]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/mips/lib/memcpy.S
Merge master.kernel.org:/home/rmk/linux-2.6-arm
[mirror_ubuntu-zesty-kernel.git] / arch / mips / lib / memcpy.S
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Unified implementation of memcpy, memmove and the __copy_user backend.
7 *
8 * Copyright (C) 1998, 99, 2000, 01, 2002 Ralf Baechle (ralf@gnu.org)
9 * Copyright (C) 1999, 2000, 01, 2002 Silicon Graphics, Inc.
10 * Copyright (C) 2002 Broadcom, Inc.
11 * memcpy/copy_user author: Mark Vandevoorde
12 *
13 * Mnemonic names for arguments to memcpy/__copy_user
14 */
15 #include <linux/config.h>
16 #include <asm/asm.h>
17 #include <asm/asm-offsets.h>
18 #include <asm/regdef.h>
19
20 #define dst a0
21 #define src a1
22 #define len a2
23
24 /*
25 * Spec
26 *
27 * memcpy copies len bytes from src to dst and sets v0 to dst.
28 * It assumes that
29 * - src and dst don't overlap
30 * - src is readable
31 * - dst is writable
32 * memcpy uses the standard calling convention
33 *
34 * __copy_user copies up to len bytes from src to dst and sets a2 (len) to
35 * the number of uncopied bytes due to an exception caused by a read or write.
36 * __copy_user assumes that src and dst don't overlap, and that the call is
37 * implementing one of the following:
38 * copy_to_user
39 * - src is readable (no exceptions when reading src)
40 * copy_from_user
41 * - dst is writable (no exceptions when writing dst)
42 * __copy_user uses a non-standard calling convention; see
43 * include/asm-mips/uaccess.h
44 *
45 * When an exception happens on a load, the handler must
46 # ensure that all of the destination buffer is overwritten to prevent
47 * leaking information to user mode programs.
48 */
49
50 /*
51 * Implementation
52 */
53
54 /*
55 * The exception handler for loads requires that:
56 * 1- AT contain the address of the byte just past the end of the source
57 * of the copy,
58 * 2- src_entry <= src < AT, and
59 * 3- (dst - src) == (dst_entry - src_entry),
60 * The _entry suffix denotes values when __copy_user was called.
61 *
62 * (1) is set up up by uaccess.h and maintained by not writing AT in copy_user
63 * (2) is met by incrementing src by the number of bytes copied
64 * (3) is met by not doing loads between a pair of increments of dst and src
65 *
66 * The exception handlers for stores adjust len (if necessary) and return.
67 * These handlers do not need to overwrite any data.
68 *
69 * For __rmemcpy and memmove an exception is always a kernel bug, therefore
70 * they're not protected.
71 */
72
73 #define EXC(inst_reg,addr,handler) \
74 9: inst_reg, addr; \
75 .section __ex_table,"a"; \
76 PTR 9b, handler; \
77 .previous
78
79 /*
80 * Only on the 64-bit kernel we can made use of 64-bit registers.
81 */
82 #ifdef CONFIG_64BIT
83 #define USE_DOUBLE
84 #endif
85
86 #ifdef USE_DOUBLE
87
88 #define LOAD ld
89 #define LOADL ldl
90 #define LOADR ldr
91 #define STOREL sdl
92 #define STORER sdr
93 #define STORE sd
94 #define ADD daddu
95 #define SUB dsubu
96 #define SRL dsrl
97 #define SRA dsra
98 #define SLL dsll
99 #define SLLV dsllv
100 #define SRLV dsrlv
101 #define NBYTES 8
102 #define LOG_NBYTES 3
103
104 /*
105 * As we are sharing code base with the mips32 tree (which use the o32 ABI
106 * register definitions). We need to redefine the register definitions from
107 * the n64 ABI register naming to the o32 ABI register naming.
108 */
109 #undef t0
110 #undef t1
111 #undef t2
112 #undef t3
113 #define t0 $8
114 #define t1 $9
115 #define t2 $10
116 #define t3 $11
117 #define t4 $12
118 #define t5 $13
119 #define t6 $14
120 #define t7 $15
121
122 #else
123
124 #define LOAD lw
125 #define LOADL lwl
126 #define LOADR lwr
127 #define STOREL swl
128 #define STORER swr
129 #define STORE sw
130 #define ADD addu
131 #define SUB subu
132 #define SRL srl
133 #define SLL sll
134 #define SRA sra
135 #define SLLV sllv
136 #define SRLV srlv
137 #define NBYTES 4
138 #define LOG_NBYTES 2
139
140 #endif /* USE_DOUBLE */
141
142 #ifdef CONFIG_CPU_LITTLE_ENDIAN
143 #define LDFIRST LOADR
144 #define LDREST LOADL
145 #define STFIRST STORER
146 #define STREST STOREL
147 #define SHIFT_DISCARD SLLV
148 #else
149 #define LDFIRST LOADL
150 #define LDREST LOADR
151 #define STFIRST STOREL
152 #define STREST STORER
153 #define SHIFT_DISCARD SRLV
154 #endif
155
156 #define FIRST(unit) ((unit)*NBYTES)
157 #define REST(unit) (FIRST(unit)+NBYTES-1)
158 #define UNIT(unit) FIRST(unit)
159
160 #define ADDRMASK (NBYTES-1)
161
162 .text
163 .set noreorder
164 .set noat
165
166 /*
167 * A combined memcpy/__copy_user
168 * __copy_user sets len to 0 for success; else to an upper bound of
169 * the number of uncopied bytes.
170 * memcpy sets v0 to dst.
171 */
172 .align 5
173 LEAF(memcpy) /* a0=dst a1=src a2=len */
174 move v0, dst /* return value */
175 __memcpy:
176 FEXPORT(__copy_user)
177 /*
178 * Note: dst & src may be unaligned, len may be 0
179 * Temps
180 */
181 #define rem t8
182
183 /*
184 * The "issue break"s below are very approximate.
185 * Issue delays for dcache fills will perturb the schedule, as will
186 * load queue full replay traps, etc.
187 *
188 * If len < NBYTES use byte operations.
189 */
190 PREF( 0, 0(src) )
191 PREF( 1, 0(dst) )
192 sltu t2, len, NBYTES
193 and t1, dst, ADDRMASK
194 PREF( 0, 1*32(src) )
195 PREF( 1, 1*32(dst) )
196 bnez t2, copy_bytes_checklen
197 and t0, src, ADDRMASK
198 PREF( 0, 2*32(src) )
199 PREF( 1, 2*32(dst) )
200 bnez t1, dst_unaligned
201 nop
202 bnez t0, src_unaligned_dst_aligned
203 /*
204 * use delay slot for fall-through
205 * src and dst are aligned; need to compute rem
206 */
207 both_aligned:
208 SRL t0, len, LOG_NBYTES+3 # +3 for 8 units/iter
209 beqz t0, cleanup_both_aligned # len < 8*NBYTES
210 and rem, len, (8*NBYTES-1) # rem = len % (8*NBYTES)
211 PREF( 0, 3*32(src) )
212 PREF( 1, 3*32(dst) )
213 .align 4
214 1:
215 EXC( LOAD t0, UNIT(0)(src), l_exc)
216 EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
217 EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
218 EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
219 SUB len, len, 8*NBYTES
220 EXC( LOAD t4, UNIT(4)(src), l_exc_copy)
221 EXC( LOAD t7, UNIT(5)(src), l_exc_copy)
222 EXC( STORE t0, UNIT(0)(dst), s_exc_p8u)
223 EXC( STORE t1, UNIT(1)(dst), s_exc_p7u)
224 EXC( LOAD t0, UNIT(6)(src), l_exc_copy)
225 EXC( LOAD t1, UNIT(7)(src), l_exc_copy)
226 ADD src, src, 8*NBYTES
227 ADD dst, dst, 8*NBYTES
228 EXC( STORE t2, UNIT(-6)(dst), s_exc_p6u)
229 EXC( STORE t3, UNIT(-5)(dst), s_exc_p5u)
230 EXC( STORE t4, UNIT(-4)(dst), s_exc_p4u)
231 EXC( STORE t7, UNIT(-3)(dst), s_exc_p3u)
232 EXC( STORE t0, UNIT(-2)(dst), s_exc_p2u)
233 EXC( STORE t1, UNIT(-1)(dst), s_exc_p1u)
234 PREF( 0, 8*32(src) )
235 PREF( 1, 8*32(dst) )
236 bne len, rem, 1b
237 nop
238
239 /*
240 * len == rem == the number of bytes left to copy < 8*NBYTES
241 */
242 cleanup_both_aligned:
243 beqz len, done
244 sltu t0, len, 4*NBYTES
245 bnez t0, less_than_4units
246 and rem, len, (NBYTES-1) # rem = len % NBYTES
247 /*
248 * len >= 4*NBYTES
249 */
250 EXC( LOAD t0, UNIT(0)(src), l_exc)
251 EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
252 EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
253 EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
254 SUB len, len, 4*NBYTES
255 ADD src, src, 4*NBYTES
256 EXC( STORE t0, UNIT(0)(dst), s_exc_p4u)
257 EXC( STORE t1, UNIT(1)(dst), s_exc_p3u)
258 EXC( STORE t2, UNIT(2)(dst), s_exc_p2u)
259 EXC( STORE t3, UNIT(3)(dst), s_exc_p1u)
260 beqz len, done
261 ADD dst, dst, 4*NBYTES
262 less_than_4units:
263 /*
264 * rem = len % NBYTES
265 */
266 beq rem, len, copy_bytes
267 nop
268 1:
269 EXC( LOAD t0, 0(src), l_exc)
270 ADD src, src, NBYTES
271 SUB len, len, NBYTES
272 EXC( STORE t0, 0(dst), s_exc_p1u)
273 bne rem, len, 1b
274 ADD dst, dst, NBYTES
275
276 /*
277 * src and dst are aligned, need to copy rem bytes (rem < NBYTES)
278 * A loop would do only a byte at a time with possible branch
279 * mispredicts. Can't do an explicit LOAD dst,mask,or,STORE
280 * because can't assume read-access to dst. Instead, use
281 * STREST dst, which doesn't require read access to dst.
282 *
283 * This code should perform better than a simple loop on modern,
284 * wide-issue mips processors because the code has fewer branches and
285 * more instruction-level parallelism.
286 */
287 #define bits t2
288 beqz len, done
289 ADD t1, dst, len # t1 is just past last byte of dst
290 li bits, 8*NBYTES
291 SLL rem, len, 3 # rem = number of bits to keep
292 EXC( LOAD t0, 0(src), l_exc)
293 SUB bits, bits, rem # bits = number of bits to discard
294 SHIFT_DISCARD t0, t0, bits
295 EXC( STREST t0, -1(t1), s_exc)
296 jr ra
297 move len, zero
298 dst_unaligned:
299 /*
300 * dst is unaligned
301 * t0 = src & ADDRMASK
302 * t1 = dst & ADDRMASK; T1 > 0
303 * len >= NBYTES
304 *
305 * Copy enough bytes to align dst
306 * Set match = (src and dst have same alignment)
307 */
308 #define match rem
309 EXC( LDFIRST t3, FIRST(0)(src), l_exc)
310 ADD t2, zero, NBYTES
311 EXC( LDREST t3, REST(0)(src), l_exc_copy)
312 SUB t2, t2, t1 # t2 = number of bytes copied
313 xor match, t0, t1
314 EXC( STFIRST t3, FIRST(0)(dst), s_exc)
315 beq len, t2, done
316 SUB len, len, t2
317 ADD dst, dst, t2
318 beqz match, both_aligned
319 ADD src, src, t2
320
321 src_unaligned_dst_aligned:
322 SRL t0, len, LOG_NBYTES+2 # +2 for 4 units/iter
323 PREF( 0, 3*32(src) )
324 beqz t0, cleanup_src_unaligned
325 and rem, len, (4*NBYTES-1) # rem = len % 4*NBYTES
326 PREF( 1, 3*32(dst) )
327 1:
328 /*
329 * Avoid consecutive LD*'s to the same register since some mips
330 * implementations can't issue them in the same cycle.
331 * It's OK to load FIRST(N+1) before REST(N) because the two addresses
332 * are to the same unit (unless src is aligned, but it's not).
333 */
334 EXC( LDFIRST t0, FIRST(0)(src), l_exc)
335 EXC( LDFIRST t1, FIRST(1)(src), l_exc_copy)
336 SUB len, len, 4*NBYTES
337 EXC( LDREST t0, REST(0)(src), l_exc_copy)
338 EXC( LDREST t1, REST(1)(src), l_exc_copy)
339 EXC( LDFIRST t2, FIRST(2)(src), l_exc_copy)
340 EXC( LDFIRST t3, FIRST(3)(src), l_exc_copy)
341 EXC( LDREST t2, REST(2)(src), l_exc_copy)
342 EXC( LDREST t3, REST(3)(src), l_exc_copy)
343 PREF( 0, 9*32(src) ) # 0 is PREF_LOAD (not streamed)
344 ADD src, src, 4*NBYTES
345 #ifdef CONFIG_CPU_SB1
346 nop # improves slotting
347 #endif
348 EXC( STORE t0, UNIT(0)(dst), s_exc_p4u)
349 EXC( STORE t1, UNIT(1)(dst), s_exc_p3u)
350 EXC( STORE t2, UNIT(2)(dst), s_exc_p2u)
351 EXC( STORE t3, UNIT(3)(dst), s_exc_p1u)
352 PREF( 1, 9*32(dst) ) # 1 is PREF_STORE (not streamed)
353 bne len, rem, 1b
354 ADD dst, dst, 4*NBYTES
355
356 cleanup_src_unaligned:
357 beqz len, done
358 and rem, len, NBYTES-1 # rem = len % NBYTES
359 beq rem, len, copy_bytes
360 nop
361 1:
362 EXC( LDFIRST t0, FIRST(0)(src), l_exc)
363 EXC( LDREST t0, REST(0)(src), l_exc_copy)
364 ADD src, src, NBYTES
365 SUB len, len, NBYTES
366 EXC( STORE t0, 0(dst), s_exc_p1u)
367 bne len, rem, 1b
368 ADD dst, dst, NBYTES
369
370 copy_bytes_checklen:
371 beqz len, done
372 nop
373 copy_bytes:
374 /* 0 < len < NBYTES */
375 #define COPY_BYTE(N) \
376 EXC( lb t0, N(src), l_exc); \
377 SUB len, len, 1; \
378 beqz len, done; \
379 EXC( sb t0, N(dst), s_exc_p1)
380
381 COPY_BYTE(0)
382 COPY_BYTE(1)
383 #ifdef USE_DOUBLE
384 COPY_BYTE(2)
385 COPY_BYTE(3)
386 COPY_BYTE(4)
387 COPY_BYTE(5)
388 #endif
389 EXC( lb t0, NBYTES-2(src), l_exc)
390 SUB len, len, 1
391 jr ra
392 EXC( sb t0, NBYTES-2(dst), s_exc_p1)
393 done:
394 jr ra
395 nop
396 END(memcpy)
397
398 l_exc_copy:
399 /*
400 * Copy bytes from src until faulting load address (or until a
401 * lb faults)
402 *
403 * When reached by a faulting LDFIRST/LDREST, THREAD_BUADDR($28)
404 * may be more than a byte beyond the last address.
405 * Hence, the lb below may get an exception.
406 *
407 * Assumes src < THREAD_BUADDR($28)
408 */
409 LOAD t0, TI_TASK($28)
410 nop
411 LOAD t0, THREAD_BUADDR(t0)
412 1:
413 EXC( lb t1, 0(src), l_exc)
414 ADD src, src, 1
415 sb t1, 0(dst) # can't fault -- we're copy_from_user
416 bne src, t0, 1b
417 ADD dst, dst, 1
418 l_exc:
419 LOAD t0, TI_TASK($28)
420 nop
421 LOAD t0, THREAD_BUADDR(t0) # t0 is just past last good address
422 nop
423 SUB len, AT, t0 # len number of uncopied bytes
424 /*
425 * Here's where we rely on src and dst being incremented in tandem,
426 * See (3) above.
427 * dst += (fault addr - src) to put dst at first byte to clear
428 */
429 ADD dst, t0 # compute start address in a1
430 SUB dst, src
431 /*
432 * Clear len bytes starting at dst. Can't call __bzero because it
433 * might modify len. An inefficient loop for these rare times...
434 */
435 beqz len, done
436 SUB src, len, 1
437 1: sb zero, 0(dst)
438 ADD dst, dst, 1
439 bnez src, 1b
440 SUB src, src, 1
441 jr ra
442 nop
443
444
445 #define SEXC(n) \
446 s_exc_p ## n ## u: \
447 jr ra; \
448 ADD len, len, n*NBYTES
449
450 SEXC(8)
451 SEXC(7)
452 SEXC(6)
453 SEXC(5)
454 SEXC(4)
455 SEXC(3)
456 SEXC(2)
457 SEXC(1)
458
459 s_exc_p1:
460 jr ra
461 ADD len, len, 1
462 s_exc:
463 jr ra
464 nop
465
466 .align 5
467 LEAF(memmove)
468 ADD t0, a0, a2
469 ADD t1, a1, a2
470 sltu t0, a1, t0 # dst + len <= src -> memcpy
471 sltu t1, a0, t1 # dst >= src + len -> memcpy
472 and t0, t1
473 beqz t0, __memcpy
474 move v0, a0 /* return value */
475 beqz a2, r_out
476 END(memmove)
477
478 /* fall through to __rmemcpy */
479 LEAF(__rmemcpy) /* a0=dst a1=src a2=len */
480 sltu t0, a1, a0
481 beqz t0, r_end_bytes_up # src >= dst
482 nop
483 ADD a0, a2 # dst = dst + len
484 ADD a1, a2 # src = src + len
485
486 r_end_bytes:
487 lb t0, -1(a1)
488 SUB a2, a2, 0x1
489 sb t0, -1(a0)
490 SUB a1, a1, 0x1
491 bnez a2, r_end_bytes
492 SUB a0, a0, 0x1
493
494 r_out:
495 jr ra
496 move a2, zero
497
498 r_end_bytes_up:
499 lb t0, (a1)
500 SUB a2, a2, 0x1
501 sb t0, (a0)
502 ADD a1, a1, 0x1
503 bnez a2, r_end_bytes_up
504 ADD a0, a0, 0x1
505
506 jr ra
507 move a2, zero
508 END(__rmemcpy)