(struct kvm *kvm)
201 {
202 kvm_mips_free_vcpus(kvm);
203 kvm_mips_free_gpa_pt(kvm);
204 }
205
206 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
207 unsigned long arg)
208 {
209 return -ENOIOCTLCMD;
210 }
211
212 void kvm_arch_flush_shadow_all(struct kvm *kvm)
213 {
214 /* Flush whole GPA */
215 kvm_mips_flush_gpa_pt(kvm, 0, ~0);
216 kvm_flush_remote_tlbs(kvm);
217 }
218
219 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
220 struct kvm_memory_slot *slot)
221 {
222 /*
223 * The slot has been made invalid (ready for moving or deletion), so we
224 * need to ensure that it can no longer be accessed by any guest VCPUs.
225 */
226
227 spin_lock(&kvm->mmu_lock);
228 /* Flush slot from GPA */
229 kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
230 slot->base_gfn + slot->npages - 1);
231 kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
232 spin_unlock(&kvm->mmu_lock);
233 }
234
235 int kvm_arch_prepare_memory_region(struct kvm *kvm,
236 struct kvm_memory_slot *memslot,
237 const struct kvm_userspace_memory_region *mem,
238 enum kvm_mr_change change)
239 {
240 return 0;
241 }
242
243 void kvm_arch_commit_memory_region(struct kvm *kvm,
244 const struct kvm_userspace_memory_region *mem,
245 struct kvm_memory_slot *old,
246 const struct kvm_memory_slot *new,
247 enum kvm_mr_change change)
248 {
249 int needs_flush;
250
251 kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
252 __func__, kvm, mem->slot, mem->guest_phys_addr,
253 mem->memory_size, mem->userspace_addr);
254
255 /*
256 * If dirty page logging is enabled, write protect all pages in the slot
257 * ready for dirty logging.
258 *
259 * There is no need to do this in any of the following cases:
260 * CREATE: No dirty mappings will already exist.
261 * MOVE/DELETE: The old mappings will already have been cleaned up by
262 * kvm_arch_flush_shadow_memslot()
263 */
264 if (change == KVM_MR_FLAGS_ONLY &&
265 (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
266 new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
267 spin_lock(&kvm->mmu_lock);
268 /* Write protect GPA page table entries */
269 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
270 new->base_gfn + new->npages - 1);
271 if (needs_flush)
272 kvm_arch_flush_remote_tlbs_memslot(kvm, new);
273 spin_unlock(&kvm->mmu_lock);
274 }
275 }
276
277 static inline void dump_handler(const char *symbol, void *start, void *end)
278 {
279 u32 *p;
280
281 pr_debug("LEAF(%s)\n", symbol);
282
283 pr_debug("\t.set push\n");
284 pr_debug("\t.set noreorder\n");
285
286 for (p = start; p < (u32 *)end; ++p)
287 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
288
289 pr_debug("\t.set\tpop\n");
290
291 pr_debug("\tEND(%s)\n", symbol);
292 }
293
294 /* low level hrtimer wake routine */
295 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
296 {
297 struct kvm_vcpu *vcpu;
298
299 vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
300
301 kvm_mips_callbacks->queue_timer_int(vcpu);
302
303 vcpu->arch.wait = 0;
304 rcuwait_wake_up(&vcpu->wait);
305
306 return kvm_mips_count_timeout(vcpu);
307 }
308
309 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
310 {
311 return 0;
312 }
313
314 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
315 {
316 int err, size;
317 void *gebase, *p, *handler, *refill_start, *refill_end;
318 int i;
319
320 kvm_debug("kvm @ %p: create cpu %d at %p\n",
321 vcpu->kvm, vcpu->vcpu_id, vcpu);
322
323 err = kvm_mips_callbacks->vcpu_init(vcpu);
324 if (err)
325 return err;
326
327 hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
328 HRTIMER_MODE_REL);
329 vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
330
331 /*
332 * Allocate space for host mode exception handlers that handle
333 * guest mode exits
334 */
335 if (cpu_has_veic || cpu_has_vint)
336 size = 0x200 + VECTORSPACING * 64;
337 else
338 size = 0x4000;
339
340 gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
341
342 if (!gebase) {
343 err = -ENOMEM;
344 goto out_uninit_vcpu;
345 }
346 kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
347 ALIGN(size, PAGE_SIZE), gebase);
348
349 /*
350 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
351 * limits us to the low 512MB of physical address space. If the memory
352 * we allocate is out of range, just give up now.
353 */
354 if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
355 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
356 gebase);
357 err = -ENOMEM;
358 goto out_free_gebase;
359 }
360
361 /* Save new ebase */
362 vcpu->arch.guest_ebase = gebase;
363
364 /* Build guest exception vectors dynamically in unmapped memory */
365 handler = gebase + 0x2000;
366
367 /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
368 refill_start = gebase;
369 if (IS_ENABLED(CONFIG_64BIT))
370 refill_start += 0x080;
371 refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
372
373 /* General Exception Entry point */
374 kvm_mips_build_exception(gebase + 0x180, handler);
375
376 /* For vectored interrupts poke the exception code @ all offsets 0-7 */
377 for (i = 0; i < 8; i++) {
378 kvm_debug("L1 Vectored handler @ %p\n",
379 gebase + 0x200 + (i * VECTORSPACING));
380 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
381 handler);
382 }
383
384 /* General exit handler */
385 p = handler;
386 p = kvm_mips_build_exit(p);
387
388 /* Guest entry routine */
389 vcpu->arch.vcpu_run = p;
390 p = kvm_mips_build_vcpu_run(p);
391
392 /* Dump the generated code */
393 pr_debug("#include <asm/asm.h>\n");
394 pr_debug("#include <asm/regdef.h>\n");
395 pr_debug("\n");
396 dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
397 dump_handler("kvm_tlb_refill", refill_start, refill_end);
398 dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
399 dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
400
401 /* Invalidate the icache for these ranges */
402 flush_icache_range((unsigned long)gebase,
403 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
404
405 /* Init */
406 vcpu->arch.last_sched_cpu = -1;
407 vcpu->arch.last_exec_cpu = -1;
408
409 /* Initial guest state */
410 err = kvm_mips_callbacks->vcpu_setup(vcpu);
411 if (err)
412 goto out_free_gebase;
413
414 return 0;
415
416 out_free_gebase:
417 kfree(gebase);
418 out_uninit_vcpu:
419 kvm_mips_callbacks->vcpu_uninit(vcpu);
420 return err;
421 }
422
423 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
424 {
425 hrtimer_cancel(&vcpu->arch.comparecount_timer);
426
427 kvm_mips_dump_stats(vcpu);
428
429 kvm_mmu_free_memory_caches(vcpu);
430 kfree(vcpu->arch.guest_ebase);
431
432 kvm_mips_callbacks->vcpu_uninit(vcpu);
433 }
434
435 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
436 struct kvm_guest_debug *dbg)
437 {
438 return -ENOIOCTLCMD;
439 }
440
441 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
442 {
443 int r = -EINTR;
444
445 vcpu_load(vcpu);
446
447 kvm_sigset_activate(vcpu);
448
449 if (vcpu->mmio_needed) {
450 if (!vcpu->mmio_is_write)
451 kvm_mips_complete_mmio_load(vcpu);
452 vcpu->mmio_needed = 0;
453 }
454
455 if (vcpu->run->immediate_exit)
456 goto out;
457
458 lose_fpu(1);
459
460 local_irq_disable();
461 guest_enter_irqoff();
462 trace_kvm_enter(vcpu);
463
464 /*
465 * Make sure the read of VCPU requests in vcpu_run() callback is not
466 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
467 * flush request while the requester sees the VCPU as outside of guest
468 * mode and not needing an IPI.
469 */
470 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
471
472 r = kvm_mips_callbacks->vcpu_run(vcpu);
473
474 trace_kvm_out(vcpu);
475 guest_exit_irqoff();
476 local_irq_enable();
477
478 out:
479 kvm_sigset_deactivate(vcpu);
480
481 vcpu_put(vcpu);
482 return r;
483 }
484
485 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
486 struct kvm_mips_interrupt *irq)
487 {
488 int intr = (int)irq->irq;
489 struct kvm_vcpu *dvcpu = NULL;
490
491 if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
492 intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
493 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
494 intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
495 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
496 (int)intr);
497
498 if (irq->cpu == -1)
499 dvcpu = vcpu;
500 else
501 dvcpu = vcpu->kvm->vcpus[irq->cpu];
502
503 if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
504 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
505
506 } else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
507 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
508 } else {
509 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
510 irq->cpu, irq->irq);
511 return -EINVAL;
512 }
513
514 dvcpu->arch.wait = 0;
515
516 rcuwait_wake_up(&dvcpu->wait);
517
518 return 0;
519 }
520
521 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
522 struct kvm_mp_state *mp_state)
523 {
524 return -ENOIOCTLCMD;
525 }
526
527 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
528 struct kvm_mp_state *mp_state)
529 {
530 return -ENOIOCTLCMD;
531 }
532
533 static u64 kvm_mips_get_one_regs[] = {
534 KVM_REG_MIPS_R0,
535 KVM_REG_MIPS_R1,
536 KVM_REG_MIPS_R2,
537 KVM_REG_MIPS_R3,
538 KVM_REG_MIPS_R4,
539 KVM_REG_MIPS_R5,
540 KVM_REG_MIPS_R6,
541 KVM_REG_MIPS_R7,
542 KVM_REG_MIPS_R8,
543 KVM_REG_MIPS_R9,
544 KVM_REG_MIPS_R10,
545 KVM_REG_MIPS_R11,
546 KVM_REG_MIPS_R12,
547 KVM_REG_MIPS_R13,
548 KVM_REG_MIPS_R14,
549 KVM_REG_MIPS_R15,
550 KVM_REG_MIPS_R16,
551 KVM_REG_MIPS_R17,
552 KVM_REG_MIPS_R18,
553 KVM_REG_MIPS_R19,
554 KVM_REG_MIPS_R20,
555 KVM_REG_MIPS_R21,
556 KVM_REG_MIPS_R22,
557 KVM_REG_MIPS_R23,
558 KVM_REG_MIPS_R24,
559 KVM_REG_MIPS_R25,
560 KVM_REG_MIPS_R26,
561 KVM_REG_MIPS_R27,
562 KVM_REG_MIPS_R28,
563 KVM_REG_MIPS_R29,
564 KVM_REG_MIPS_R30,
565 KVM_REG_MIPS_R31,
566
567 #ifndef CONFIG_CPU_MIPSR6
568 KVM_REG_MIPS_HI,
569 KVM_REG_MIPS_LO,
570 #endif
571 KVM_REG_MIPS_PC,
572 };
573
574 static u64 kvm_mips_get_one_regs_fpu[] = {
575 KVM_REG_MIPS_FCR_IR,
576 KVM_REG_MIPS_FCR_CSR,
577 };
578
579 static u64 kvm_mips_get_one_regs_msa[] = {
580 KVM_REG_MIPS_MSA_IR,
581 KVM_REG_MIPS_MSA_CSR,
582 };
583
584 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
585 {
586 unsigned long ret;
587
588 ret = ARRAY_SIZE(kvm_mips_get_one_regs);
589 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
590 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
591 /* odd doubles */
592 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
593 ret += 16;
594 }
595 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
596 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
597 ret += kvm_mips_callbacks->num_regs(vcpu);
598
599 return ret;
600 }
601
602 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
603 {
604 u64 index;
605 unsigned int i;
606
607 if (copy_to_user(indices, kvm_mips_get_one_regs,
608 sizeof(kvm_mips_get_one_regs)))
609 return -EFAULT;
610 indices += ARRAY_SIZE(kvm_mips_get_one_regs);
611
612 if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
613 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
614 sizeof(kvm_mips_get_one_regs_fpu)))
615 return -EFAULT;
616 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
617
618 for (i = 0; i < 32; ++i) {
619 index = KVM_REG_MIPS_FPR_32(i);
620 if (copy_to_user(indices, &index, sizeof(index)))
621 return -EFAULT;
622 ++indices;
623
624 /* skip odd doubles if no F64 */
625 if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
626 continue;
627
628 index = KVM_REG_MIPS_FPR_64(i);
629 if (copy_to_user(indices, &index, sizeof(index)))
630 return -EFAULT;
631 ++indices;
632 }
633 }
634
635 if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
636 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
637 sizeof(kvm_mips_get_one_regs_msa)))
638 return -EFAULT;
639 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
640
641 for (i = 0; i < 32; ++i) {
642 index = KVM_REG_MIPS_VEC_128(i);
643 if (copy_to_user(indices, &index, sizeof(index)))
644 return -EFAULT;
645 ++indices;
646 }
647 }
648
649 return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
650 }
651
652 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
653 const struct kvm_one_reg *reg)
654 {
655 struct mips_coproc *cop0 = vcpu->arch.cop0;
656 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
657 int ret;
658 s64 v;
659 s64 vs[2];
660 unsigned int idx;
661
662 switch (reg->id) {
663 /* General purpose registers */
664 case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
665 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
666 break;
667 #ifndef CONFIG_CPU_MIPSR6
668 case KVM_REG_MIPS_HI:
669 v = (long)vcpu->arch.hi;
670 break;
671 case KVM_REG_MIPS_LO:
672 v = (long)vcpu->arch.lo;
673 break;
674 #endif
675 case KVM_REG_MIPS_PC:
676 v = (long)vcpu->arch.pc;
677 break;
678
679 /* Floating point registers */
680 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
681 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
682 return -EINVAL;
683 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
684 /* Odd singles in top of even double when FR=0 */
685 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
686 v = get_fpr32(&fpu->fpr[idx], 0);
687 else
688 v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
689 break;
690 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
691 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
692 return -EINVAL;
693 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
694 /* Can't access odd doubles in FR=0 mode */
695 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
696 return -EINVAL;
697 v = get_fpr64(&fpu->fpr[idx], 0);
698 break;
699 case KVM_REG_MIPS_FCR_IR:
700 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
701 return -EINVAL;
702 v = boot_cpu_data.fpu_id;
703 break;
704 case KVM_REG_MIPS_FCR_CSR:
705 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
706 return -EINVAL;
707 v = fpu->fcr31;
708 break;
709
710 /* MIPS SIMD Architecture (MSA) registers */
711 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
712 if (!kvm_mips_guest_has_msa(&vcpu->arch))
713 return -EINVAL;
714 /* Can't access MSA registers in FR=0 mode */
715 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
716 return -EINVAL;
717 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
718 #ifdef CONFIG_CPU_LITTLE_ENDIAN
719 /* least significant byte first */
720 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
721 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
722 #else
723 /* most significant byte first */
724 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
725 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
726 #endif
727 break;
728 case KVM_REG_MIPS_MSA_IR:
729 if (!kvm_mips_guest_has_msa(&vcpu->arch))
730 return -EINVAL;
731 v = boot_cpu_data.msa_id;
732 break;
733 case KVM_REG_MIPS_MSA_CSR:
734 if (!kvm_mips_guest_has_msa(&vcpu->arch))
735 return -EINVAL;
736 v = fpu->msacsr;
737 break;
738
739 /* registers to be handled specially */
740 default:
741 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
742 if (ret)
743 return ret;
744 break;
745 }
746 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
747 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
748
749 return put_user(v, uaddr64);
750 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
751 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
752 u32 v32 = (u32)v;
753
754 return put_user(v32, uaddr32);
755 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
756 void __user *uaddr = (void __user *)(long)reg->addr;
757
758 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
759 } else {
760 return -EINVAL;
761 }
762 }
763
764 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
765 const struct kvm_one_reg *reg)
766 {
767 struct mips_coproc *cop0 = vcpu->arch.cop0;
768 struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
769 s64 v;
770 s64 vs[2];
771 unsigned int idx;
772
773 if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
774 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
775
776 if (get_user(v, uaddr64) != 0)
777 return -EFAULT;
778 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
779 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
780 s32 v32;
781
782 if (get_user(v32, uaddr32) != 0)
783 return -EFAULT;
784 v = (s64)v32;
785 } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
786 void __user *uaddr = (void __user *)(long)reg->addr;
787
788 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
789 } else {
790 return -EINVAL;
791 }
792
793 switch (reg->id) {
794 /* General purpose registers */
795 case KVM_REG_MIPS_R0:
796 /* Silently ignore requests to set $0 */
797 break;
798 case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
799 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
800 break;
801 #ifndef CONFIG_CPU_MIPSR6
802 case KVM_REG_MIPS_HI:
803 vcpu->arch.hi = v;
804 break;
805 case KVM_REG_MIPS_LO:
806 vcpu->arch.lo = v;
807 break;
808 #endif
809 case KVM_REG_MIPS_PC:
810 vcpu->arch.pc = v;
811 break;
812
813 /* Floating point registers */
814 case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
815 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
816 return -EINVAL;
817 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
818 /* Odd singles in top of even double when FR=0 */
819 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
820 set_fpr32(&fpu->fpr[idx], 0, v);
821 else
822 set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
823 break;
824 case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
825 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
826 return -EINVAL;
827 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
828 /* Can't access odd doubles in FR=0 mode */
829 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
830 return -EINVAL;
831 set_fpr64(&fpu->fpr[idx], 0, v);
832 break;
833 case KVM_REG_MIPS_FCR_IR:
834 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
835 return -EINVAL;
836 /* Read-only */
837 break;
838 case KVM_REG_MIPS_FCR_CSR:
839 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
840 return -EINVAL;
841 fpu->fcr31 = v;
842 break;
843
844 /* MIPS SIMD Architecture (MSA) registers */
845 case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
846 if (!kvm_mips_guest_has_msa(&vcpu->arch))
847 return -EINVAL;
848 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
849 #ifdef CONFIG_CPU_LITTLE_ENDIAN
850 /* least significant byte first */
851 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
852 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
853 #else
854 /* most significant byte first */
855 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
856 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
857 #endif
858 break;
859 case KVM_REG_MIPS_MSA_IR:
860 if (!kvm_mips_guest_has_msa(&vcpu->arch))
861 return -EINVAL;
862 /* Read-only */
863 break;
864 case KVM_REG_MIPS_MSA_CSR:
865 if (!kvm_mips_guest_has_msa(&vcpu->arch))
866 return -EINVAL;
867 fpu->msacsr = v;
868 break;
869
870 /* registers to be handled specially */
871 default:
872 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
873 }
874 return 0;
875 }
876
877 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
878 struct kvm_enable_cap *cap)
879 {
880 int r = 0;
881
882 if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
883 return -EINVAL;
884 if (cap->flags)
885 return -EINVAL;
886 if (cap->args[0])
887 return -EINVAL;
888
889 switch (cap->cap) {
890 case KVM_CAP_MIPS_FPU:
891 vcpu->arch.fpu_enabled = true;
892 break;
893 case KVM_CAP_MIPS_MSA:
894 vcpu->arch.msa_enabled = true;
895 break;
896 default:
897 r = -EINVAL;
898 break;
899 }
900
901 return r;
902 }
903
904 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
905 unsigned long arg)
906 {
907 struct kvm_vcpu *vcpu = filp->private_data;
908 void __user *argp = (void __user *)arg;
909
910 if (ioctl == KVM_INTERRUPT) {
911 struct kvm_mips_interrupt irq;
912
913 if (copy_from_user(&irq, argp, sizeof(irq)))
914 return -EFAULT;
915 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
916 irq.irq);
917
918 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
919 }
920
921 return -ENOIOCTLCMD;
922 }
923
924 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
925 unsigned long arg)
926 {
927 struct kvm_vcpu *vcpu = filp->private_data;
928 void __user *argp = (void __user *)arg;
929 long r;
930
931 vcpu_load(vcpu);
932
933 switch (ioctl) {
934 case KVM_SET_ONE_REG:
935 case KVM_GET_ONE_REG: {
936 struct kvm_one_reg reg;
937
938 r = -EFAULT;
939 if (copy_from_user(&reg, argp, sizeof(reg)))
940 break;
941 if (ioctl == KVM_SET_ONE_REG)
942 r = kvm_mips_set_reg(vcpu, &reg);
943 else
944 r = kvm_mips_get_reg(vcpu, &reg);
945 break;
946 }
947 case KVM_GET_REG_LIST: {
948 struct kvm_reg_list __user *user_list = argp;
949 struct kvm_reg_list reg_list;
950 unsigned n;
951
952 r = -EFAULT;
953 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
954 break;
955 n = reg_list.n;
956 reg_list.n = kvm_mips_num_regs(vcpu);
957 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
958 break;
959 r = -E2BIG;
960 if (n < reg_list.n)
961 break;
962 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
963 break;
964 }
965 case KVM_ENABLE_CAP: {
966 struct kvm_enable_cap cap;
967
968 r = -EFAULT;
969 if (copy_from_user(&cap, argp, sizeof(cap)))
970 break;
971 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
972 break;
973 }
974 default:
975 r = -ENOIOCTLCMD;
976 }
977
978 vcpu_put(vcpu);
979 return r;
980 }
981
982 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
983 {
984
985 }
986
987 int kvm_arch_flush_remote_tlb(struct kvm *kvm)
988 {
989 kvm_mips_callbacks->prepare_flush_shadow(kvm);
990 return 1;
991 }
992
993 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
994 const struct kvm_memory_slot *memslot)
995 {
996 kvm_flush_remote_tlbs(kvm);
997 }
998
999 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1000 {
1001 long r;
1002
1003 switch (ioctl) {
1004 default:
1005 r = -ENOIOCTLCMD;
1006 }
1007
1008 return r;
1009 }
1010
1011 int kvm_arch_init(void *opaque)
1012 {
1013 if (kvm_mips_callbacks) {
1014 kvm_err("kvm: module already exists\n");
1015 return -EEXIST;
1016 }
1017
1018 return kvm_mips_emulation_init(&kvm_mips_callbacks);
1019 }
1020
1021 void kvm_arch_exit(void)
1022 {
1023 kvm_mips_callbacks = NULL;
1024 }
1025
1026 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1027 struct kvm_sregs *sregs)
1028 {
1029 return -ENOIOCTLCMD;
1030 }
1031
1032 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1033 struct kvm_sregs *sregs)
1034 {
1035 return -ENOIOCTLCMD;
1036 }
1037
1038 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1039 {
1040 }
1041
1042 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1043 {
1044 return -ENOIOCTLCMD;
1045 }
1046
1047 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1048 {
1049 return -ENOIOCTLCMD;
1050 }
1051
1052 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1053 {
1054 return VM_FAULT_SIGBUS;
1055 }
1056
1057 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1058 {
1059 int r;
1060
1061 switch (ext) {
1062 case KVM_CAP_ONE_REG:
1063 case KVM_CAP_ENABLE_CAP:
1064 case KVM_CAP_READONLY_MEM:
1065 case KVM_CAP_SYNC_MMU:
1066 case KVM_CAP_IMMEDIATE_EXIT:
1067 r = 1;
1068 break;
1069 case KVM_CAP_NR_VCPUS:
1070 r = num_online_cpus();
1071 break;
1072 case KVM_CAP_MAX_VCPUS:
1073 r = KVM_MAX_VCPUS;
1074 break;
1075 case KVM_CAP_MAX_VCPU_ID:
1076 r = KVM_MAX_VCPU_ID;
1077 break;
1078 case KVM_CAP_MIPS_FPU:
1079 /* We don't handle systems with inconsistent cpu_has_fpu */
1080 r = !!raw_cpu_has_fpu;
1081 break;
1082 case KVM_CAP_MIPS_MSA:
1083 /*
1084 * We don't support MSA vector partitioning yet:
1085 * 1) It would require explicit support which can't be tested
1086 * yet due to lack of support in current hardware.
1087 * 2) It extends the state that would need to be saved/restored
1088 * by e.g. QEMU for migration.
1089 *
1090 * When vector partitioning hardware becomes available, support
1091 * could be added by requiring a flag when enabling
1092 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1093 * to save/restore the appropriate extra state.
1094 */
1095 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1096 break;
1097 default:
1098 r = kvm_mips_callbacks->check_extension(kvm, ext);
1099 break;
1100 }
1101 return r;
1102 }
1103
1104 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1105 {
1106 return kvm_mips_pending_timer(vcpu) ||
1107 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1108 }
1109
1110 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1111 {
1112 int i;
1113 struct mips_coproc *cop0;
1114
1115 if (!vcpu)
1116 return -1;
1117
1118 kvm_debug("VCPU Register Dump:\n");
1119 kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1120 kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1121
1122 for (i = 0; i < 32; i += 4) {
1123 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1124 vcpu->arch.gprs[i],
1125 vcpu->arch.gprs[i + 1],
1126 vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1127 }
1128 kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1129 kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1130
1131 cop0 = vcpu->arch.cop0;
1132 kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1133 kvm_read_c0_guest_status(cop0),
1134 kvm_read_c0_guest_cause(cop0));
1135
1136 kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1137
1138 return 0;
1139 }
1140
1141 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1142 {
1143 int i;
1144
1145 vcpu_load(vcpu);
1146
1147 for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1148 vcpu->arch.gprs[i] = regs->gpr[i];
1149 vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1150 vcpu->arch.hi = regs->hi;
1151 vcpu->arch.lo = regs->lo;
1152 vcpu->arch.pc = regs->pc;
1153
1154 vcpu_put(vcpu);
1155 return 0;
1156 }
1157
1158 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1159 {
1160 int i;
1161
1162 vcpu_load(vcpu);
1163
1164 for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1165 regs->gpr[i] = vcpu->arch.gprs[i];
1166
1167 regs->hi = vcpu->arch.hi;
1168 regs->lo = vcpu->arch.lo;
1169 regs->pc = vcpu->arch.pc;
1170
1171 vcpu_put(vcpu);
1172 return 0;
1173 }
1174
1175 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1176 struct kvm_translation *tr)
1177 {
1178 return 0;
1179 }
1180
1181 static void kvm_mips_set_c0_status(void)
1182 {
1183 u32 status = read_c0_status();
1184
1185 if (cpu_has_dsp)
1186 status |= (ST0_MX);
1187
1188 write_c0_status(status);
1189 ehb();
1190 }
1191
1192 /*
1193 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1194 */
1195 int kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1196 {
1197 struct kvm_run *run = vcpu->run;
1198 u32 cause = vcpu->arch.host_cp0_cause;
1199 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1200 u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1201 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1202 enum emulation_result er = EMULATE_DONE;
1203 u32 inst;
1204 int ret = RESUME_GUEST;
1205
1206 vcpu->mode = OUTSIDE_GUEST_MODE;
1207
1208 /* Set a default exit reason */
1209 run->exit_reason = KVM_EXIT_UNKNOWN;
1210 run->ready_for_interrupt_injection = 1;
1211
1212 /*
1213 * Set the appropriate status bits based on host CPU features,
1214 * before we hit the scheduler
1215 */
1216 kvm_mips_set_c0_status();
1217
1218 local_irq_enable();
1219
1220 kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1221 cause, opc, run, vcpu);
1222 trace_kvm_exit(vcpu, exccode);
1223
1224 switch (exccode) {
1225 case EXCCODE_INT:
1226 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1227
1228 ++vcpu->stat.int_exits;
1229
1230 if (need_resched())
1231 cond_resched();
1232
1233 ret = RESUME_GUEST;
1234 break;
1235
1236 case EXCCODE_CPU:
1237 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1238
1239 ++vcpu->stat.cop_unusable_exits;
1240 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1241 /* XXXKYMA: Might need to return to user space */
1242 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1243 ret = RESUME_HOST;
1244 break;
1245
1246 case EXCCODE_MOD:
1247 ++vcpu->stat.tlbmod_exits;
1248 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1249 break;
1250
1251 case EXCCODE_TLBS:
1252 kvm_debug("TLB ST fault: cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1253 cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1254 badvaddr);
1255
1256 ++vcpu->stat.tlbmiss_st_exits;
1257 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1258 break;
1259
1260 case EXCCODE_TLBL:
1261 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1262 cause, opc, badvaddr);
1263
1264 ++vcpu->stat.tlbmiss_ld_exits;
1265 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1266 break;
1267
1268 case EXCCODE_ADES:
1269 ++vcpu->stat.addrerr_st_exits;
1270 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1271 break;
1272
1273 case EXCCODE_ADEL:
1274 ++vcpu->stat.addrerr_ld_exits;
1275 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1276 break;
1277
1278 case EXCCODE_SYS:
1279 ++vcpu->stat.syscall_exits;
1280 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1281 break;
1282
1283 case EXCCODE_RI:
1284 ++vcpu->stat.resvd_inst_exits;
1285 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1286 break;
1287
1288 case EXCCODE_BP:
1289 ++vcpu->stat.break_inst_exits;
1290 ret = kvm_mips_callbacks->handle_break(vcpu);
1291 break;
1292
1293 case EXCCODE_TR:
1294 ++vcpu->stat.trap_inst_exits;
1295 ret = kvm_mips_callbacks->handle_trap(vcpu);
1296 break;
1297
1298 case EXCCODE_MSAFPE:
1299 ++vcpu->stat.msa_fpe_exits;
1300 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1301 break;
1302
1303 case EXCCODE_FPE:
1304 ++vcpu->stat.fpe_exits;
1305 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1306 break;
1307
1308 case EXCCODE_MSADIS:
1309 ++vcpu->stat.msa_disabled_exits;
1310 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1311 break;
1312
1313 case EXCCODE_GE:
1314 /* defer exit accounting to handler */
1315 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1316 break;
1317
1318 default:
1319 if (cause & CAUSEF_BD)
1320 opc += 1;
1321 inst = 0;
1322 kvm_get_badinstr(opc, vcpu, &inst);
1323 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
1324 exccode, opc, inst, badvaddr,
1325 kvm_read_c0_guest_status(vcpu->arch.cop0));
1326 kvm_arch_vcpu_dump_regs(vcpu);
1327 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1328 ret = RESUME_HOST;
1329 break;
1330
1331 }
1332
1333 local_irq_disable();
1334
1335 if (ret == RESUME_GUEST)
1336 kvm_vz_acquire_htimer(vcpu);
1337
1338 if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1339 kvm_mips_deliver_interrupts(vcpu, cause);
1340
1341 if (!(ret & RESUME_HOST)) {
1342 /* Only check for signals if not already exiting to userspace */
1343 if (signal_pending(current)) {
1344 run->exit_reason = KVM_EXIT_INTR;
1345 ret = (-EINTR << 2) | RESUME_HOST;
1346 ++vcpu->stat.signal_exits;
1347 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1348 }
1349 }
1350
1351 if (ret == RESUME_GUEST) {
1352 trace_kvm_reenter(vcpu);
1353
1354 /*
1355 * Make sure the read of VCPU requests in vcpu_reenter()
1356 * callback is not reordered ahead of the write to vcpu->mode,
1357 * or we could miss a TLB flush request while the requester sees
1358 * the VCPU as outside of guest mode and not needing an IPI.
1359 */
1360 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1361
1362 kvm_mips_callbacks->vcpu_reenter(vcpu);
1363
1364 /*
1365 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1366 * is live), restore FCR31 / MSACSR.
1367 *
1368 * This should be before returning to the guest exception
1369 * vector, as it may well cause an [MSA] FP exception if there
1370 * are pending exception bits unmasked. (see
1371 * kvm_mips_csr_die_notifier() for how that is handled).
1372 */
1373 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1374 read_c0_status() & ST0_CU1)
1375 __kvm_restore_fcsr(&vcpu->arch);
1376
1377 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1378 read_c0_config5() & MIPS_CONF5_MSAEN)
1379 __kvm_restore_msacsr(&vcpu->arch);
1380 }
1381 return ret;
1382 }
1383
1384 /* Enable FPU for guest and restore context */
1385 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1386 {
1387 struct mips_coproc *cop0 = vcpu->arch.cop0;
1388 unsigned int sr, cfg5;
1389
1390 preempt_disable();
1391
1392 sr = kvm_read_c0_guest_status(cop0);
1393
1394 /*
1395 * If MSA state is already live, it is undefined how it interacts with
1396 * FR=0 FPU state, and we don't want to hit reserved instruction
1397 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1398 * play it safe and save it first.
1399 */
1400 if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1401 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1402 kvm_lose_fpu(vcpu);
1403
1404 /*
1405 * Enable FPU for guest
1406 * We set FR and FRE according to guest context
1407 */
1408 change_c0_status(ST0_CU1 | ST0_FR, sr);
1409 if (cpu_has_fre) {
1410 cfg5 = kvm_read_c0_guest_config5(cop0);
1411 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1412 }
1413 enable_fpu_hazard();
1414
1415 /* If guest FPU state not active, restore it now */
1416 if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1417 __kvm_restore_fpu(&vcpu->arch);
1418 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1419 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1420 } else {
1421 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1422 }
1423
1424 preempt_enable();
1425 }
1426
1427 #ifdef CONFIG_CPU_HAS_MSA
1428 /* Enable MSA for guest and restore context */
1429 void kvm_own_msa(struct kvm_vcpu *vcpu)
1430 {
1431 struct mips_coproc *cop0 = vcpu->arch.cop0;
1432 unsigned int sr, cfg5;
1433
1434 preempt_disable();
1435
1436 /*
1437 * Enable FPU if enabled in guest, since we're restoring FPU context
1438 * anyway. We set FR and FRE according to guest context.
1439 */
1440 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1441 sr = kvm_read_c0_guest_status(cop0);
1442
1443 /*
1444 * If FR=0 FPU state is already live, it is undefined how it
1445 * interacts with MSA state, so play it safe and save it first.
1446 */
1447 if (!(sr & ST0_FR) &&
1448 (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1449 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1450 kvm_lose_fpu(vcpu);
1451
1452 change_c0_status(ST0_CU1 | ST0_FR, sr);
1453 if (sr & ST0_CU1 && cpu_has_fre) {
1454 cfg5 = kvm_read_c0_guest_config5(cop0);
1455 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1456 }
1457 }
1458
1459 /* Enable MSA for guest */
1460 set_c0_config5(MIPS_CONF5_MSAEN);
1461 enable_fpu_hazard();
1462
1463 switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1464 case KVM_MIPS_AUX_FPU:
1465 /*
1466 * Guest FPU state already loaded, only restore upper MSA state
1467 */
1468 __kvm_restore_msa_upper(&vcpu->arch);
1469 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1470 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1471 break;
1472 case 0:
1473 /* Neither FPU or MSA already active, restore full MSA state */
1474 __kvm_restore_msa(&vcpu->arch);
1475 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1476 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1477 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1478 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1479 KVM_TRACE_AUX_FPU_MSA);
1480 break;
1481 default:
1482 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1483 break;
1484 }
1485
1486 preempt_enable();
1487 }
1488 #endif
1489
1490 /* Drop FPU & MSA without saving it */
1491 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1492 {
1493 preempt_disable();
1494 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1495 disable_msa();
1496 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1497 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1498 }
1499 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1500 clear_c0_status(ST0_CU1 | ST0_FR);
1501 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1502 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1503 }
1504 preempt_enable();
1505 }
1506
1507 /* Save and disable FPU & MSA */
1508 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1509 {
1510 /*
1511 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1512 * is disabled in guest context (software), but the register state in
1513 * the hardware may still be in use.
1514 * This is why we explicitly re-enable the hardware before saving.
1515 */
1516
1517 preempt_disable();
1518 if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1519 __kvm_save_msa(&vcpu->arch);
1520 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1521
1522 /* Disable MSA & FPU */
1523 disable_msa();
1524 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1525 clear_c0_status(ST0_CU1 | ST0_FR);
1526 disable_fpu_hazard();
1527 }
1528 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1529 } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1530 __kvm_save_fpu(&vcpu->arch);
1531 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1532 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1533
1534 /* Disable FPU */
1535 clear_c0_status(ST0_CU1 | ST0_FR);
1536 disable_fpu_hazard();
1537 }
1538 preempt_enable();
1539 }
1540
1541 /*
1542 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1543 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1544 * exception if cause bits are set in the value being written.
1545 */
1546 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1547 unsigned long cmd, void *ptr)
1548 {
1549 struct die_args *args = (struct die_args *)ptr;
1550 struct pt_regs *regs = args->regs;
1551 unsigned long pc;
1552
1553 /* Only interested in FPE and MSAFPE */
1554 if (cmd != DIE_FP && cmd != DIE_MSAFP)
1555 return NOTIFY_DONE;
1556
1557 /* Return immediately if guest context isn't active */
1558 if (!(current->flags & PF_VCPU))
1559 return NOTIFY_DONE;
1560
1561 /* Should never get here from user mode */
1562 BUG_ON(user_mode(regs));
1563
1564 pc = instruction_pointer(regs);
1565 switch (cmd) {
1566 case DIE_FP:
1567 /* match 2nd instruction in __kvm_restore_fcsr */
1568 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1569 return NOTIFY_DONE;
1570 break;
1571 case DIE_MSAFP:
1572 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1573 if (!cpu_has_msa ||
1574 pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1575 pc > (unsigned long)&__kvm_restore_msacsr + 8)
1576 return NOTIFY_DONE;
1577 break;
1578 }
1579
1580 /* Move PC forward a little and continue executing */
1581 instruction_pointer(regs) += 4;
1582
1583 return NOTIFY_STOP;
1584 }
1585
1586 static struct notifier_block kvm_mips_csr_die_notifier = {
1587 .notifier_call = kvm_mips_csr_die_notify,
1588 };
1589
1590 static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1591 [MIPS_EXC_INT_TIMER] = C_IRQ5,
1592 [MIPS_EXC_INT_IO_1] = C_IRQ0,
1593 [MIPS_EXC_INT_IPI_1] = C_IRQ1,
1594 [MIPS_EXC_INT_IPI_2] = C_IRQ2,
1595 };
1596
1597 static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1598 [MIPS_EXC_INT_TIMER] = C_IRQ5,
1599 [MIPS_EXC_INT_IO_1] = C_IRQ0,
1600 [MIPS_EXC_INT_IO_2] = C_IRQ1,
1601 [MIPS_EXC_INT_IPI_1] = C_IRQ4,
1602 };
1603
1604 u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1605
1606 u32 kvm_irq_to_priority(u32 irq)
1607 {
1608 int i;
1609
1610 for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1611 if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1612 return i;
1613 }
1614
1615 return MIPS_EXC_MAX;
1616 }
1617
1618 static int __init kvm_mips_init(void)
1619 {
1620 int ret;
1621
1622 if (cpu_has_mmid) {
1623 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1624 return -EOPNOTSUPP;
1625 }
1626
1627 ret = kvm_mips_entry_setup();
1628 if (ret)
1629 return ret;
1630
1631 ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1632
1633 if (ret)
1634 return ret;
1635
1636 if (boot_cpu_type() == CPU_LOONGSON64)
1637 kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1638
1639 register_die_notifier(&kvm_mips_csr_die_notifier);
1640
1641 return 0;
1642 }
1643
1644 static void __exit kvm_mips_exit(void)
1645 {
1646 kvm_exit();
1647
1648 unregister_die_notifier(&kvm_mips_csr_die_notifier);
1649 }
1650
1651 module_init(kvm_mips_init);
1652 module_exit(kvm_mips_exit);
1653
1654 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);