]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/mips/math-emu/cp1emu.c
jfs: fix error path in ialloc
[mirror_ubuntu-eoan-kernel.git] / arch / mips / math-emu / cp1emu.c
1 /*
2 * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
3 *
4 * MIPS floating point support
5 * Copyright (C) 1994-2000 Algorithmics Ltd.
6 *
7 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8 * Copyright (C) 2000 MIPS Technologies, Inc.
9 *
10 * This program is free software; you can distribute it and/or modify it
11 * under the terms of the GNU General Public License (Version 2) as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 * for more details.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
22 *
23 * A complete emulator for MIPS coprocessor 1 instructions. This is
24 * required for #float(switch) or #float(trap), where it catches all
25 * COP1 instructions via the "CoProcessor Unusable" exception.
26 *
27 * More surprisingly it is also required for #float(ieee), to help out
28 * the hardware fpu at the boundaries of the IEEE-754 representation
29 * (denormalised values, infinities, underflow, etc). It is made
30 * quite nasty because emulation of some non-COP1 instructions is
31 * required, e.g. in branch delay slots.
32 *
33 * Note if you know that you won't have an fpu, then you'll get much
34 * better performance by compiling with -msoft-float!
35 */
36 #include <linux/sched.h>
37 #include <linux/module.h>
38 #include <linux/debugfs.h>
39 #include <linux/perf_event.h>
40
41 #include <asm/inst.h>
42 #include <asm/bootinfo.h>
43 #include <asm/processor.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/mipsregs.h>
47 #include <asm/fpu_emulator.h>
48 #include <asm/fpu.h>
49 #include <asm/uaccess.h>
50 #include <asm/branch.h>
51
52 #include "ieee754.h"
53
54 /* Strap kernel emulator for full MIPS IV emulation */
55
56 #ifdef __mips
57 #undef __mips
58 #endif
59 #define __mips 4
60
61 /* Function which emulates a floating point instruction. */
62
63 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
64 mips_instruction);
65
66 #if __mips >= 4 && __mips != 32
67 static int fpux_emu(struct pt_regs *,
68 struct mips_fpu_struct *, mips_instruction, void *__user *);
69 #endif
70
71 /* Further private data for which no space exists in mips_fpu_struct */
72
73 #ifdef CONFIG_DEBUG_FS
74 DEFINE_PER_CPU(struct mips_fpu_emulator_stats, fpuemustats);
75 #endif
76
77 /* Control registers */
78
79 #define FPCREG_RID 0 /* $0 = revision id */
80 #define FPCREG_CSR 31 /* $31 = csr */
81
82 /* Determine rounding mode from the RM bits of the FCSR */
83 #define modeindex(v) ((v) & FPU_CSR_RM)
84
85 /* microMIPS bitfields */
86 #define MM_POOL32A_MINOR_MASK 0x3f
87 #define MM_POOL32A_MINOR_SHIFT 0x6
88 #define MM_MIPS32_COND_FC 0x30
89
90 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
91 static const unsigned char ieee_rm[4] = {
92 [FPU_CSR_RN] = IEEE754_RN,
93 [FPU_CSR_RZ] = IEEE754_RZ,
94 [FPU_CSR_RU] = IEEE754_RU,
95 [FPU_CSR_RD] = IEEE754_RD,
96 };
97 /* Convert IEEE library modes to Mips rounding mode (0..3). */
98 static const unsigned char mips_rm[4] = {
99 [IEEE754_RN] = FPU_CSR_RN,
100 [IEEE754_RZ] = FPU_CSR_RZ,
101 [IEEE754_RD] = FPU_CSR_RD,
102 [IEEE754_RU] = FPU_CSR_RU,
103 };
104
105 #if __mips >= 4
106 /* convert condition code register number to csr bit */
107 static const unsigned int fpucondbit[8] = {
108 FPU_CSR_COND0,
109 FPU_CSR_COND1,
110 FPU_CSR_COND2,
111 FPU_CSR_COND3,
112 FPU_CSR_COND4,
113 FPU_CSR_COND5,
114 FPU_CSR_COND6,
115 FPU_CSR_COND7
116 };
117 #endif
118
119 /* (microMIPS) Convert 16-bit register encoding to 32-bit register encoding. */
120 static const unsigned int reg16to32map[8] = {16, 17, 2, 3, 4, 5, 6, 7};
121
122 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
123 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
124 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
125 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
126 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
127
128 /*
129 * This functions translates a 32-bit microMIPS instruction
130 * into a 32-bit MIPS32 instruction. Returns 0 on success
131 * and SIGILL otherwise.
132 */
133 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
134 {
135 union mips_instruction insn = *insn_ptr;
136 union mips_instruction mips32_insn = insn;
137 int func, fmt, op;
138
139 switch (insn.mm_i_format.opcode) {
140 case mm_ldc132_op:
141 mips32_insn.mm_i_format.opcode = ldc1_op;
142 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
143 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
144 break;
145 case mm_lwc132_op:
146 mips32_insn.mm_i_format.opcode = lwc1_op;
147 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
148 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
149 break;
150 case mm_sdc132_op:
151 mips32_insn.mm_i_format.opcode = sdc1_op;
152 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
153 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
154 break;
155 case mm_swc132_op:
156 mips32_insn.mm_i_format.opcode = swc1_op;
157 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
158 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
159 break;
160 case mm_pool32i_op:
161 /* NOTE: offset is << by 1 if in microMIPS mode. */
162 if ((insn.mm_i_format.rt == mm_bc1f_op) ||
163 (insn.mm_i_format.rt == mm_bc1t_op)) {
164 mips32_insn.fb_format.opcode = cop1_op;
165 mips32_insn.fb_format.bc = bc_op;
166 mips32_insn.fb_format.flag =
167 (insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
168 } else
169 return SIGILL;
170 break;
171 case mm_pool32f_op:
172 switch (insn.mm_fp0_format.func) {
173 case mm_32f_01_op:
174 case mm_32f_11_op:
175 case mm_32f_02_op:
176 case mm_32f_12_op:
177 case mm_32f_41_op:
178 case mm_32f_51_op:
179 case mm_32f_42_op:
180 case mm_32f_52_op:
181 op = insn.mm_fp0_format.func;
182 if (op == mm_32f_01_op)
183 func = madd_s_op;
184 else if (op == mm_32f_11_op)
185 func = madd_d_op;
186 else if (op == mm_32f_02_op)
187 func = nmadd_s_op;
188 else if (op == mm_32f_12_op)
189 func = nmadd_d_op;
190 else if (op == mm_32f_41_op)
191 func = msub_s_op;
192 else if (op == mm_32f_51_op)
193 func = msub_d_op;
194 else if (op == mm_32f_42_op)
195 func = nmsub_s_op;
196 else
197 func = nmsub_d_op;
198 mips32_insn.fp6_format.opcode = cop1x_op;
199 mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
200 mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
201 mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
202 mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
203 mips32_insn.fp6_format.func = func;
204 break;
205 case mm_32f_10_op:
206 func = -1; /* Invalid */
207 op = insn.mm_fp5_format.op & 0x7;
208 if (op == mm_ldxc1_op)
209 func = ldxc1_op;
210 else if (op == mm_sdxc1_op)
211 func = sdxc1_op;
212 else if (op == mm_lwxc1_op)
213 func = lwxc1_op;
214 else if (op == mm_swxc1_op)
215 func = swxc1_op;
216
217 if (func != -1) {
218 mips32_insn.r_format.opcode = cop1x_op;
219 mips32_insn.r_format.rs =
220 insn.mm_fp5_format.base;
221 mips32_insn.r_format.rt =
222 insn.mm_fp5_format.index;
223 mips32_insn.r_format.rd = 0;
224 mips32_insn.r_format.re = insn.mm_fp5_format.fd;
225 mips32_insn.r_format.func = func;
226 } else
227 return SIGILL;
228 break;
229 case mm_32f_40_op:
230 op = -1; /* Invalid */
231 if (insn.mm_fp2_format.op == mm_fmovt_op)
232 op = 1;
233 else if (insn.mm_fp2_format.op == mm_fmovf_op)
234 op = 0;
235 if (op != -1) {
236 mips32_insn.fp0_format.opcode = cop1_op;
237 mips32_insn.fp0_format.fmt =
238 sdps_format[insn.mm_fp2_format.fmt];
239 mips32_insn.fp0_format.ft =
240 (insn.mm_fp2_format.cc<<2) + op;
241 mips32_insn.fp0_format.fs =
242 insn.mm_fp2_format.fs;
243 mips32_insn.fp0_format.fd =
244 insn.mm_fp2_format.fd;
245 mips32_insn.fp0_format.func = fmovc_op;
246 } else
247 return SIGILL;
248 break;
249 case mm_32f_60_op:
250 func = -1; /* Invalid */
251 if (insn.mm_fp0_format.op == mm_fadd_op)
252 func = fadd_op;
253 else if (insn.mm_fp0_format.op == mm_fsub_op)
254 func = fsub_op;
255 else if (insn.mm_fp0_format.op == mm_fmul_op)
256 func = fmul_op;
257 else if (insn.mm_fp0_format.op == mm_fdiv_op)
258 func = fdiv_op;
259 if (func != -1) {
260 mips32_insn.fp0_format.opcode = cop1_op;
261 mips32_insn.fp0_format.fmt =
262 sdps_format[insn.mm_fp0_format.fmt];
263 mips32_insn.fp0_format.ft =
264 insn.mm_fp0_format.ft;
265 mips32_insn.fp0_format.fs =
266 insn.mm_fp0_format.fs;
267 mips32_insn.fp0_format.fd =
268 insn.mm_fp0_format.fd;
269 mips32_insn.fp0_format.func = func;
270 } else
271 return SIGILL;
272 break;
273 case mm_32f_70_op:
274 func = -1; /* Invalid */
275 if (insn.mm_fp0_format.op == mm_fmovn_op)
276 func = fmovn_op;
277 else if (insn.mm_fp0_format.op == mm_fmovz_op)
278 func = fmovz_op;
279 if (func != -1) {
280 mips32_insn.fp0_format.opcode = cop1_op;
281 mips32_insn.fp0_format.fmt =
282 sdps_format[insn.mm_fp0_format.fmt];
283 mips32_insn.fp0_format.ft =
284 insn.mm_fp0_format.ft;
285 mips32_insn.fp0_format.fs =
286 insn.mm_fp0_format.fs;
287 mips32_insn.fp0_format.fd =
288 insn.mm_fp0_format.fd;
289 mips32_insn.fp0_format.func = func;
290 } else
291 return SIGILL;
292 break;
293 case mm_32f_73_op: /* POOL32FXF */
294 switch (insn.mm_fp1_format.op) {
295 case mm_movf0_op:
296 case mm_movf1_op:
297 case mm_movt0_op:
298 case mm_movt1_op:
299 if ((insn.mm_fp1_format.op & 0x7f) ==
300 mm_movf0_op)
301 op = 0;
302 else
303 op = 1;
304 mips32_insn.r_format.opcode = spec_op;
305 mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
306 mips32_insn.r_format.rt =
307 (insn.mm_fp4_format.cc << 2) + op;
308 mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
309 mips32_insn.r_format.re = 0;
310 mips32_insn.r_format.func = movc_op;
311 break;
312 case mm_fcvtd0_op:
313 case mm_fcvtd1_op:
314 case mm_fcvts0_op:
315 case mm_fcvts1_op:
316 if ((insn.mm_fp1_format.op & 0x7f) ==
317 mm_fcvtd0_op) {
318 func = fcvtd_op;
319 fmt = swl_format[insn.mm_fp3_format.fmt];
320 } else {
321 func = fcvts_op;
322 fmt = dwl_format[insn.mm_fp3_format.fmt];
323 }
324 mips32_insn.fp0_format.opcode = cop1_op;
325 mips32_insn.fp0_format.fmt = fmt;
326 mips32_insn.fp0_format.ft = 0;
327 mips32_insn.fp0_format.fs =
328 insn.mm_fp3_format.fs;
329 mips32_insn.fp0_format.fd =
330 insn.mm_fp3_format.rt;
331 mips32_insn.fp0_format.func = func;
332 break;
333 case mm_fmov0_op:
334 case mm_fmov1_op:
335 case mm_fabs0_op:
336 case mm_fabs1_op:
337 case mm_fneg0_op:
338 case mm_fneg1_op:
339 if ((insn.mm_fp1_format.op & 0x7f) ==
340 mm_fmov0_op)
341 func = fmov_op;
342 else if ((insn.mm_fp1_format.op & 0x7f) ==
343 mm_fabs0_op)
344 func = fabs_op;
345 else
346 func = fneg_op;
347 mips32_insn.fp0_format.opcode = cop1_op;
348 mips32_insn.fp0_format.fmt =
349 sdps_format[insn.mm_fp3_format.fmt];
350 mips32_insn.fp0_format.ft = 0;
351 mips32_insn.fp0_format.fs =
352 insn.mm_fp3_format.fs;
353 mips32_insn.fp0_format.fd =
354 insn.mm_fp3_format.rt;
355 mips32_insn.fp0_format.func = func;
356 break;
357 case mm_ffloorl_op:
358 case mm_ffloorw_op:
359 case mm_fceill_op:
360 case mm_fceilw_op:
361 case mm_ftruncl_op:
362 case mm_ftruncw_op:
363 case mm_froundl_op:
364 case mm_froundw_op:
365 case mm_fcvtl_op:
366 case mm_fcvtw_op:
367 if (insn.mm_fp1_format.op == mm_ffloorl_op)
368 func = ffloorl_op;
369 else if (insn.mm_fp1_format.op == mm_ffloorw_op)
370 func = ffloor_op;
371 else if (insn.mm_fp1_format.op == mm_fceill_op)
372 func = fceill_op;
373 else if (insn.mm_fp1_format.op == mm_fceilw_op)
374 func = fceil_op;
375 else if (insn.mm_fp1_format.op == mm_ftruncl_op)
376 func = ftruncl_op;
377 else if (insn.mm_fp1_format.op == mm_ftruncw_op)
378 func = ftrunc_op;
379 else if (insn.mm_fp1_format.op == mm_froundl_op)
380 func = froundl_op;
381 else if (insn.mm_fp1_format.op == mm_froundw_op)
382 func = fround_op;
383 else if (insn.mm_fp1_format.op == mm_fcvtl_op)
384 func = fcvtl_op;
385 else
386 func = fcvtw_op;
387 mips32_insn.fp0_format.opcode = cop1_op;
388 mips32_insn.fp0_format.fmt =
389 sd_format[insn.mm_fp1_format.fmt];
390 mips32_insn.fp0_format.ft = 0;
391 mips32_insn.fp0_format.fs =
392 insn.mm_fp1_format.fs;
393 mips32_insn.fp0_format.fd =
394 insn.mm_fp1_format.rt;
395 mips32_insn.fp0_format.func = func;
396 break;
397 case mm_frsqrt_op:
398 case mm_fsqrt_op:
399 case mm_frecip_op:
400 if (insn.mm_fp1_format.op == mm_frsqrt_op)
401 func = frsqrt_op;
402 else if (insn.mm_fp1_format.op == mm_fsqrt_op)
403 func = fsqrt_op;
404 else
405 func = frecip_op;
406 mips32_insn.fp0_format.opcode = cop1_op;
407 mips32_insn.fp0_format.fmt =
408 sdps_format[insn.mm_fp1_format.fmt];
409 mips32_insn.fp0_format.ft = 0;
410 mips32_insn.fp0_format.fs =
411 insn.mm_fp1_format.fs;
412 mips32_insn.fp0_format.fd =
413 insn.mm_fp1_format.rt;
414 mips32_insn.fp0_format.func = func;
415 break;
416 case mm_mfc1_op:
417 case mm_mtc1_op:
418 case mm_cfc1_op:
419 case mm_ctc1_op:
420 if (insn.mm_fp1_format.op == mm_mfc1_op)
421 op = mfc_op;
422 else if (insn.mm_fp1_format.op == mm_mtc1_op)
423 op = mtc_op;
424 else if (insn.mm_fp1_format.op == mm_cfc1_op)
425 op = cfc_op;
426 else
427 op = ctc_op;
428 mips32_insn.fp1_format.opcode = cop1_op;
429 mips32_insn.fp1_format.op = op;
430 mips32_insn.fp1_format.rt =
431 insn.mm_fp1_format.rt;
432 mips32_insn.fp1_format.fs =
433 insn.mm_fp1_format.fs;
434 mips32_insn.fp1_format.fd = 0;
435 mips32_insn.fp1_format.func = 0;
436 break;
437 default:
438 return SIGILL;
439 break;
440 }
441 break;
442 case mm_32f_74_op: /* c.cond.fmt */
443 mips32_insn.fp0_format.opcode = cop1_op;
444 mips32_insn.fp0_format.fmt =
445 sdps_format[insn.mm_fp4_format.fmt];
446 mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
447 mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
448 mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
449 mips32_insn.fp0_format.func =
450 insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
451 break;
452 default:
453 return SIGILL;
454 break;
455 }
456 break;
457 default:
458 return SIGILL;
459 break;
460 }
461
462 *insn_ptr = mips32_insn;
463 return 0;
464 }
465
466 int mm_isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
467 unsigned long *contpc)
468 {
469 union mips_instruction insn = (union mips_instruction)dec_insn.insn;
470 int bc_false = 0;
471 unsigned int fcr31;
472 unsigned int bit;
473
474 if (!cpu_has_mmips)
475 return 0;
476
477 switch (insn.mm_i_format.opcode) {
478 case mm_pool32a_op:
479 if ((insn.mm_i_format.simmediate & MM_POOL32A_MINOR_MASK) ==
480 mm_pool32axf_op) {
481 switch (insn.mm_i_format.simmediate >>
482 MM_POOL32A_MINOR_SHIFT) {
483 case mm_jalr_op:
484 case mm_jalrhb_op:
485 case mm_jalrs_op:
486 case mm_jalrshb_op:
487 if (insn.mm_i_format.rt != 0) /* Not mm_jr */
488 regs->regs[insn.mm_i_format.rt] =
489 regs->cp0_epc +
490 dec_insn.pc_inc +
491 dec_insn.next_pc_inc;
492 *contpc = regs->regs[insn.mm_i_format.rs];
493 return 1;
494 break;
495 }
496 }
497 break;
498 case mm_pool32i_op:
499 switch (insn.mm_i_format.rt) {
500 case mm_bltzals_op:
501 case mm_bltzal_op:
502 regs->regs[31] = regs->cp0_epc +
503 dec_insn.pc_inc +
504 dec_insn.next_pc_inc;
505 /* Fall through */
506 case mm_bltz_op:
507 if ((long)regs->regs[insn.mm_i_format.rs] < 0)
508 *contpc = regs->cp0_epc +
509 dec_insn.pc_inc +
510 (insn.mm_i_format.simmediate << 1);
511 else
512 *contpc = regs->cp0_epc +
513 dec_insn.pc_inc +
514 dec_insn.next_pc_inc;
515 return 1;
516 break;
517 case mm_bgezals_op:
518 case mm_bgezal_op:
519 regs->regs[31] = regs->cp0_epc +
520 dec_insn.pc_inc +
521 dec_insn.next_pc_inc;
522 /* Fall through */
523 case mm_bgez_op:
524 if ((long)regs->regs[insn.mm_i_format.rs] >= 0)
525 *contpc = regs->cp0_epc +
526 dec_insn.pc_inc +
527 (insn.mm_i_format.simmediate << 1);
528 else
529 *contpc = regs->cp0_epc +
530 dec_insn.pc_inc +
531 dec_insn.next_pc_inc;
532 return 1;
533 break;
534 case mm_blez_op:
535 if ((long)regs->regs[insn.mm_i_format.rs] <= 0)
536 *contpc = regs->cp0_epc +
537 dec_insn.pc_inc +
538 (insn.mm_i_format.simmediate << 1);
539 else
540 *contpc = regs->cp0_epc +
541 dec_insn.pc_inc +
542 dec_insn.next_pc_inc;
543 return 1;
544 break;
545 case mm_bgtz_op:
546 if ((long)regs->regs[insn.mm_i_format.rs] <= 0)
547 *contpc = regs->cp0_epc +
548 dec_insn.pc_inc +
549 (insn.mm_i_format.simmediate << 1);
550 else
551 *contpc = regs->cp0_epc +
552 dec_insn.pc_inc +
553 dec_insn.next_pc_inc;
554 return 1;
555 break;
556 case mm_bc2f_op:
557 case mm_bc1f_op:
558 bc_false = 1;
559 /* Fall through */
560 case mm_bc2t_op:
561 case mm_bc1t_op:
562 preempt_disable();
563 if (is_fpu_owner())
564 asm volatile("cfc1\t%0,$31" : "=r" (fcr31));
565 else
566 fcr31 = current->thread.fpu.fcr31;
567 preempt_enable();
568
569 if (bc_false)
570 fcr31 = ~fcr31;
571
572 bit = (insn.mm_i_format.rs >> 2);
573 bit += (bit != 0);
574 bit += 23;
575 if (fcr31 & (1 << bit))
576 *contpc = regs->cp0_epc +
577 dec_insn.pc_inc +
578 (insn.mm_i_format.simmediate << 1);
579 else
580 *contpc = regs->cp0_epc +
581 dec_insn.pc_inc + dec_insn.next_pc_inc;
582 return 1;
583 break;
584 }
585 break;
586 case mm_pool16c_op:
587 switch (insn.mm_i_format.rt) {
588 case mm_jalr16_op:
589 case mm_jalrs16_op:
590 regs->regs[31] = regs->cp0_epc +
591 dec_insn.pc_inc + dec_insn.next_pc_inc;
592 /* Fall through */
593 case mm_jr16_op:
594 *contpc = regs->regs[insn.mm_i_format.rs];
595 return 1;
596 break;
597 }
598 break;
599 case mm_beqz16_op:
600 if ((long)regs->regs[reg16to32map[insn.mm_b1_format.rs]] == 0)
601 *contpc = regs->cp0_epc +
602 dec_insn.pc_inc +
603 (insn.mm_b1_format.simmediate << 1);
604 else
605 *contpc = regs->cp0_epc +
606 dec_insn.pc_inc + dec_insn.next_pc_inc;
607 return 1;
608 break;
609 case mm_bnez16_op:
610 if ((long)regs->regs[reg16to32map[insn.mm_b1_format.rs]] != 0)
611 *contpc = regs->cp0_epc +
612 dec_insn.pc_inc +
613 (insn.mm_b1_format.simmediate << 1);
614 else
615 *contpc = regs->cp0_epc +
616 dec_insn.pc_inc + dec_insn.next_pc_inc;
617 return 1;
618 break;
619 case mm_b16_op:
620 *contpc = regs->cp0_epc + dec_insn.pc_inc +
621 (insn.mm_b0_format.simmediate << 1);
622 return 1;
623 break;
624 case mm_beq32_op:
625 if (regs->regs[insn.mm_i_format.rs] ==
626 regs->regs[insn.mm_i_format.rt])
627 *contpc = regs->cp0_epc +
628 dec_insn.pc_inc +
629 (insn.mm_i_format.simmediate << 1);
630 else
631 *contpc = regs->cp0_epc +
632 dec_insn.pc_inc +
633 dec_insn.next_pc_inc;
634 return 1;
635 break;
636 case mm_bne32_op:
637 if (regs->regs[insn.mm_i_format.rs] !=
638 regs->regs[insn.mm_i_format.rt])
639 *contpc = regs->cp0_epc +
640 dec_insn.pc_inc +
641 (insn.mm_i_format.simmediate << 1);
642 else
643 *contpc = regs->cp0_epc +
644 dec_insn.pc_inc + dec_insn.next_pc_inc;
645 return 1;
646 break;
647 case mm_jalx32_op:
648 regs->regs[31] = regs->cp0_epc +
649 dec_insn.pc_inc + dec_insn.next_pc_inc;
650 *contpc = regs->cp0_epc + dec_insn.pc_inc;
651 *contpc >>= 28;
652 *contpc <<= 28;
653 *contpc |= (insn.j_format.target << 2);
654 return 1;
655 break;
656 case mm_jals32_op:
657 case mm_jal32_op:
658 regs->regs[31] = regs->cp0_epc +
659 dec_insn.pc_inc + dec_insn.next_pc_inc;
660 /* Fall through */
661 case mm_j32_op:
662 *contpc = regs->cp0_epc + dec_insn.pc_inc;
663 *contpc >>= 27;
664 *contpc <<= 27;
665 *contpc |= (insn.j_format.target << 1);
666 set_isa16_mode(*contpc);
667 return 1;
668 break;
669 }
670 return 0;
671 }
672
673 /*
674 * Redundant with logic already in kernel/branch.c,
675 * embedded in compute_return_epc. At some point,
676 * a single subroutine should be used across both
677 * modules.
678 */
679 static int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
680 unsigned long *contpc)
681 {
682 union mips_instruction insn = (union mips_instruction)dec_insn.insn;
683 unsigned int fcr31;
684 unsigned int bit = 0;
685
686 switch (insn.i_format.opcode) {
687 case spec_op:
688 switch (insn.r_format.func) {
689 case jalr_op:
690 regs->regs[insn.r_format.rd] =
691 regs->cp0_epc + dec_insn.pc_inc +
692 dec_insn.next_pc_inc;
693 /* Fall through */
694 case jr_op:
695 *contpc = regs->regs[insn.r_format.rs];
696 return 1;
697 break;
698 }
699 break;
700 case bcond_op:
701 switch (insn.i_format.rt) {
702 case bltzal_op:
703 case bltzall_op:
704 regs->regs[31] = regs->cp0_epc +
705 dec_insn.pc_inc +
706 dec_insn.next_pc_inc;
707 /* Fall through */
708 case bltz_op:
709 case bltzl_op:
710 if ((long)regs->regs[insn.i_format.rs] < 0)
711 *contpc = regs->cp0_epc +
712 dec_insn.pc_inc +
713 (insn.i_format.simmediate << 2);
714 else
715 *contpc = regs->cp0_epc +
716 dec_insn.pc_inc +
717 dec_insn.next_pc_inc;
718 return 1;
719 break;
720 case bgezal_op:
721 case bgezall_op:
722 regs->regs[31] = regs->cp0_epc +
723 dec_insn.pc_inc +
724 dec_insn.next_pc_inc;
725 /* Fall through */
726 case bgez_op:
727 case bgezl_op:
728 if ((long)regs->regs[insn.i_format.rs] >= 0)
729 *contpc = regs->cp0_epc +
730 dec_insn.pc_inc +
731 (insn.i_format.simmediate << 2);
732 else
733 *contpc = regs->cp0_epc +
734 dec_insn.pc_inc +
735 dec_insn.next_pc_inc;
736 return 1;
737 break;
738 }
739 break;
740 case jalx_op:
741 set_isa16_mode(bit);
742 case jal_op:
743 regs->regs[31] = regs->cp0_epc +
744 dec_insn.pc_inc +
745 dec_insn.next_pc_inc;
746 /* Fall through */
747 case j_op:
748 *contpc = regs->cp0_epc + dec_insn.pc_inc;
749 *contpc >>= 28;
750 *contpc <<= 28;
751 *contpc |= (insn.j_format.target << 2);
752 /* Set microMIPS mode bit: XOR for jalx. */
753 *contpc ^= bit;
754 return 1;
755 break;
756 case beq_op:
757 case beql_op:
758 if (regs->regs[insn.i_format.rs] ==
759 regs->regs[insn.i_format.rt])
760 *contpc = regs->cp0_epc +
761 dec_insn.pc_inc +
762 (insn.i_format.simmediate << 2);
763 else
764 *contpc = regs->cp0_epc +
765 dec_insn.pc_inc +
766 dec_insn.next_pc_inc;
767 return 1;
768 break;
769 case bne_op:
770 case bnel_op:
771 if (regs->regs[insn.i_format.rs] !=
772 regs->regs[insn.i_format.rt])
773 *contpc = regs->cp0_epc +
774 dec_insn.pc_inc +
775 (insn.i_format.simmediate << 2);
776 else
777 *contpc = regs->cp0_epc +
778 dec_insn.pc_inc +
779 dec_insn.next_pc_inc;
780 return 1;
781 break;
782 case blez_op:
783 case blezl_op:
784 if ((long)regs->regs[insn.i_format.rs] <= 0)
785 *contpc = regs->cp0_epc +
786 dec_insn.pc_inc +
787 (insn.i_format.simmediate << 2);
788 else
789 *contpc = regs->cp0_epc +
790 dec_insn.pc_inc +
791 dec_insn.next_pc_inc;
792 return 1;
793 break;
794 case bgtz_op:
795 case bgtzl_op:
796 if ((long)regs->regs[insn.i_format.rs] > 0)
797 *contpc = regs->cp0_epc +
798 dec_insn.pc_inc +
799 (insn.i_format.simmediate << 2);
800 else
801 *contpc = regs->cp0_epc +
802 dec_insn.pc_inc +
803 dec_insn.next_pc_inc;
804 return 1;
805 break;
806 #ifdef CONFIG_CPU_CAVIUM_OCTEON
807 case lwc2_op: /* This is bbit0 on Octeon */
808 if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
809 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
810 else
811 *contpc = regs->cp0_epc + 8;
812 return 1;
813 case ldc2_op: /* This is bbit032 on Octeon */
814 if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
815 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
816 else
817 *contpc = regs->cp0_epc + 8;
818 return 1;
819 case swc2_op: /* This is bbit1 on Octeon */
820 if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
821 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
822 else
823 *contpc = regs->cp0_epc + 8;
824 return 1;
825 case sdc2_op: /* This is bbit132 on Octeon */
826 if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
827 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
828 else
829 *contpc = regs->cp0_epc + 8;
830 return 1;
831 #endif
832 case cop0_op:
833 case cop1_op:
834 case cop2_op:
835 case cop1x_op:
836 if (insn.i_format.rs == bc_op) {
837 preempt_disable();
838 if (is_fpu_owner())
839 asm volatile("cfc1\t%0,$31" : "=r" (fcr31));
840 else
841 fcr31 = current->thread.fpu.fcr31;
842 preempt_enable();
843
844 bit = (insn.i_format.rt >> 2);
845 bit += (bit != 0);
846 bit += 23;
847 switch (insn.i_format.rt & 3) {
848 case 0: /* bc1f */
849 case 2: /* bc1fl */
850 if (~fcr31 & (1 << bit))
851 *contpc = regs->cp0_epc +
852 dec_insn.pc_inc +
853 (insn.i_format.simmediate << 2);
854 else
855 *contpc = regs->cp0_epc +
856 dec_insn.pc_inc +
857 dec_insn.next_pc_inc;
858 return 1;
859 break;
860 case 1: /* bc1t */
861 case 3: /* bc1tl */
862 if (fcr31 & (1 << bit))
863 *contpc = regs->cp0_epc +
864 dec_insn.pc_inc +
865 (insn.i_format.simmediate << 2);
866 else
867 *contpc = regs->cp0_epc +
868 dec_insn.pc_inc +
869 dec_insn.next_pc_inc;
870 return 1;
871 break;
872 }
873 }
874 break;
875 }
876 return 0;
877 }
878
879 /*
880 * In the Linux kernel, we support selection of FPR format on the
881 * basis of the Status.FR bit. If an FPU is not present, the FR bit
882 * is hardwired to zero, which would imply a 32-bit FPU even for
883 * 64-bit CPUs so we rather look at TIF_32BIT_REGS.
884 * FPU emu is slow and bulky and optimizing this function offers fairly
885 * sizeable benefits so we try to be clever and make this function return
886 * a constant whenever possible, that is on 64-bit kernels without O32
887 * compatibility enabled and on 32-bit kernels.
888 */
889 static inline int cop1_64bit(struct pt_regs *xcp)
890 {
891 #if defined(CONFIG_64BIT) && !defined(CONFIG_MIPS32_O32)
892 return 1;
893 #elif defined(CONFIG_64BIT) && defined(CONFIG_MIPS32_O32)
894 return !test_thread_flag(TIF_32BIT_REGS);
895 #else
896 return 0;
897 #endif
898 }
899
900 #define SIFROMREG(si, x) ((si) = cop1_64bit(xcp) || !(x & 1) ? \
901 (int)ctx->fpr[x] : (int)(ctx->fpr[x & ~1] >> 32))
902
903 #define SITOREG(si, x) (ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = \
904 cop1_64bit(xcp) || !(x & 1) ? \
905 ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
906 ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
907
908 #define DIFROMREG(di, x) ((di) = ctx->fpr[x & ~(cop1_64bit(xcp) == 0)])
909 #define DITOREG(di, x) (ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = (di))
910
911 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
912 #define SPTOREG(sp, x) SITOREG((sp).bits, x)
913 #define DPFROMREG(dp, x) DIFROMREG((dp).bits, x)
914 #define DPTOREG(dp, x) DITOREG((dp).bits, x)
915
916 /*
917 * Emulate the single floating point instruction pointed at by EPC.
918 * Two instructions if the instruction is in a branch delay slot.
919 */
920
921 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
922 struct mm_decoded_insn dec_insn, void *__user *fault_addr)
923 {
924 mips_instruction ir;
925 unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
926 unsigned int cond;
927 int pc_inc;
928
929 /* XXX NEC Vr54xx bug workaround */
930 if (xcp->cp0_cause & CAUSEF_BD) {
931 if (dec_insn.micro_mips_mode) {
932 if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
933 xcp->cp0_cause &= ~CAUSEF_BD;
934 } else {
935 if (!isBranchInstr(xcp, dec_insn, &contpc))
936 xcp->cp0_cause &= ~CAUSEF_BD;
937 }
938 }
939
940 if (xcp->cp0_cause & CAUSEF_BD) {
941 /*
942 * The instruction to be emulated is in a branch delay slot
943 * which means that we have to emulate the branch instruction
944 * BEFORE we do the cop1 instruction.
945 *
946 * This branch could be a COP1 branch, but in that case we
947 * would have had a trap for that instruction, and would not
948 * come through this route.
949 *
950 * Linux MIPS branch emulator operates on context, updating the
951 * cp0_epc.
952 */
953 ir = dec_insn.next_insn; /* process delay slot instr */
954 pc_inc = dec_insn.next_pc_inc;
955 } else {
956 ir = dec_insn.insn; /* process current instr */
957 pc_inc = dec_insn.pc_inc;
958 }
959
960 /*
961 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
962 * instructions, we want to convert microMIPS FPU instructions
963 * into MIPS32 instructions so that we could reuse all of the
964 * FPU emulation code.
965 *
966 * NOTE: We cannot do this for branch instructions since they
967 * are not a subset. Example: Cannot emulate a 16-bit
968 * aligned target address with a MIPS32 instruction.
969 */
970 if (dec_insn.micro_mips_mode) {
971 /*
972 * If next instruction is a 16-bit instruction, then it
973 * it cannot be a FPU instruction. This could happen
974 * since we can be called for non-FPU instructions.
975 */
976 if ((pc_inc == 2) ||
977 (microMIPS32_to_MIPS32((union mips_instruction *)&ir)
978 == SIGILL))
979 return SIGILL;
980 }
981
982 emul:
983 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
984 MIPS_FPU_EMU_INC_STATS(emulated);
985 switch (MIPSInst_OPCODE(ir)) {
986 case ldc1_op:{
987 u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
988 MIPSInst_SIMM(ir));
989 u64 val;
990
991 MIPS_FPU_EMU_INC_STATS(loads);
992
993 if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
994 MIPS_FPU_EMU_INC_STATS(errors);
995 *fault_addr = va;
996 return SIGBUS;
997 }
998 if (__get_user(val, va)) {
999 MIPS_FPU_EMU_INC_STATS(errors);
1000 *fault_addr = va;
1001 return SIGSEGV;
1002 }
1003 DITOREG(val, MIPSInst_RT(ir));
1004 break;
1005 }
1006
1007 case sdc1_op:{
1008 u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1009 MIPSInst_SIMM(ir));
1010 u64 val;
1011
1012 MIPS_FPU_EMU_INC_STATS(stores);
1013 DIFROMREG(val, MIPSInst_RT(ir));
1014 if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1015 MIPS_FPU_EMU_INC_STATS(errors);
1016 *fault_addr = va;
1017 return SIGBUS;
1018 }
1019 if (__put_user(val, va)) {
1020 MIPS_FPU_EMU_INC_STATS(errors);
1021 *fault_addr = va;
1022 return SIGSEGV;
1023 }
1024 break;
1025 }
1026
1027 case lwc1_op:{
1028 u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1029 MIPSInst_SIMM(ir));
1030 u32 val;
1031
1032 MIPS_FPU_EMU_INC_STATS(loads);
1033 if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1034 MIPS_FPU_EMU_INC_STATS(errors);
1035 *fault_addr = va;
1036 return SIGBUS;
1037 }
1038 if (__get_user(val, va)) {
1039 MIPS_FPU_EMU_INC_STATS(errors);
1040 *fault_addr = va;
1041 return SIGSEGV;
1042 }
1043 SITOREG(val, MIPSInst_RT(ir));
1044 break;
1045 }
1046
1047 case swc1_op:{
1048 u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1049 MIPSInst_SIMM(ir));
1050 u32 val;
1051
1052 MIPS_FPU_EMU_INC_STATS(stores);
1053 SIFROMREG(val, MIPSInst_RT(ir));
1054 if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1055 MIPS_FPU_EMU_INC_STATS(errors);
1056 *fault_addr = va;
1057 return SIGBUS;
1058 }
1059 if (__put_user(val, va)) {
1060 MIPS_FPU_EMU_INC_STATS(errors);
1061 *fault_addr = va;
1062 return SIGSEGV;
1063 }
1064 break;
1065 }
1066
1067 case cop1_op:
1068 switch (MIPSInst_RS(ir)) {
1069
1070 #if defined(__mips64)
1071 case dmfc_op:
1072 /* copregister fs -> gpr[rt] */
1073 if (MIPSInst_RT(ir) != 0) {
1074 DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1075 MIPSInst_RD(ir));
1076 }
1077 break;
1078
1079 case dmtc_op:
1080 /* copregister fs <- rt */
1081 DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1082 break;
1083 #endif
1084
1085 case mfc_op:
1086 /* copregister rd -> gpr[rt] */
1087 if (MIPSInst_RT(ir) != 0) {
1088 SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1089 MIPSInst_RD(ir));
1090 }
1091 break;
1092
1093 case mtc_op:
1094 /* copregister rd <- rt */
1095 SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1096 break;
1097
1098 case cfc_op:{
1099 /* cop control register rd -> gpr[rt] */
1100 u32 value;
1101
1102 if (MIPSInst_RD(ir) == FPCREG_CSR) {
1103 value = ctx->fcr31;
1104 value = (value & ~FPU_CSR_RM) |
1105 mips_rm[modeindex(value)];
1106 #ifdef CSRTRACE
1107 printk("%p gpr[%d]<-csr=%08x\n",
1108 (void *) (xcp->cp0_epc),
1109 MIPSInst_RT(ir), value);
1110 #endif
1111 }
1112 else if (MIPSInst_RD(ir) == FPCREG_RID)
1113 value = 0;
1114 else
1115 value = 0;
1116 if (MIPSInst_RT(ir))
1117 xcp->regs[MIPSInst_RT(ir)] = value;
1118 break;
1119 }
1120
1121 case ctc_op:{
1122 /* copregister rd <- rt */
1123 u32 value;
1124
1125 if (MIPSInst_RT(ir) == 0)
1126 value = 0;
1127 else
1128 value = xcp->regs[MIPSInst_RT(ir)];
1129
1130 /* we only have one writable control reg
1131 */
1132 if (MIPSInst_RD(ir) == FPCREG_CSR) {
1133 #ifdef CSRTRACE
1134 printk("%p gpr[%d]->csr=%08x\n",
1135 (void *) (xcp->cp0_epc),
1136 MIPSInst_RT(ir), value);
1137 #endif
1138
1139 /*
1140 * Don't write reserved bits,
1141 * and convert to ieee library modes
1142 */
1143 ctx->fcr31 = (value &
1144 ~(FPU_CSR_RSVD | FPU_CSR_RM)) |
1145 ieee_rm[modeindex(value)];
1146 }
1147 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1148 return SIGFPE;
1149 }
1150 break;
1151 }
1152
1153 case bc_op:{
1154 int likely = 0;
1155
1156 if (xcp->cp0_cause & CAUSEF_BD)
1157 return SIGILL;
1158
1159 #if __mips >= 4
1160 cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
1161 #else
1162 cond = ctx->fcr31 & FPU_CSR_COND;
1163 #endif
1164 switch (MIPSInst_RT(ir) & 3) {
1165 case bcfl_op:
1166 likely = 1;
1167 case bcf_op:
1168 cond = !cond;
1169 break;
1170 case bctl_op:
1171 likely = 1;
1172 case bct_op:
1173 break;
1174 default:
1175 /* thats an illegal instruction */
1176 return SIGILL;
1177 }
1178
1179 xcp->cp0_cause |= CAUSEF_BD;
1180 if (cond) {
1181 /* branch taken: emulate dslot
1182 * instruction
1183 */
1184 xcp->cp0_epc += dec_insn.pc_inc;
1185
1186 contpc = MIPSInst_SIMM(ir);
1187 ir = dec_insn.next_insn;
1188 if (dec_insn.micro_mips_mode) {
1189 contpc = (xcp->cp0_epc + (contpc << 1));
1190
1191 /* If 16-bit instruction, not FPU. */
1192 if ((dec_insn.next_pc_inc == 2) ||
1193 (microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
1194
1195 /*
1196 * Since this instruction will
1197 * be put on the stack with
1198 * 32-bit words, get around
1199 * this problem by putting a
1200 * NOP16 as the second one.
1201 */
1202 if (dec_insn.next_pc_inc == 2)
1203 ir = (ir & (~0xffff)) | MM_NOP16;
1204
1205 /*
1206 * Single step the non-CP1
1207 * instruction in the dslot.
1208 */
1209 return mips_dsemul(xcp, ir, contpc);
1210 }
1211 } else
1212 contpc = (xcp->cp0_epc + (contpc << 2));
1213
1214 switch (MIPSInst_OPCODE(ir)) {
1215 case lwc1_op:
1216 case swc1_op:
1217 #if (__mips >= 2 || defined(__mips64))
1218 case ldc1_op:
1219 case sdc1_op:
1220 #endif
1221 case cop1_op:
1222 #if __mips >= 4 && __mips != 32
1223 case cop1x_op:
1224 #endif
1225 /* its one of ours */
1226 goto emul;
1227 #if __mips >= 4
1228 case spec_op:
1229 if (MIPSInst_FUNC(ir) == movc_op)
1230 goto emul;
1231 break;
1232 #endif
1233 }
1234
1235 /*
1236 * Single step the non-cp1
1237 * instruction in the dslot
1238 */
1239 return mips_dsemul(xcp, ir, contpc);
1240 }
1241 else {
1242 /* branch not taken */
1243 if (likely) {
1244 /*
1245 * branch likely nullifies
1246 * dslot if not taken
1247 */
1248 xcp->cp0_epc += dec_insn.pc_inc;
1249 contpc += dec_insn.pc_inc;
1250 /*
1251 * else continue & execute
1252 * dslot as normal insn
1253 */
1254 }
1255 }
1256 break;
1257 }
1258
1259 default:
1260 if (!(MIPSInst_RS(ir) & 0x10))
1261 return SIGILL;
1262 {
1263 int sig;
1264
1265 /* a real fpu computation instruction */
1266 if ((sig = fpu_emu(xcp, ctx, ir)))
1267 return sig;
1268 }
1269 }
1270 break;
1271
1272 #if __mips >= 4 && __mips != 32
1273 case cop1x_op:{
1274 int sig = fpux_emu(xcp, ctx, ir, fault_addr);
1275 if (sig)
1276 return sig;
1277 break;
1278 }
1279 #endif
1280
1281 #if __mips >= 4
1282 case spec_op:
1283 if (MIPSInst_FUNC(ir) != movc_op)
1284 return SIGILL;
1285 cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1286 if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1287 xcp->regs[MIPSInst_RD(ir)] =
1288 xcp->regs[MIPSInst_RS(ir)];
1289 break;
1290 #endif
1291
1292 default:
1293 return SIGILL;
1294 }
1295
1296 /* we did it !! */
1297 xcp->cp0_epc = contpc;
1298 xcp->cp0_cause &= ~CAUSEF_BD;
1299
1300 return 0;
1301 }
1302
1303 /*
1304 * Conversion table from MIPS compare ops 48-63
1305 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1306 */
1307 static const unsigned char cmptab[8] = {
1308 0, /* cmp_0 (sig) cmp_sf */
1309 IEEE754_CUN, /* cmp_un (sig) cmp_ngle */
1310 IEEE754_CEQ, /* cmp_eq (sig) cmp_seq */
1311 IEEE754_CEQ | IEEE754_CUN, /* cmp_ueq (sig) cmp_ngl */
1312 IEEE754_CLT, /* cmp_olt (sig) cmp_lt */
1313 IEEE754_CLT | IEEE754_CUN, /* cmp_ult (sig) cmp_nge */
1314 IEEE754_CLT | IEEE754_CEQ, /* cmp_ole (sig) cmp_le */
1315 IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN, /* cmp_ule (sig) cmp_ngt */
1316 };
1317
1318
1319 #if __mips >= 4 && __mips != 32
1320
1321 /*
1322 * Additional MIPS4 instructions
1323 */
1324
1325 #define DEF3OP(name, p, f1, f2, f3) \
1326 static ieee754##p fpemu_##p##_##name(ieee754##p r, ieee754##p s, \
1327 ieee754##p t) \
1328 { \
1329 struct _ieee754_csr ieee754_csr_save; \
1330 s = f1(s, t); \
1331 ieee754_csr_save = ieee754_csr; \
1332 s = f2(s, r); \
1333 ieee754_csr_save.cx |= ieee754_csr.cx; \
1334 ieee754_csr_save.sx |= ieee754_csr.sx; \
1335 s = f3(s); \
1336 ieee754_csr.cx |= ieee754_csr_save.cx; \
1337 ieee754_csr.sx |= ieee754_csr_save.sx; \
1338 return s; \
1339 }
1340
1341 static ieee754dp fpemu_dp_recip(ieee754dp d)
1342 {
1343 return ieee754dp_div(ieee754dp_one(0), d);
1344 }
1345
1346 static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
1347 {
1348 return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1349 }
1350
1351 static ieee754sp fpemu_sp_recip(ieee754sp s)
1352 {
1353 return ieee754sp_div(ieee754sp_one(0), s);
1354 }
1355
1356 static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
1357 {
1358 return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1359 }
1360
1361 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1362 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1363 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1364 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1365 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1366 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1367 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1368 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1369
1370 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1371 mips_instruction ir, void *__user *fault_addr)
1372 {
1373 unsigned rcsr = 0; /* resulting csr */
1374
1375 MIPS_FPU_EMU_INC_STATS(cp1xops);
1376
1377 switch (MIPSInst_FMA_FFMT(ir)) {
1378 case s_fmt:{ /* 0 */
1379
1380 ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
1381 ieee754sp fd, fr, fs, ft;
1382 u32 __user *va;
1383 u32 val;
1384
1385 switch (MIPSInst_FUNC(ir)) {
1386 case lwxc1_op:
1387 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1388 xcp->regs[MIPSInst_FT(ir)]);
1389
1390 MIPS_FPU_EMU_INC_STATS(loads);
1391 if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1392 MIPS_FPU_EMU_INC_STATS(errors);
1393 *fault_addr = va;
1394 return SIGBUS;
1395 }
1396 if (__get_user(val, va)) {
1397 MIPS_FPU_EMU_INC_STATS(errors);
1398 *fault_addr = va;
1399 return SIGSEGV;
1400 }
1401 SITOREG(val, MIPSInst_FD(ir));
1402 break;
1403
1404 case swxc1_op:
1405 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1406 xcp->regs[MIPSInst_FT(ir)]);
1407
1408 MIPS_FPU_EMU_INC_STATS(stores);
1409
1410 SIFROMREG(val, MIPSInst_FS(ir));
1411 if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1412 MIPS_FPU_EMU_INC_STATS(errors);
1413 *fault_addr = va;
1414 return SIGBUS;
1415 }
1416 if (put_user(val, va)) {
1417 MIPS_FPU_EMU_INC_STATS(errors);
1418 *fault_addr = va;
1419 return SIGSEGV;
1420 }
1421 break;
1422
1423 case madd_s_op:
1424 handler = fpemu_sp_madd;
1425 goto scoptop;
1426 case msub_s_op:
1427 handler = fpemu_sp_msub;
1428 goto scoptop;
1429 case nmadd_s_op:
1430 handler = fpemu_sp_nmadd;
1431 goto scoptop;
1432 case nmsub_s_op:
1433 handler = fpemu_sp_nmsub;
1434 goto scoptop;
1435
1436 scoptop:
1437 SPFROMREG(fr, MIPSInst_FR(ir));
1438 SPFROMREG(fs, MIPSInst_FS(ir));
1439 SPFROMREG(ft, MIPSInst_FT(ir));
1440 fd = (*handler) (fr, fs, ft);
1441 SPTOREG(fd, MIPSInst_FD(ir));
1442
1443 copcsr:
1444 if (ieee754_cxtest(IEEE754_INEXACT))
1445 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1446 if (ieee754_cxtest(IEEE754_UNDERFLOW))
1447 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1448 if (ieee754_cxtest(IEEE754_OVERFLOW))
1449 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1450 if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
1451 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1452
1453 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1454 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1455 /*printk ("SIGFPE: fpu csr = %08x\n",
1456 ctx->fcr31); */
1457 return SIGFPE;
1458 }
1459
1460 break;
1461
1462 default:
1463 return SIGILL;
1464 }
1465 break;
1466 }
1467
1468 case d_fmt:{ /* 1 */
1469 ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
1470 ieee754dp fd, fr, fs, ft;
1471 u64 __user *va;
1472 u64 val;
1473
1474 switch (MIPSInst_FUNC(ir)) {
1475 case ldxc1_op:
1476 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1477 xcp->regs[MIPSInst_FT(ir)]);
1478
1479 MIPS_FPU_EMU_INC_STATS(loads);
1480 if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1481 MIPS_FPU_EMU_INC_STATS(errors);
1482 *fault_addr = va;
1483 return SIGBUS;
1484 }
1485 if (__get_user(val, va)) {
1486 MIPS_FPU_EMU_INC_STATS(errors);
1487 *fault_addr = va;
1488 return SIGSEGV;
1489 }
1490 DITOREG(val, MIPSInst_FD(ir));
1491 break;
1492
1493 case sdxc1_op:
1494 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1495 xcp->regs[MIPSInst_FT(ir)]);
1496
1497 MIPS_FPU_EMU_INC_STATS(stores);
1498 DIFROMREG(val, MIPSInst_FS(ir));
1499 if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1500 MIPS_FPU_EMU_INC_STATS(errors);
1501 *fault_addr = va;
1502 return SIGBUS;
1503 }
1504 if (__put_user(val, va)) {
1505 MIPS_FPU_EMU_INC_STATS(errors);
1506 *fault_addr = va;
1507 return SIGSEGV;
1508 }
1509 break;
1510
1511 case madd_d_op:
1512 handler = fpemu_dp_madd;
1513 goto dcoptop;
1514 case msub_d_op:
1515 handler = fpemu_dp_msub;
1516 goto dcoptop;
1517 case nmadd_d_op:
1518 handler = fpemu_dp_nmadd;
1519 goto dcoptop;
1520 case nmsub_d_op:
1521 handler = fpemu_dp_nmsub;
1522 goto dcoptop;
1523
1524 dcoptop:
1525 DPFROMREG(fr, MIPSInst_FR(ir));
1526 DPFROMREG(fs, MIPSInst_FS(ir));
1527 DPFROMREG(ft, MIPSInst_FT(ir));
1528 fd = (*handler) (fr, fs, ft);
1529 DPTOREG(fd, MIPSInst_FD(ir));
1530 goto copcsr;
1531
1532 default:
1533 return SIGILL;
1534 }
1535 break;
1536 }
1537
1538 case 0x7: /* 7 */
1539 if (MIPSInst_FUNC(ir) != pfetch_op) {
1540 return SIGILL;
1541 }
1542 /* ignore prefx operation */
1543 break;
1544
1545 default:
1546 return SIGILL;
1547 }
1548
1549 return 0;
1550 }
1551 #endif
1552
1553
1554
1555 /*
1556 * Emulate a single COP1 arithmetic instruction.
1557 */
1558 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1559 mips_instruction ir)
1560 {
1561 int rfmt; /* resulting format */
1562 unsigned rcsr = 0; /* resulting csr */
1563 unsigned cond;
1564 union {
1565 ieee754dp d;
1566 ieee754sp s;
1567 int w;
1568 #ifdef __mips64
1569 s64 l;
1570 #endif
1571 } rv; /* resulting value */
1572
1573 MIPS_FPU_EMU_INC_STATS(cp1ops);
1574 switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1575 case s_fmt:{ /* 0 */
1576 union {
1577 ieee754sp(*b) (ieee754sp, ieee754sp);
1578 ieee754sp(*u) (ieee754sp);
1579 } handler;
1580
1581 switch (MIPSInst_FUNC(ir)) {
1582 /* binary ops */
1583 case fadd_op:
1584 handler.b = ieee754sp_add;
1585 goto scopbop;
1586 case fsub_op:
1587 handler.b = ieee754sp_sub;
1588 goto scopbop;
1589 case fmul_op:
1590 handler.b = ieee754sp_mul;
1591 goto scopbop;
1592 case fdiv_op:
1593 handler.b = ieee754sp_div;
1594 goto scopbop;
1595
1596 /* unary ops */
1597 #if __mips >= 2 || defined(__mips64)
1598 case fsqrt_op:
1599 handler.u = ieee754sp_sqrt;
1600 goto scopuop;
1601 #endif
1602 #if __mips >= 4 && __mips != 32
1603 case frsqrt_op:
1604 handler.u = fpemu_sp_rsqrt;
1605 goto scopuop;
1606 case frecip_op:
1607 handler.u = fpemu_sp_recip;
1608 goto scopuop;
1609 #endif
1610 #if __mips >= 4
1611 case fmovc_op:
1612 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1613 if (((ctx->fcr31 & cond) != 0) !=
1614 ((MIPSInst_FT(ir) & 1) != 0))
1615 return 0;
1616 SPFROMREG(rv.s, MIPSInst_FS(ir));
1617 break;
1618 case fmovz_op:
1619 if (xcp->regs[MIPSInst_FT(ir)] != 0)
1620 return 0;
1621 SPFROMREG(rv.s, MIPSInst_FS(ir));
1622 break;
1623 case fmovn_op:
1624 if (xcp->regs[MIPSInst_FT(ir)] == 0)
1625 return 0;
1626 SPFROMREG(rv.s, MIPSInst_FS(ir));
1627 break;
1628 #endif
1629 case fabs_op:
1630 handler.u = ieee754sp_abs;
1631 goto scopuop;
1632 case fneg_op:
1633 handler.u = ieee754sp_neg;
1634 goto scopuop;
1635 case fmov_op:
1636 /* an easy one */
1637 SPFROMREG(rv.s, MIPSInst_FS(ir));
1638 goto copcsr;
1639
1640 /* binary op on handler */
1641 scopbop:
1642 {
1643 ieee754sp fs, ft;
1644
1645 SPFROMREG(fs, MIPSInst_FS(ir));
1646 SPFROMREG(ft, MIPSInst_FT(ir));
1647
1648 rv.s = (*handler.b) (fs, ft);
1649 goto copcsr;
1650 }
1651 scopuop:
1652 {
1653 ieee754sp fs;
1654
1655 SPFROMREG(fs, MIPSInst_FS(ir));
1656 rv.s = (*handler.u) (fs);
1657 goto copcsr;
1658 }
1659 copcsr:
1660 if (ieee754_cxtest(IEEE754_INEXACT))
1661 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1662 if (ieee754_cxtest(IEEE754_UNDERFLOW))
1663 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1664 if (ieee754_cxtest(IEEE754_OVERFLOW))
1665 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1666 if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
1667 rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1668 if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
1669 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1670 break;
1671
1672 /* unary conv ops */
1673 case fcvts_op:
1674 return SIGILL; /* not defined */
1675 case fcvtd_op:{
1676 ieee754sp fs;
1677
1678 SPFROMREG(fs, MIPSInst_FS(ir));
1679 rv.d = ieee754dp_fsp(fs);
1680 rfmt = d_fmt;
1681 goto copcsr;
1682 }
1683 case fcvtw_op:{
1684 ieee754sp fs;
1685
1686 SPFROMREG(fs, MIPSInst_FS(ir));
1687 rv.w = ieee754sp_tint(fs);
1688 rfmt = w_fmt;
1689 goto copcsr;
1690 }
1691
1692 #if __mips >= 2 || defined(__mips64)
1693 case fround_op:
1694 case ftrunc_op:
1695 case fceil_op:
1696 case ffloor_op:{
1697 unsigned int oldrm = ieee754_csr.rm;
1698 ieee754sp fs;
1699
1700 SPFROMREG(fs, MIPSInst_FS(ir));
1701 ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1702 rv.w = ieee754sp_tint(fs);
1703 ieee754_csr.rm = oldrm;
1704 rfmt = w_fmt;
1705 goto copcsr;
1706 }
1707 #endif /* __mips >= 2 */
1708
1709 #if defined(__mips64)
1710 case fcvtl_op:{
1711 ieee754sp fs;
1712
1713 SPFROMREG(fs, MIPSInst_FS(ir));
1714 rv.l = ieee754sp_tlong(fs);
1715 rfmt = l_fmt;
1716 goto copcsr;
1717 }
1718
1719 case froundl_op:
1720 case ftruncl_op:
1721 case fceill_op:
1722 case ffloorl_op:{
1723 unsigned int oldrm = ieee754_csr.rm;
1724 ieee754sp fs;
1725
1726 SPFROMREG(fs, MIPSInst_FS(ir));
1727 ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1728 rv.l = ieee754sp_tlong(fs);
1729 ieee754_csr.rm = oldrm;
1730 rfmt = l_fmt;
1731 goto copcsr;
1732 }
1733 #endif /* defined(__mips64) */
1734
1735 default:
1736 if (MIPSInst_FUNC(ir) >= fcmp_op) {
1737 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1738 ieee754sp fs, ft;
1739
1740 SPFROMREG(fs, MIPSInst_FS(ir));
1741 SPFROMREG(ft, MIPSInst_FT(ir));
1742 rv.w = ieee754sp_cmp(fs, ft,
1743 cmptab[cmpop & 0x7], cmpop & 0x8);
1744 rfmt = -1;
1745 if ((cmpop & 0x8) && ieee754_cxtest
1746 (IEEE754_INVALID_OPERATION))
1747 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1748 else
1749 goto copcsr;
1750
1751 }
1752 else {
1753 return SIGILL;
1754 }
1755 break;
1756 }
1757 break;
1758 }
1759
1760 case d_fmt:{
1761 union {
1762 ieee754dp(*b) (ieee754dp, ieee754dp);
1763 ieee754dp(*u) (ieee754dp);
1764 } handler;
1765
1766 switch (MIPSInst_FUNC(ir)) {
1767 /* binary ops */
1768 case fadd_op:
1769 handler.b = ieee754dp_add;
1770 goto dcopbop;
1771 case fsub_op:
1772 handler.b = ieee754dp_sub;
1773 goto dcopbop;
1774 case fmul_op:
1775 handler.b = ieee754dp_mul;
1776 goto dcopbop;
1777 case fdiv_op:
1778 handler.b = ieee754dp_div;
1779 goto dcopbop;
1780
1781 /* unary ops */
1782 #if __mips >= 2 || defined(__mips64)
1783 case fsqrt_op:
1784 handler.u = ieee754dp_sqrt;
1785 goto dcopuop;
1786 #endif
1787 #if __mips >= 4 && __mips != 32
1788 case frsqrt_op:
1789 handler.u = fpemu_dp_rsqrt;
1790 goto dcopuop;
1791 case frecip_op:
1792 handler.u = fpemu_dp_recip;
1793 goto dcopuop;
1794 #endif
1795 #if __mips >= 4
1796 case fmovc_op:
1797 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1798 if (((ctx->fcr31 & cond) != 0) !=
1799 ((MIPSInst_FT(ir) & 1) != 0))
1800 return 0;
1801 DPFROMREG(rv.d, MIPSInst_FS(ir));
1802 break;
1803 case fmovz_op:
1804 if (xcp->regs[MIPSInst_FT(ir)] != 0)
1805 return 0;
1806 DPFROMREG(rv.d, MIPSInst_FS(ir));
1807 break;
1808 case fmovn_op:
1809 if (xcp->regs[MIPSInst_FT(ir)] == 0)
1810 return 0;
1811 DPFROMREG(rv.d, MIPSInst_FS(ir));
1812 break;
1813 #endif
1814 case fabs_op:
1815 handler.u = ieee754dp_abs;
1816 goto dcopuop;
1817
1818 case fneg_op:
1819 handler.u = ieee754dp_neg;
1820 goto dcopuop;
1821
1822 case fmov_op:
1823 /* an easy one */
1824 DPFROMREG(rv.d, MIPSInst_FS(ir));
1825 goto copcsr;
1826
1827 /* binary op on handler */
1828 dcopbop:{
1829 ieee754dp fs, ft;
1830
1831 DPFROMREG(fs, MIPSInst_FS(ir));
1832 DPFROMREG(ft, MIPSInst_FT(ir));
1833
1834 rv.d = (*handler.b) (fs, ft);
1835 goto copcsr;
1836 }
1837 dcopuop:{
1838 ieee754dp fs;
1839
1840 DPFROMREG(fs, MIPSInst_FS(ir));
1841 rv.d = (*handler.u) (fs);
1842 goto copcsr;
1843 }
1844
1845 /* unary conv ops */
1846 case fcvts_op:{
1847 ieee754dp fs;
1848
1849 DPFROMREG(fs, MIPSInst_FS(ir));
1850 rv.s = ieee754sp_fdp(fs);
1851 rfmt = s_fmt;
1852 goto copcsr;
1853 }
1854 case fcvtd_op:
1855 return SIGILL; /* not defined */
1856
1857 case fcvtw_op:{
1858 ieee754dp fs;
1859
1860 DPFROMREG(fs, MIPSInst_FS(ir));
1861 rv.w = ieee754dp_tint(fs); /* wrong */
1862 rfmt = w_fmt;
1863 goto copcsr;
1864 }
1865
1866 #if __mips >= 2 || defined(__mips64)
1867 case fround_op:
1868 case ftrunc_op:
1869 case fceil_op:
1870 case ffloor_op:{
1871 unsigned int oldrm = ieee754_csr.rm;
1872 ieee754dp fs;
1873
1874 DPFROMREG(fs, MIPSInst_FS(ir));
1875 ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1876 rv.w = ieee754dp_tint(fs);
1877 ieee754_csr.rm = oldrm;
1878 rfmt = w_fmt;
1879 goto copcsr;
1880 }
1881 #endif
1882
1883 #if defined(__mips64)
1884 case fcvtl_op:{
1885 ieee754dp fs;
1886
1887 DPFROMREG(fs, MIPSInst_FS(ir));
1888 rv.l = ieee754dp_tlong(fs);
1889 rfmt = l_fmt;
1890 goto copcsr;
1891 }
1892
1893 case froundl_op:
1894 case ftruncl_op:
1895 case fceill_op:
1896 case ffloorl_op:{
1897 unsigned int oldrm = ieee754_csr.rm;
1898 ieee754dp fs;
1899
1900 DPFROMREG(fs, MIPSInst_FS(ir));
1901 ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1902 rv.l = ieee754dp_tlong(fs);
1903 ieee754_csr.rm = oldrm;
1904 rfmt = l_fmt;
1905 goto copcsr;
1906 }
1907 #endif /* __mips >= 3 */
1908
1909 default:
1910 if (MIPSInst_FUNC(ir) >= fcmp_op) {
1911 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1912 ieee754dp fs, ft;
1913
1914 DPFROMREG(fs, MIPSInst_FS(ir));
1915 DPFROMREG(ft, MIPSInst_FT(ir));
1916 rv.w = ieee754dp_cmp(fs, ft,
1917 cmptab[cmpop & 0x7], cmpop & 0x8);
1918 rfmt = -1;
1919 if ((cmpop & 0x8)
1920 &&
1921 ieee754_cxtest
1922 (IEEE754_INVALID_OPERATION))
1923 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1924 else
1925 goto copcsr;
1926
1927 }
1928 else {
1929 return SIGILL;
1930 }
1931 break;
1932 }
1933 break;
1934 }
1935
1936 case w_fmt:{
1937 ieee754sp fs;
1938
1939 switch (MIPSInst_FUNC(ir)) {
1940 case fcvts_op:
1941 /* convert word to single precision real */
1942 SPFROMREG(fs, MIPSInst_FS(ir));
1943 rv.s = ieee754sp_fint(fs.bits);
1944 rfmt = s_fmt;
1945 goto copcsr;
1946 case fcvtd_op:
1947 /* convert word to double precision real */
1948 SPFROMREG(fs, MIPSInst_FS(ir));
1949 rv.d = ieee754dp_fint(fs.bits);
1950 rfmt = d_fmt;
1951 goto copcsr;
1952 default:
1953 return SIGILL;
1954 }
1955 break;
1956 }
1957
1958 #if defined(__mips64)
1959 case l_fmt:{
1960 switch (MIPSInst_FUNC(ir)) {
1961 case fcvts_op:
1962 /* convert long to single precision real */
1963 rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1964 rfmt = s_fmt;
1965 goto copcsr;
1966 case fcvtd_op:
1967 /* convert long to double precision real */
1968 rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1969 rfmt = d_fmt;
1970 goto copcsr;
1971 default:
1972 return SIGILL;
1973 }
1974 break;
1975 }
1976 #endif
1977
1978 default:
1979 return SIGILL;
1980 }
1981
1982 /*
1983 * Update the fpu CSR register for this operation.
1984 * If an exception is required, generate a tidy SIGFPE exception,
1985 * without updating the result register.
1986 * Note: cause exception bits do not accumulate, they are rewritten
1987 * for each op; only the flag/sticky bits accumulate.
1988 */
1989 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1990 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1991 /*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1992 return SIGFPE;
1993 }
1994
1995 /*
1996 * Now we can safely write the result back to the register file.
1997 */
1998 switch (rfmt) {
1999 case -1:{
2000 #if __mips >= 4
2001 cond = fpucondbit[MIPSInst_FD(ir) >> 2];
2002 #else
2003 cond = FPU_CSR_COND;
2004 #endif
2005 if (rv.w)
2006 ctx->fcr31 |= cond;
2007 else
2008 ctx->fcr31 &= ~cond;
2009 break;
2010 }
2011 case d_fmt:
2012 DPTOREG(rv.d, MIPSInst_FD(ir));
2013 break;
2014 case s_fmt:
2015 SPTOREG(rv.s, MIPSInst_FD(ir));
2016 break;
2017 case w_fmt:
2018 SITOREG(rv.w, MIPSInst_FD(ir));
2019 break;
2020 #if defined(__mips64)
2021 case l_fmt:
2022 DITOREG(rv.l, MIPSInst_FD(ir));
2023 break;
2024 #endif
2025 default:
2026 return SIGILL;
2027 }
2028
2029 return 0;
2030 }
2031
2032 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
2033 int has_fpu, void *__user *fault_addr)
2034 {
2035 unsigned long oldepc, prevepc;
2036 struct mm_decoded_insn dec_insn;
2037 u16 instr[4];
2038 u16 *instr_ptr;
2039 int sig = 0;
2040
2041 oldepc = xcp->cp0_epc;
2042 do {
2043 prevepc = xcp->cp0_epc;
2044
2045 if (get_isa16_mode(prevepc) && cpu_has_mmips) {
2046 /*
2047 * Get next 2 microMIPS instructions and convert them
2048 * into 32-bit instructions.
2049 */
2050 if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
2051 (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
2052 (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
2053 (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
2054 MIPS_FPU_EMU_INC_STATS(errors);
2055 return SIGBUS;
2056 }
2057 instr_ptr = instr;
2058
2059 /* Get first instruction. */
2060 if (mm_insn_16bit(*instr_ptr)) {
2061 /* Duplicate the half-word. */
2062 dec_insn.insn = (*instr_ptr << 16) |
2063 (*instr_ptr);
2064 /* 16-bit instruction. */
2065 dec_insn.pc_inc = 2;
2066 instr_ptr += 1;
2067 } else {
2068 dec_insn.insn = (*instr_ptr << 16) |
2069 *(instr_ptr+1);
2070 /* 32-bit instruction. */
2071 dec_insn.pc_inc = 4;
2072 instr_ptr += 2;
2073 }
2074 /* Get second instruction. */
2075 if (mm_insn_16bit(*instr_ptr)) {
2076 /* Duplicate the half-word. */
2077 dec_insn.next_insn = (*instr_ptr << 16) |
2078 (*instr_ptr);
2079 /* 16-bit instruction. */
2080 dec_insn.next_pc_inc = 2;
2081 } else {
2082 dec_insn.next_insn = (*instr_ptr << 16) |
2083 *(instr_ptr+1);
2084 /* 32-bit instruction. */
2085 dec_insn.next_pc_inc = 4;
2086 }
2087 dec_insn.micro_mips_mode = 1;
2088 } else {
2089 if ((get_user(dec_insn.insn,
2090 (mips_instruction __user *) xcp->cp0_epc)) ||
2091 (get_user(dec_insn.next_insn,
2092 (mips_instruction __user *)(xcp->cp0_epc+4)))) {
2093 MIPS_FPU_EMU_INC_STATS(errors);
2094 return SIGBUS;
2095 }
2096 dec_insn.pc_inc = 4;
2097 dec_insn.next_pc_inc = 4;
2098 dec_insn.micro_mips_mode = 0;
2099 }
2100
2101 if ((dec_insn.insn == 0) ||
2102 ((dec_insn.pc_inc == 2) &&
2103 ((dec_insn.insn & 0xffff) == MM_NOP16)))
2104 xcp->cp0_epc += dec_insn.pc_inc; /* Skip NOPs */
2105 else {
2106 /*
2107 * The 'ieee754_csr' is an alias of
2108 * ctx->fcr31. No need to copy ctx->fcr31 to
2109 * ieee754_csr. But ieee754_csr.rm is ieee
2110 * library modes. (not mips rounding mode)
2111 */
2112 /* convert to ieee library modes */
2113 ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
2114 sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
2115 /* revert to mips rounding mode */
2116 ieee754_csr.rm = mips_rm[ieee754_csr.rm];
2117 }
2118
2119 if (has_fpu)
2120 break;
2121 if (sig)
2122 break;
2123
2124 cond_resched();
2125 } while (xcp->cp0_epc > prevepc);
2126
2127 /* SIGILL indicates a non-fpu instruction */
2128 if (sig == SIGILL && xcp->cp0_epc != oldepc)
2129 /* but if epc has advanced, then ignore it */
2130 sig = 0;
2131
2132 return sig;
2133 }
2134
2135 #ifdef CONFIG_DEBUG_FS
2136
2137 static int fpuemu_stat_get(void *data, u64 *val)
2138 {
2139 int cpu;
2140 unsigned long sum = 0;
2141 for_each_online_cpu(cpu) {
2142 struct mips_fpu_emulator_stats *ps;
2143 local_t *pv;
2144 ps = &per_cpu(fpuemustats, cpu);
2145 pv = (void *)ps + (unsigned long)data;
2146 sum += local_read(pv);
2147 }
2148 *val = sum;
2149 return 0;
2150 }
2151 DEFINE_SIMPLE_ATTRIBUTE(fops_fpuemu_stat, fpuemu_stat_get, NULL, "%llu\n");
2152
2153 extern struct dentry *mips_debugfs_dir;
2154 static int __init debugfs_fpuemu(void)
2155 {
2156 struct dentry *d, *dir;
2157
2158 if (!mips_debugfs_dir)
2159 return -ENODEV;
2160 dir = debugfs_create_dir("fpuemustats", mips_debugfs_dir);
2161 if (!dir)
2162 return -ENOMEM;
2163
2164 #define FPU_STAT_CREATE(M) \
2165 do { \
2166 d = debugfs_create_file(#M , S_IRUGO, dir, \
2167 (void *)offsetof(struct mips_fpu_emulator_stats, M), \
2168 &fops_fpuemu_stat); \
2169 if (!d) \
2170 return -ENOMEM; \
2171 } while (0)
2172
2173 FPU_STAT_CREATE(emulated);
2174 FPU_STAT_CREATE(loads);
2175 FPU_STAT_CREATE(stores);
2176 FPU_STAT_CREATE(cp1ops);
2177 FPU_STAT_CREATE(cp1xops);
2178 FPU_STAT_CREATE(errors);
2179
2180 return 0;
2181 }
2182 __initcall(debugfs_fpuemu);
2183 #endif