]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/mips/lib/memcpy.S
spi/s3c64xx: Remove redundant runtime PM management
[mirror_ubuntu-eoan-kernel.git] / arch / mips / lib / memcpy.S
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Unified implementation of memcpy, memmove and the __copy_user backend.
7 *
8 * Copyright (C) 1998, 99, 2000, 01, 2002 Ralf Baechle (ralf@gnu.org)
9 * Copyright (C) 1999, 2000, 01, 2002 Silicon Graphics, Inc.
10 * Copyright (C) 2002 Broadcom, Inc.
11 * memcpy/copy_user author: Mark Vandevoorde
12 * Copyright (C) 2007 Maciej W. Rozycki
13 * Copyright (C) 2014 Imagination Technologies Ltd.
14 *
15 * Mnemonic names for arguments to memcpy/__copy_user
16 */
17
18 /*
19 * Hack to resolve longstanding prefetch issue
20 *
21 * Prefetching may be fatal on some systems if we're prefetching beyond the
22 * end of memory on some systems. It's also a seriously bad idea on non
23 * dma-coherent systems.
24 */
25 #ifdef CONFIG_DMA_NONCOHERENT
26 #undef CONFIG_CPU_HAS_PREFETCH
27 #endif
28 #ifdef CONFIG_MIPS_MALTA
29 #undef CONFIG_CPU_HAS_PREFETCH
30 #endif
31
32 #include <asm/asm.h>
33 #include <asm/asm-offsets.h>
34 #include <asm/regdef.h>
35
36 #define dst a0
37 #define src a1
38 #define len a2
39
40 /*
41 * Spec
42 *
43 * memcpy copies len bytes from src to dst and sets v0 to dst.
44 * It assumes that
45 * - src and dst don't overlap
46 * - src is readable
47 * - dst is writable
48 * memcpy uses the standard calling convention
49 *
50 * __copy_user copies up to len bytes from src to dst and sets a2 (len) to
51 * the number of uncopied bytes due to an exception caused by a read or write.
52 * __copy_user assumes that src and dst don't overlap, and that the call is
53 * implementing one of the following:
54 * copy_to_user
55 * - src is readable (no exceptions when reading src)
56 * copy_from_user
57 * - dst is writable (no exceptions when writing dst)
58 * __copy_user uses a non-standard calling convention; see
59 * include/asm-mips/uaccess.h
60 *
61 * When an exception happens on a load, the handler must
62 # ensure that all of the destination buffer is overwritten to prevent
63 * leaking information to user mode programs.
64 */
65
66 /*
67 * Implementation
68 */
69
70 /*
71 * The exception handler for loads requires that:
72 * 1- AT contain the address of the byte just past the end of the source
73 * of the copy,
74 * 2- src_entry <= src < AT, and
75 * 3- (dst - src) == (dst_entry - src_entry),
76 * The _entry suffix denotes values when __copy_user was called.
77 *
78 * (1) is set up up by uaccess.h and maintained by not writing AT in copy_user
79 * (2) is met by incrementing src by the number of bytes copied
80 * (3) is met by not doing loads between a pair of increments of dst and src
81 *
82 * The exception handlers for stores adjust len (if necessary) and return.
83 * These handlers do not need to overwrite any data.
84 *
85 * For __rmemcpy and memmove an exception is always a kernel bug, therefore
86 * they're not protected.
87 */
88
89 /* Instruction type */
90 #define LD_INSN 1
91 #define ST_INSN 2
92 /* Pretech type */
93 #define SRC_PREFETCH 1
94 #define DST_PREFETCH 2
95 #define LEGACY_MODE 1
96 #define EVA_MODE 2
97 #define USEROP 1
98 #define KERNELOP 2
99
100 /*
101 * Wrapper to add an entry in the exception table
102 * in case the insn causes a memory exception.
103 * Arguments:
104 * insn : Load/store instruction
105 * type : Instruction type
106 * reg : Register
107 * addr : Address
108 * handler : Exception handler
109 */
110
111 #define EXC(insn, type, reg, addr, handler) \
112 .if \mode == LEGACY_MODE; \
113 9: insn reg, addr; \
114 .section __ex_table,"a"; \
115 PTR 9b, handler; \
116 .previous; \
117 /* This is assembled in EVA mode */ \
118 .else; \
119 /* If loading from user or storing to user */ \
120 .if ((\from == USEROP) && (type == LD_INSN)) || \
121 ((\to == USEROP) && (type == ST_INSN)); \
122 9: __BUILD_EVA_INSN(insn##e, reg, addr); \
123 .section __ex_table,"a"; \
124 PTR 9b, handler; \
125 .previous; \
126 .else; \
127 /* \
128 * Still in EVA, but no need for \
129 * exception handler or EVA insn \
130 */ \
131 insn reg, addr; \
132 .endif; \
133 .endif
134
135 /*
136 * Only on the 64-bit kernel we can made use of 64-bit registers.
137 */
138 #ifdef CONFIG_64BIT
139 #define USE_DOUBLE
140 #endif
141
142 #ifdef USE_DOUBLE
143
144 #define LOADK ld /* No exception */
145 #define LOAD(reg, addr, handler) EXC(ld, LD_INSN, reg, addr, handler)
146 #define LOADL(reg, addr, handler) EXC(ldl, LD_INSN, reg, addr, handler)
147 #define LOADR(reg, addr, handler) EXC(ldr, LD_INSN, reg, addr, handler)
148 #define STOREL(reg, addr, handler) EXC(sdl, ST_INSN, reg, addr, handler)
149 #define STORER(reg, addr, handler) EXC(sdr, ST_INSN, reg, addr, handler)
150 #define STORE(reg, addr, handler) EXC(sd, ST_INSN, reg, addr, handler)
151 #define ADD daddu
152 #define SUB dsubu
153 #define SRL dsrl
154 #define SRA dsra
155 #define SLL dsll
156 #define SLLV dsllv
157 #define SRLV dsrlv
158 #define NBYTES 8
159 #define LOG_NBYTES 3
160
161 /*
162 * As we are sharing code base with the mips32 tree (which use the o32 ABI
163 * register definitions). We need to redefine the register definitions from
164 * the n64 ABI register naming to the o32 ABI register naming.
165 */
166 #undef t0
167 #undef t1
168 #undef t2
169 #undef t3
170 #define t0 $8
171 #define t1 $9
172 #define t2 $10
173 #define t3 $11
174 #define t4 $12
175 #define t5 $13
176 #define t6 $14
177 #define t7 $15
178
179 #else
180
181 #define LOADK lw /* No exception */
182 #define LOAD(reg, addr, handler) EXC(lw, LD_INSN, reg, addr, handler)
183 #define LOADL(reg, addr, handler) EXC(lwl, LD_INSN, reg, addr, handler)
184 #define LOADR(reg, addr, handler) EXC(lwr, LD_INSN, reg, addr, handler)
185 #define STOREL(reg, addr, handler) EXC(swl, ST_INSN, reg, addr, handler)
186 #define STORER(reg, addr, handler) EXC(swr, ST_INSN, reg, addr, handler)
187 #define STORE(reg, addr, handler) EXC(sw, ST_INSN, reg, addr, handler)
188 #define ADD addu
189 #define SUB subu
190 #define SRL srl
191 #define SLL sll
192 #define SRA sra
193 #define SLLV sllv
194 #define SRLV srlv
195 #define NBYTES 4
196 #define LOG_NBYTES 2
197
198 #endif /* USE_DOUBLE */
199
200 #define LOADB(reg, addr, handler) EXC(lb, LD_INSN, reg, addr, handler)
201 #define STOREB(reg, addr, handler) EXC(sb, ST_INSN, reg, addr, handler)
202
203 #define _PREF(hint, addr, type) \
204 .if \mode == LEGACY_MODE; \
205 PREF(hint, addr); \
206 .else; \
207 .if ((\from == USEROP) && (type == SRC_PREFETCH)) || \
208 ((\to == USEROP) && (type == DST_PREFETCH)); \
209 /* \
210 * PREFE has only 9 bits for the offset \
211 * compared to PREF which has 16, so it may \
212 * need to use the $at register but this \
213 * register should remain intact because it's \
214 * used later on. Therefore use $v1. \
215 */ \
216 .set at=v1; \
217 PREFE(hint, addr); \
218 .set noat; \
219 .else; \
220 PREF(hint, addr); \
221 .endif; \
222 .endif
223
224 #define PREFS(hint, addr) _PREF(hint, addr, SRC_PREFETCH)
225 #define PREFD(hint, addr) _PREF(hint, addr, DST_PREFETCH)
226
227 #ifdef CONFIG_CPU_LITTLE_ENDIAN
228 #define LDFIRST LOADR
229 #define LDREST LOADL
230 #define STFIRST STORER
231 #define STREST STOREL
232 #define SHIFT_DISCARD SLLV
233 #else
234 #define LDFIRST LOADL
235 #define LDREST LOADR
236 #define STFIRST STOREL
237 #define STREST STORER
238 #define SHIFT_DISCARD SRLV
239 #endif
240
241 #define FIRST(unit) ((unit)*NBYTES)
242 #define REST(unit) (FIRST(unit)+NBYTES-1)
243 #define UNIT(unit) FIRST(unit)
244
245 #define ADDRMASK (NBYTES-1)
246
247 .text
248 .set noreorder
249 #ifndef CONFIG_CPU_DADDI_WORKAROUNDS
250 .set noat
251 #else
252 .set at=v1
253 #endif
254
255 .align 5
256
257 /*
258 * Macro to build the __copy_user common code
259 * Arguements:
260 * mode : LEGACY_MODE or EVA_MODE
261 * from : Source operand. USEROP or KERNELOP
262 * to : Destination operand. USEROP or KERNELOP
263 */
264 .macro __BUILD_COPY_USER mode, from, to
265
266 /* initialize __memcpy if this the first time we execute this macro */
267 .ifnotdef __memcpy
268 .set __memcpy, 1
269 .hidden __memcpy /* make sure it does not leak */
270 .endif
271
272 /*
273 * Note: dst & src may be unaligned, len may be 0
274 * Temps
275 */
276 #define rem t8
277
278 R10KCBARRIER(0(ra))
279 /*
280 * The "issue break"s below are very approximate.
281 * Issue delays for dcache fills will perturb the schedule, as will
282 * load queue full replay traps, etc.
283 *
284 * If len < NBYTES use byte operations.
285 */
286 PREFS( 0, 0(src) )
287 PREFD( 1, 0(dst) )
288 sltu t2, len, NBYTES
289 and t1, dst, ADDRMASK
290 PREFS( 0, 1*32(src) )
291 PREFD( 1, 1*32(dst) )
292 bnez t2, .Lcopy_bytes_checklen\@
293 and t0, src, ADDRMASK
294 PREFS( 0, 2*32(src) )
295 PREFD( 1, 2*32(dst) )
296 bnez t1, .Ldst_unaligned\@
297 nop
298 bnez t0, .Lsrc_unaligned_dst_aligned\@
299 /*
300 * use delay slot for fall-through
301 * src and dst are aligned; need to compute rem
302 */
303 .Lboth_aligned\@:
304 SRL t0, len, LOG_NBYTES+3 # +3 for 8 units/iter
305 beqz t0, .Lcleanup_both_aligned\@ # len < 8*NBYTES
306 and rem, len, (8*NBYTES-1) # rem = len % (8*NBYTES)
307 PREFS( 0, 3*32(src) )
308 PREFD( 1, 3*32(dst) )
309 .align 4
310 1:
311 R10KCBARRIER(0(ra))
312 LOAD(t0, UNIT(0)(src), .Ll_exc\@)
313 LOAD(t1, UNIT(1)(src), .Ll_exc_copy\@)
314 LOAD(t2, UNIT(2)(src), .Ll_exc_copy\@)
315 LOAD(t3, UNIT(3)(src), .Ll_exc_copy\@)
316 SUB len, len, 8*NBYTES
317 LOAD(t4, UNIT(4)(src), .Ll_exc_copy\@)
318 LOAD(t7, UNIT(5)(src), .Ll_exc_copy\@)
319 STORE(t0, UNIT(0)(dst), .Ls_exc_p8u\@)
320 STORE(t1, UNIT(1)(dst), .Ls_exc_p7u\@)
321 LOAD(t0, UNIT(6)(src), .Ll_exc_copy\@)
322 LOAD(t1, UNIT(7)(src), .Ll_exc_copy\@)
323 ADD src, src, 8*NBYTES
324 ADD dst, dst, 8*NBYTES
325 STORE(t2, UNIT(-6)(dst), .Ls_exc_p6u\@)
326 STORE(t3, UNIT(-5)(dst), .Ls_exc_p5u\@)
327 STORE(t4, UNIT(-4)(dst), .Ls_exc_p4u\@)
328 STORE(t7, UNIT(-3)(dst), .Ls_exc_p3u\@)
329 STORE(t0, UNIT(-2)(dst), .Ls_exc_p2u\@)
330 STORE(t1, UNIT(-1)(dst), .Ls_exc_p1u\@)
331 PREFS( 0, 8*32(src) )
332 PREFD( 1, 8*32(dst) )
333 bne len, rem, 1b
334 nop
335
336 /*
337 * len == rem == the number of bytes left to copy < 8*NBYTES
338 */
339 .Lcleanup_both_aligned\@:
340 beqz len, .Ldone\@
341 sltu t0, len, 4*NBYTES
342 bnez t0, .Lless_than_4units\@
343 and rem, len, (NBYTES-1) # rem = len % NBYTES
344 /*
345 * len >= 4*NBYTES
346 */
347 LOAD( t0, UNIT(0)(src), .Ll_exc\@)
348 LOAD( t1, UNIT(1)(src), .Ll_exc_copy\@)
349 LOAD( t2, UNIT(2)(src), .Ll_exc_copy\@)
350 LOAD( t3, UNIT(3)(src), .Ll_exc_copy\@)
351 SUB len, len, 4*NBYTES
352 ADD src, src, 4*NBYTES
353 R10KCBARRIER(0(ra))
354 STORE(t0, UNIT(0)(dst), .Ls_exc_p4u\@)
355 STORE(t1, UNIT(1)(dst), .Ls_exc_p3u\@)
356 STORE(t2, UNIT(2)(dst), .Ls_exc_p2u\@)
357 STORE(t3, UNIT(3)(dst), .Ls_exc_p1u\@)
358 .set reorder /* DADDI_WAR */
359 ADD dst, dst, 4*NBYTES
360 beqz len, .Ldone\@
361 .set noreorder
362 .Lless_than_4units\@:
363 /*
364 * rem = len % NBYTES
365 */
366 beq rem, len, .Lcopy_bytes\@
367 nop
368 1:
369 R10KCBARRIER(0(ra))
370 LOAD(t0, 0(src), .Ll_exc\@)
371 ADD src, src, NBYTES
372 SUB len, len, NBYTES
373 STORE(t0, 0(dst), .Ls_exc_p1u\@)
374 .set reorder /* DADDI_WAR */
375 ADD dst, dst, NBYTES
376 bne rem, len, 1b
377 .set noreorder
378
379 /*
380 * src and dst are aligned, need to copy rem bytes (rem < NBYTES)
381 * A loop would do only a byte at a time with possible branch
382 * mispredicts. Can't do an explicit LOAD dst,mask,or,STORE
383 * because can't assume read-access to dst. Instead, use
384 * STREST dst, which doesn't require read access to dst.
385 *
386 * This code should perform better than a simple loop on modern,
387 * wide-issue mips processors because the code has fewer branches and
388 * more instruction-level parallelism.
389 */
390 #define bits t2
391 beqz len, .Ldone\@
392 ADD t1, dst, len # t1 is just past last byte of dst
393 li bits, 8*NBYTES
394 SLL rem, len, 3 # rem = number of bits to keep
395 LOAD(t0, 0(src), .Ll_exc\@)
396 SUB bits, bits, rem # bits = number of bits to discard
397 SHIFT_DISCARD t0, t0, bits
398 STREST(t0, -1(t1), .Ls_exc\@)
399 jr ra
400 move len, zero
401 .Ldst_unaligned\@:
402 /*
403 * dst is unaligned
404 * t0 = src & ADDRMASK
405 * t1 = dst & ADDRMASK; T1 > 0
406 * len >= NBYTES
407 *
408 * Copy enough bytes to align dst
409 * Set match = (src and dst have same alignment)
410 */
411 #define match rem
412 LDFIRST(t3, FIRST(0)(src), .Ll_exc\@)
413 ADD t2, zero, NBYTES
414 LDREST(t3, REST(0)(src), .Ll_exc_copy\@)
415 SUB t2, t2, t1 # t2 = number of bytes copied
416 xor match, t0, t1
417 R10KCBARRIER(0(ra))
418 STFIRST(t3, FIRST(0)(dst), .Ls_exc\@)
419 beq len, t2, .Ldone\@
420 SUB len, len, t2
421 ADD dst, dst, t2
422 beqz match, .Lboth_aligned\@
423 ADD src, src, t2
424
425 .Lsrc_unaligned_dst_aligned\@:
426 SRL t0, len, LOG_NBYTES+2 # +2 for 4 units/iter
427 PREFS( 0, 3*32(src) )
428 beqz t0, .Lcleanup_src_unaligned\@
429 and rem, len, (4*NBYTES-1) # rem = len % 4*NBYTES
430 PREFD( 1, 3*32(dst) )
431 1:
432 /*
433 * Avoid consecutive LD*'s to the same register since some mips
434 * implementations can't issue them in the same cycle.
435 * It's OK to load FIRST(N+1) before REST(N) because the two addresses
436 * are to the same unit (unless src is aligned, but it's not).
437 */
438 R10KCBARRIER(0(ra))
439 LDFIRST(t0, FIRST(0)(src), .Ll_exc\@)
440 LDFIRST(t1, FIRST(1)(src), .Ll_exc_copy\@)
441 SUB len, len, 4*NBYTES
442 LDREST(t0, REST(0)(src), .Ll_exc_copy\@)
443 LDREST(t1, REST(1)(src), .Ll_exc_copy\@)
444 LDFIRST(t2, FIRST(2)(src), .Ll_exc_copy\@)
445 LDFIRST(t3, FIRST(3)(src), .Ll_exc_copy\@)
446 LDREST(t2, REST(2)(src), .Ll_exc_copy\@)
447 LDREST(t3, REST(3)(src), .Ll_exc_copy\@)
448 PREFS( 0, 9*32(src) ) # 0 is PREF_LOAD (not streamed)
449 ADD src, src, 4*NBYTES
450 #ifdef CONFIG_CPU_SB1
451 nop # improves slotting
452 #endif
453 STORE(t0, UNIT(0)(dst), .Ls_exc_p4u\@)
454 STORE(t1, UNIT(1)(dst), .Ls_exc_p3u\@)
455 STORE(t2, UNIT(2)(dst), .Ls_exc_p2u\@)
456 STORE(t3, UNIT(3)(dst), .Ls_exc_p1u\@)
457 PREFD( 1, 9*32(dst) ) # 1 is PREF_STORE (not streamed)
458 .set reorder /* DADDI_WAR */
459 ADD dst, dst, 4*NBYTES
460 bne len, rem, 1b
461 .set noreorder
462
463 .Lcleanup_src_unaligned\@:
464 beqz len, .Ldone\@
465 and rem, len, NBYTES-1 # rem = len % NBYTES
466 beq rem, len, .Lcopy_bytes\@
467 nop
468 1:
469 R10KCBARRIER(0(ra))
470 LDFIRST(t0, FIRST(0)(src), .Ll_exc\@)
471 LDREST(t0, REST(0)(src), .Ll_exc_copy\@)
472 ADD src, src, NBYTES
473 SUB len, len, NBYTES
474 STORE(t0, 0(dst), .Ls_exc_p1u\@)
475 .set reorder /* DADDI_WAR */
476 ADD dst, dst, NBYTES
477 bne len, rem, 1b
478 .set noreorder
479
480 .Lcopy_bytes_checklen\@:
481 beqz len, .Ldone\@
482 nop
483 .Lcopy_bytes\@:
484 /* 0 < len < NBYTES */
485 R10KCBARRIER(0(ra))
486 #define COPY_BYTE(N) \
487 LOADB(t0, N(src), .Ll_exc\@); \
488 SUB len, len, 1; \
489 beqz len, .Ldone\@; \
490 STOREB(t0, N(dst), .Ls_exc_p1\@)
491
492 COPY_BYTE(0)
493 COPY_BYTE(1)
494 #ifdef USE_DOUBLE
495 COPY_BYTE(2)
496 COPY_BYTE(3)
497 COPY_BYTE(4)
498 COPY_BYTE(5)
499 #endif
500 LOADB(t0, NBYTES-2(src), .Ll_exc\@)
501 SUB len, len, 1
502 jr ra
503 STOREB(t0, NBYTES-2(dst), .Ls_exc_p1\@)
504 .Ldone\@:
505 jr ra
506 .if __memcpy == 1
507 END(memcpy)
508 .set __memcpy, 0
509 .hidden __memcpy
510 .endif
511
512 .Ll_exc_copy\@:
513 /*
514 * Copy bytes from src until faulting load address (or until a
515 * lb faults)
516 *
517 * When reached by a faulting LDFIRST/LDREST, THREAD_BUADDR($28)
518 * may be more than a byte beyond the last address.
519 * Hence, the lb below may get an exception.
520 *
521 * Assumes src < THREAD_BUADDR($28)
522 */
523 LOADK t0, TI_TASK($28)
524 nop
525 LOADK t0, THREAD_BUADDR(t0)
526 1:
527 LOADB(t1, 0(src), .Ll_exc\@)
528 ADD src, src, 1
529 sb t1, 0(dst) # can't fault -- we're copy_from_user
530 .set reorder /* DADDI_WAR */
531 ADD dst, dst, 1
532 bne src, t0, 1b
533 .set noreorder
534 .Ll_exc\@:
535 LOADK t0, TI_TASK($28)
536 nop
537 LOADK t0, THREAD_BUADDR(t0) # t0 is just past last good address
538 nop
539 SUB len, AT, t0 # len number of uncopied bytes
540 bnez t6, .Ldone\@ /* Skip the zeroing part if inatomic */
541 /*
542 * Here's where we rely on src and dst being incremented in tandem,
543 * See (3) above.
544 * dst += (fault addr - src) to put dst at first byte to clear
545 */
546 ADD dst, t0 # compute start address in a1
547 SUB dst, src
548 /*
549 * Clear len bytes starting at dst. Can't call __bzero because it
550 * might modify len. An inefficient loop for these rare times...
551 */
552 .set reorder /* DADDI_WAR */
553 SUB src, len, 1
554 beqz len, .Ldone\@
555 .set noreorder
556 1: sb zero, 0(dst)
557 ADD dst, dst, 1
558 #ifndef CONFIG_CPU_DADDI_WORKAROUNDS
559 bnez src, 1b
560 SUB src, src, 1
561 #else
562 .set push
563 .set noat
564 li v1, 1
565 bnez src, 1b
566 SUB src, src, v1
567 .set pop
568 #endif
569 jr ra
570 nop
571
572
573 #define SEXC(n) \
574 .set reorder; /* DADDI_WAR */ \
575 .Ls_exc_p ## n ## u\@: \
576 ADD len, len, n*NBYTES; \
577 jr ra; \
578 .set noreorder
579
580 SEXC(8)
581 SEXC(7)
582 SEXC(6)
583 SEXC(5)
584 SEXC(4)
585 SEXC(3)
586 SEXC(2)
587 SEXC(1)
588
589 .Ls_exc_p1\@:
590 .set reorder /* DADDI_WAR */
591 ADD len, len, 1
592 jr ra
593 .set noreorder
594 .Ls_exc\@:
595 jr ra
596 nop
597 .endm
598
599 .align 5
600 LEAF(memmove)
601 ADD t0, a0, a2
602 ADD t1, a1, a2
603 sltu t0, a1, t0 # dst + len <= src -> memcpy
604 sltu t1, a0, t1 # dst >= src + len -> memcpy
605 and t0, t1
606 beqz t0, .L__memcpy
607 move v0, a0 /* return value */
608 beqz a2, .Lr_out
609 END(memmove)
610
611 /* fall through to __rmemcpy */
612 LEAF(__rmemcpy) /* a0=dst a1=src a2=len */
613 sltu t0, a1, a0
614 beqz t0, .Lr_end_bytes_up # src >= dst
615 nop
616 ADD a0, a2 # dst = dst + len
617 ADD a1, a2 # src = src + len
618
619 .Lr_end_bytes:
620 R10KCBARRIER(0(ra))
621 lb t0, -1(a1)
622 SUB a2, a2, 0x1
623 sb t0, -1(a0)
624 SUB a1, a1, 0x1
625 .set reorder /* DADDI_WAR */
626 SUB a0, a0, 0x1
627 bnez a2, .Lr_end_bytes
628 .set noreorder
629
630 .Lr_out:
631 jr ra
632 move a2, zero
633
634 .Lr_end_bytes_up:
635 R10KCBARRIER(0(ra))
636 lb t0, (a1)
637 SUB a2, a2, 0x1
638 sb t0, (a0)
639 ADD a1, a1, 0x1
640 .set reorder /* DADDI_WAR */
641 ADD a0, a0, 0x1
642 bnez a2, .Lr_end_bytes_up
643 .set noreorder
644
645 jr ra
646 move a2, zero
647 END(__rmemcpy)
648
649 /*
650 * t6 is used as a flag to note inatomic mode.
651 */
652 LEAF(__copy_user_inatomic)
653 b __copy_user_common
654 li t6, 1
655 END(__copy_user_inatomic)
656
657 /*
658 * A combined memcpy/__copy_user
659 * __copy_user sets len to 0 for success; else to an upper bound of
660 * the number of uncopied bytes.
661 * memcpy sets v0 to dst.
662 */
663 .align 5
664 LEAF(memcpy) /* a0=dst a1=src a2=len */
665 move v0, dst /* return value */
666 .L__memcpy:
667 FEXPORT(__copy_user)
668 li t6, 0 /* not inatomic */
669 __copy_user_common:
670 /* Legacy Mode, user <-> user */
671 __BUILD_COPY_USER LEGACY_MODE USEROP USEROP
672
673 #ifdef CONFIG_EVA
674
675 /*
676 * For EVA we need distinct symbols for reading and writing to user space.
677 * This is because we need to use specific EVA instructions to perform the
678 * virtual <-> physical translation when a virtual address is actually in user
679 * space
680 */
681
682 LEAF(__copy_user_inatomic_eva)
683 b __copy_from_user_common
684 li t6, 1
685 END(__copy_user_inatomic_eva)
686
687 /*
688 * __copy_from_user (EVA)
689 */
690
691 LEAF(__copy_from_user_eva)
692 li t6, 0 /* not inatomic */
693 __copy_from_user_common:
694 __BUILD_COPY_USER EVA_MODE USEROP KERNELOP
695 END(__copy_from_user_eva)
696
697
698
699 /*
700 * __copy_to_user (EVA)
701 */
702
703 LEAF(__copy_to_user_eva)
704 __BUILD_COPY_USER EVA_MODE KERNELOP USEROP
705 END(__copy_to_user_eva)
706
707 /*
708 * __copy_in_user (EVA)
709 */
710
711 LEAF(__copy_in_user_eva)
712 __BUILD_COPY_USER EVA_MODE USEROP USEROP
713 END(__copy_in_user_eva)
714
715 #endif