]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/mips/mm/c-r4k.c
ASoC: wm_adsp: add support for DSP region lock
[mirror_ubuntu-bionic-kernel.git] / arch / mips / mm / c-r4k.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 */
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/highmem.h>
14 #include <linux/kernel.h>
15 #include <linux/linkage.h>
16 #include <linux/preempt.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/mm.h>
20 #include <linux/export.h>
21 #include <linux/bitops.h>
22
23 #include <asm/bcache.h>
24 #include <asm/bootinfo.h>
25 #include <asm/cache.h>
26 #include <asm/cacheops.h>
27 #include <asm/cpu.h>
28 #include <asm/cpu-features.h>
29 #include <asm/cpu-type.h>
30 #include <asm/io.h>
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/r4kcache.h>
34 #include <asm/sections.h>
35 #include <asm/mmu_context.h>
36 #include <asm/war.h>
37 #include <asm/cacheflush.h> /* for run_uncached() */
38 #include <asm/traps.h>
39 #include <asm/dma-coherence.h>
40 #include <asm/mips-cm.h>
41
42 /*
43 * Bits describing what cache ops an SMP callback function may perform.
44 *
45 * R4K_HIT - Virtual user or kernel address based cache operations. The
46 * active_mm must be checked before using user addresses, falling
47 * back to kmap.
48 * R4K_INDEX - Index based cache operations.
49 */
50
51 #define R4K_HIT BIT(0)
52 #define R4K_INDEX BIT(1)
53
54 /**
55 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
56 * @type: Type of cache operations (R4K_HIT or R4K_INDEX).
57 *
58 * Decides whether a cache op needs to be performed on every core in the system.
59 * This may change depending on the @type of cache operation, as well as the set
60 * of online CPUs, so preemption should be disabled by the caller to prevent CPU
61 * hotplug from changing the result.
62 *
63 * Returns: 1 if the cache operation @type should be done on every core in
64 * the system.
65 * 0 if the cache operation @type is globalized and only needs to
66 * be performed on a simple CPU.
67 */
68 static inline bool r4k_op_needs_ipi(unsigned int type)
69 {
70 /* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
71 if (type == R4K_HIT && mips_cm_present())
72 return false;
73
74 /*
75 * Hardware doesn't globalize the required cache ops, so SMP calls may
76 * be needed, but only if there are foreign CPUs (non-siblings with
77 * separate caches).
78 */
79 /* cpu_foreign_map[] undeclared when !CONFIG_SMP */
80 #ifdef CONFIG_SMP
81 return !cpumask_empty(&cpu_foreign_map[0]);
82 #else
83 return false;
84 #endif
85 }
86
87 /*
88 * Special Variant of smp_call_function for use by cache functions:
89 *
90 * o No return value
91 * o collapses to normal function call on UP kernels
92 * o collapses to normal function call on systems with a single shared
93 * primary cache.
94 * o doesn't disable interrupts on the local CPU
95 */
96 static inline void r4k_on_each_cpu(unsigned int type,
97 void (*func)(void *info), void *info)
98 {
99 preempt_disable();
100 if (r4k_op_needs_ipi(type))
101 smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
102 func, info, 1);
103 func(info);
104 preempt_enable();
105 }
106
107 /*
108 * Must die.
109 */
110 static unsigned long icache_size __read_mostly;
111 static unsigned long dcache_size __read_mostly;
112 static unsigned long vcache_size __read_mostly;
113 static unsigned long scache_size __read_mostly;
114
115 /*
116 * Dummy cache handling routines for machines without boardcaches
117 */
118 static void cache_noop(void) {}
119
120 static struct bcache_ops no_sc_ops = {
121 .bc_enable = (void *)cache_noop,
122 .bc_disable = (void *)cache_noop,
123 .bc_wback_inv = (void *)cache_noop,
124 .bc_inv = (void *)cache_noop
125 };
126
127 struct bcache_ops *bcops = &no_sc_ops;
128
129 #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010)
130 #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020)
131
132 #define R4600_HIT_CACHEOP_WAR_IMPL \
133 do { \
134 if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x()) \
135 *(volatile unsigned long *)CKSEG1; \
136 if (R4600_V1_HIT_CACHEOP_WAR) \
137 __asm__ __volatile__("nop;nop;nop;nop"); \
138 } while (0)
139
140 static void (*r4k_blast_dcache_page)(unsigned long addr);
141
142 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
143 {
144 R4600_HIT_CACHEOP_WAR_IMPL;
145 blast_dcache32_page(addr);
146 }
147
148 static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
149 {
150 blast_dcache64_page(addr);
151 }
152
153 static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
154 {
155 blast_dcache128_page(addr);
156 }
157
158 static void r4k_blast_dcache_page_setup(void)
159 {
160 unsigned long dc_lsize = cpu_dcache_line_size();
161
162 switch (dc_lsize) {
163 case 0:
164 r4k_blast_dcache_page = (void *)cache_noop;
165 break;
166 case 16:
167 r4k_blast_dcache_page = blast_dcache16_page;
168 break;
169 case 32:
170 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
171 break;
172 case 64:
173 r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
174 break;
175 case 128:
176 r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
177 break;
178 default:
179 break;
180 }
181 }
182
183 #ifndef CONFIG_EVA
184 #define r4k_blast_dcache_user_page r4k_blast_dcache_page
185 #else
186
187 static void (*r4k_blast_dcache_user_page)(unsigned long addr);
188
189 static void r4k_blast_dcache_user_page_setup(void)
190 {
191 unsigned long dc_lsize = cpu_dcache_line_size();
192
193 if (dc_lsize == 0)
194 r4k_blast_dcache_user_page = (void *)cache_noop;
195 else if (dc_lsize == 16)
196 r4k_blast_dcache_user_page = blast_dcache16_user_page;
197 else if (dc_lsize == 32)
198 r4k_blast_dcache_user_page = blast_dcache32_user_page;
199 else if (dc_lsize == 64)
200 r4k_blast_dcache_user_page = blast_dcache64_user_page;
201 }
202
203 #endif
204
205 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
206
207 static void r4k_blast_dcache_page_indexed_setup(void)
208 {
209 unsigned long dc_lsize = cpu_dcache_line_size();
210
211 if (dc_lsize == 0)
212 r4k_blast_dcache_page_indexed = (void *)cache_noop;
213 else if (dc_lsize == 16)
214 r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
215 else if (dc_lsize == 32)
216 r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
217 else if (dc_lsize == 64)
218 r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
219 else if (dc_lsize == 128)
220 r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
221 }
222
223 void (* r4k_blast_dcache)(void);
224 EXPORT_SYMBOL(r4k_blast_dcache);
225
226 static void r4k_blast_dcache_setup(void)
227 {
228 unsigned long dc_lsize = cpu_dcache_line_size();
229
230 if (dc_lsize == 0)
231 r4k_blast_dcache = (void *)cache_noop;
232 else if (dc_lsize == 16)
233 r4k_blast_dcache = blast_dcache16;
234 else if (dc_lsize == 32)
235 r4k_blast_dcache = blast_dcache32;
236 else if (dc_lsize == 64)
237 r4k_blast_dcache = blast_dcache64;
238 else if (dc_lsize == 128)
239 r4k_blast_dcache = blast_dcache128;
240 }
241
242 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
243 #define JUMP_TO_ALIGN(order) \
244 __asm__ __volatile__( \
245 "b\t1f\n\t" \
246 ".align\t" #order "\n\t" \
247 "1:\n\t" \
248 )
249 #define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
250 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
251
252 static inline void blast_r4600_v1_icache32(void)
253 {
254 unsigned long flags;
255
256 local_irq_save(flags);
257 blast_icache32();
258 local_irq_restore(flags);
259 }
260
261 static inline void tx49_blast_icache32(void)
262 {
263 unsigned long start = INDEX_BASE;
264 unsigned long end = start + current_cpu_data.icache.waysize;
265 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
266 unsigned long ws_end = current_cpu_data.icache.ways <<
267 current_cpu_data.icache.waybit;
268 unsigned long ws, addr;
269
270 CACHE32_UNROLL32_ALIGN2;
271 /* I'm in even chunk. blast odd chunks */
272 for (ws = 0; ws < ws_end; ws += ws_inc)
273 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
274 cache32_unroll32(addr|ws, Index_Invalidate_I);
275 CACHE32_UNROLL32_ALIGN;
276 /* I'm in odd chunk. blast even chunks */
277 for (ws = 0; ws < ws_end; ws += ws_inc)
278 for (addr = start; addr < end; addr += 0x400 * 2)
279 cache32_unroll32(addr|ws, Index_Invalidate_I);
280 }
281
282 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
283 {
284 unsigned long flags;
285
286 local_irq_save(flags);
287 blast_icache32_page_indexed(page);
288 local_irq_restore(flags);
289 }
290
291 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
292 {
293 unsigned long indexmask = current_cpu_data.icache.waysize - 1;
294 unsigned long start = INDEX_BASE + (page & indexmask);
295 unsigned long end = start + PAGE_SIZE;
296 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
297 unsigned long ws_end = current_cpu_data.icache.ways <<
298 current_cpu_data.icache.waybit;
299 unsigned long ws, addr;
300
301 CACHE32_UNROLL32_ALIGN2;
302 /* I'm in even chunk. blast odd chunks */
303 for (ws = 0; ws < ws_end; ws += ws_inc)
304 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
305 cache32_unroll32(addr|ws, Index_Invalidate_I);
306 CACHE32_UNROLL32_ALIGN;
307 /* I'm in odd chunk. blast even chunks */
308 for (ws = 0; ws < ws_end; ws += ws_inc)
309 for (addr = start; addr < end; addr += 0x400 * 2)
310 cache32_unroll32(addr|ws, Index_Invalidate_I);
311 }
312
313 static void (* r4k_blast_icache_page)(unsigned long addr);
314
315 static void r4k_blast_icache_page_setup(void)
316 {
317 unsigned long ic_lsize = cpu_icache_line_size();
318
319 if (ic_lsize == 0)
320 r4k_blast_icache_page = (void *)cache_noop;
321 else if (ic_lsize == 16)
322 r4k_blast_icache_page = blast_icache16_page;
323 else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2)
324 r4k_blast_icache_page = loongson2_blast_icache32_page;
325 else if (ic_lsize == 32)
326 r4k_blast_icache_page = blast_icache32_page;
327 else if (ic_lsize == 64)
328 r4k_blast_icache_page = blast_icache64_page;
329 else if (ic_lsize == 128)
330 r4k_blast_icache_page = blast_icache128_page;
331 }
332
333 #ifndef CONFIG_EVA
334 #define r4k_blast_icache_user_page r4k_blast_icache_page
335 #else
336
337 static void (*r4k_blast_icache_user_page)(unsigned long addr);
338
339 static void r4k_blast_icache_user_page_setup(void)
340 {
341 unsigned long ic_lsize = cpu_icache_line_size();
342
343 if (ic_lsize == 0)
344 r4k_blast_icache_user_page = (void *)cache_noop;
345 else if (ic_lsize == 16)
346 r4k_blast_icache_user_page = blast_icache16_user_page;
347 else if (ic_lsize == 32)
348 r4k_blast_icache_user_page = blast_icache32_user_page;
349 else if (ic_lsize == 64)
350 r4k_blast_icache_user_page = blast_icache64_user_page;
351 }
352
353 #endif
354
355 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
356
357 static void r4k_blast_icache_page_indexed_setup(void)
358 {
359 unsigned long ic_lsize = cpu_icache_line_size();
360
361 if (ic_lsize == 0)
362 r4k_blast_icache_page_indexed = (void *)cache_noop;
363 else if (ic_lsize == 16)
364 r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
365 else if (ic_lsize == 32) {
366 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
367 r4k_blast_icache_page_indexed =
368 blast_icache32_r4600_v1_page_indexed;
369 else if (TX49XX_ICACHE_INDEX_INV_WAR)
370 r4k_blast_icache_page_indexed =
371 tx49_blast_icache32_page_indexed;
372 else if (current_cpu_type() == CPU_LOONGSON2)
373 r4k_blast_icache_page_indexed =
374 loongson2_blast_icache32_page_indexed;
375 else
376 r4k_blast_icache_page_indexed =
377 blast_icache32_page_indexed;
378 } else if (ic_lsize == 64)
379 r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
380 }
381
382 void (* r4k_blast_icache)(void);
383 EXPORT_SYMBOL(r4k_blast_icache);
384
385 static void r4k_blast_icache_setup(void)
386 {
387 unsigned long ic_lsize = cpu_icache_line_size();
388
389 if (ic_lsize == 0)
390 r4k_blast_icache = (void *)cache_noop;
391 else if (ic_lsize == 16)
392 r4k_blast_icache = blast_icache16;
393 else if (ic_lsize == 32) {
394 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
395 r4k_blast_icache = blast_r4600_v1_icache32;
396 else if (TX49XX_ICACHE_INDEX_INV_WAR)
397 r4k_blast_icache = tx49_blast_icache32;
398 else if (current_cpu_type() == CPU_LOONGSON2)
399 r4k_blast_icache = loongson2_blast_icache32;
400 else
401 r4k_blast_icache = blast_icache32;
402 } else if (ic_lsize == 64)
403 r4k_blast_icache = blast_icache64;
404 else if (ic_lsize == 128)
405 r4k_blast_icache = blast_icache128;
406 }
407
408 static void (* r4k_blast_scache_page)(unsigned long addr);
409
410 static void r4k_blast_scache_page_setup(void)
411 {
412 unsigned long sc_lsize = cpu_scache_line_size();
413
414 if (scache_size == 0)
415 r4k_blast_scache_page = (void *)cache_noop;
416 else if (sc_lsize == 16)
417 r4k_blast_scache_page = blast_scache16_page;
418 else if (sc_lsize == 32)
419 r4k_blast_scache_page = blast_scache32_page;
420 else if (sc_lsize == 64)
421 r4k_blast_scache_page = blast_scache64_page;
422 else if (sc_lsize == 128)
423 r4k_blast_scache_page = blast_scache128_page;
424 }
425
426 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
427
428 static void r4k_blast_scache_page_indexed_setup(void)
429 {
430 unsigned long sc_lsize = cpu_scache_line_size();
431
432 if (scache_size == 0)
433 r4k_blast_scache_page_indexed = (void *)cache_noop;
434 else if (sc_lsize == 16)
435 r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
436 else if (sc_lsize == 32)
437 r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
438 else if (sc_lsize == 64)
439 r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
440 else if (sc_lsize == 128)
441 r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
442 }
443
444 static void (* r4k_blast_scache)(void);
445
446 static void r4k_blast_scache_setup(void)
447 {
448 unsigned long sc_lsize = cpu_scache_line_size();
449
450 if (scache_size == 0)
451 r4k_blast_scache = (void *)cache_noop;
452 else if (sc_lsize == 16)
453 r4k_blast_scache = blast_scache16;
454 else if (sc_lsize == 32)
455 r4k_blast_scache = blast_scache32;
456 else if (sc_lsize == 64)
457 r4k_blast_scache = blast_scache64;
458 else if (sc_lsize == 128)
459 r4k_blast_scache = blast_scache128;
460 }
461
462 static inline void local_r4k___flush_cache_all(void * args)
463 {
464 switch (current_cpu_type()) {
465 case CPU_LOONGSON2:
466 case CPU_LOONGSON3:
467 case CPU_R4000SC:
468 case CPU_R4000MC:
469 case CPU_R4400SC:
470 case CPU_R4400MC:
471 case CPU_R10000:
472 case CPU_R12000:
473 case CPU_R14000:
474 case CPU_R16000:
475 /*
476 * These caches are inclusive caches, that is, if something
477 * is not cached in the S-cache, we know it also won't be
478 * in one of the primary caches.
479 */
480 r4k_blast_scache();
481 break;
482
483 case CPU_BMIPS5000:
484 r4k_blast_scache();
485 __sync();
486 break;
487
488 default:
489 r4k_blast_dcache();
490 r4k_blast_icache();
491 break;
492 }
493 }
494
495 static void r4k___flush_cache_all(void)
496 {
497 r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
498 }
499
500 /**
501 * has_valid_asid() - Determine if an mm already has an ASID.
502 * @mm: Memory map.
503 * @type: R4K_HIT or R4K_INDEX, type of cache op.
504 *
505 * Determines whether @mm already has an ASID on any of the CPUs which cache ops
506 * of type @type within an r4k_on_each_cpu() call will affect. If
507 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
508 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
509 * will need to be checked.
510 *
511 * Must be called in non-preemptive context.
512 *
513 * Returns: 1 if the CPUs affected by @type cache ops have an ASID for @mm.
514 * 0 otherwise.
515 */
516 static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
517 {
518 unsigned int i;
519 const cpumask_t *mask = cpu_present_mask;
520
521 /* cpu_sibling_map[] undeclared when !CONFIG_SMP */
522 #ifdef CONFIG_SMP
523 /*
524 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
525 * each foreign core, so we only need to worry about siblings.
526 * Otherwise we need to worry about all present CPUs.
527 */
528 if (r4k_op_needs_ipi(type))
529 mask = &cpu_sibling_map[smp_processor_id()];
530 #endif
531 for_each_cpu(i, mask)
532 if (cpu_context(i, mm))
533 return 1;
534 return 0;
535 }
536
537 static void r4k__flush_cache_vmap(void)
538 {
539 r4k_blast_dcache();
540 }
541
542 static void r4k__flush_cache_vunmap(void)
543 {
544 r4k_blast_dcache();
545 }
546
547 /*
548 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
549 * whole caches when vma is executable.
550 */
551 static inline void local_r4k_flush_cache_range(void * args)
552 {
553 struct vm_area_struct *vma = args;
554 int exec = vma->vm_flags & VM_EXEC;
555
556 if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
557 return;
558
559 /*
560 * If dcache can alias, we must blast it since mapping is changing.
561 * If executable, we must ensure any dirty lines are written back far
562 * enough to be visible to icache.
563 */
564 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
565 r4k_blast_dcache();
566 /* If executable, blast stale lines from icache */
567 if (exec)
568 r4k_blast_icache();
569 }
570
571 static void r4k_flush_cache_range(struct vm_area_struct *vma,
572 unsigned long start, unsigned long end)
573 {
574 int exec = vma->vm_flags & VM_EXEC;
575
576 if (cpu_has_dc_aliases || exec)
577 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
578 }
579
580 static inline void local_r4k_flush_cache_mm(void * args)
581 {
582 struct mm_struct *mm = args;
583
584 if (!has_valid_asid(mm, R4K_INDEX))
585 return;
586
587 /*
588 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we
589 * only flush the primary caches but R1x000 behave sane ...
590 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
591 * caches, so we can bail out early.
592 */
593 if (current_cpu_type() == CPU_R4000SC ||
594 current_cpu_type() == CPU_R4000MC ||
595 current_cpu_type() == CPU_R4400SC ||
596 current_cpu_type() == CPU_R4400MC) {
597 r4k_blast_scache();
598 return;
599 }
600
601 r4k_blast_dcache();
602 }
603
604 static void r4k_flush_cache_mm(struct mm_struct *mm)
605 {
606 if (!cpu_has_dc_aliases)
607 return;
608
609 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
610 }
611
612 struct flush_cache_page_args {
613 struct vm_area_struct *vma;
614 unsigned long addr;
615 unsigned long pfn;
616 };
617
618 static inline void local_r4k_flush_cache_page(void *args)
619 {
620 struct flush_cache_page_args *fcp_args = args;
621 struct vm_area_struct *vma = fcp_args->vma;
622 unsigned long addr = fcp_args->addr;
623 struct page *page = pfn_to_page(fcp_args->pfn);
624 int exec = vma->vm_flags & VM_EXEC;
625 struct mm_struct *mm = vma->vm_mm;
626 int map_coherent = 0;
627 pgd_t *pgdp;
628 pud_t *pudp;
629 pmd_t *pmdp;
630 pte_t *ptep;
631 void *vaddr;
632
633 /*
634 * If owns no valid ASID yet, cannot possibly have gotten
635 * this page into the cache.
636 */
637 if (!has_valid_asid(mm, R4K_HIT))
638 return;
639
640 addr &= PAGE_MASK;
641 pgdp = pgd_offset(mm, addr);
642 pudp = pud_offset(pgdp, addr);
643 pmdp = pmd_offset(pudp, addr);
644 ptep = pte_offset(pmdp, addr);
645
646 /*
647 * If the page isn't marked valid, the page cannot possibly be
648 * in the cache.
649 */
650 if (!(pte_present(*ptep)))
651 return;
652
653 if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
654 vaddr = NULL;
655 else {
656 /*
657 * Use kmap_coherent or kmap_atomic to do flushes for
658 * another ASID than the current one.
659 */
660 map_coherent = (cpu_has_dc_aliases &&
661 page_mapcount(page) &&
662 !Page_dcache_dirty(page));
663 if (map_coherent)
664 vaddr = kmap_coherent(page, addr);
665 else
666 vaddr = kmap_atomic(page);
667 addr = (unsigned long)vaddr;
668 }
669
670 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
671 vaddr ? r4k_blast_dcache_page(addr) :
672 r4k_blast_dcache_user_page(addr);
673 if (exec && !cpu_icache_snoops_remote_store)
674 r4k_blast_scache_page(addr);
675 }
676 if (exec) {
677 if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
678 int cpu = smp_processor_id();
679
680 if (cpu_context(cpu, mm) != 0)
681 drop_mmu_context(mm, cpu);
682 } else
683 vaddr ? r4k_blast_icache_page(addr) :
684 r4k_blast_icache_user_page(addr);
685 }
686
687 if (vaddr) {
688 if (map_coherent)
689 kunmap_coherent();
690 else
691 kunmap_atomic(vaddr);
692 }
693 }
694
695 static void r4k_flush_cache_page(struct vm_area_struct *vma,
696 unsigned long addr, unsigned long pfn)
697 {
698 struct flush_cache_page_args args;
699
700 args.vma = vma;
701 args.addr = addr;
702 args.pfn = pfn;
703
704 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
705 }
706
707 static inline void local_r4k_flush_data_cache_page(void * addr)
708 {
709 r4k_blast_dcache_page((unsigned long) addr);
710 }
711
712 static void r4k_flush_data_cache_page(unsigned long addr)
713 {
714 if (in_atomic())
715 local_r4k_flush_data_cache_page((void *)addr);
716 else
717 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
718 (void *) addr);
719 }
720
721 struct flush_icache_range_args {
722 unsigned long start;
723 unsigned long end;
724 unsigned int type;
725 bool user;
726 };
727
728 static inline void __local_r4k_flush_icache_range(unsigned long start,
729 unsigned long end,
730 unsigned int type,
731 bool user)
732 {
733 if (!cpu_has_ic_fills_f_dc) {
734 if (type == R4K_INDEX ||
735 (type & R4K_INDEX && end - start >= dcache_size)) {
736 r4k_blast_dcache();
737 } else {
738 R4600_HIT_CACHEOP_WAR_IMPL;
739 if (user)
740 protected_blast_dcache_range(start, end);
741 else
742 blast_dcache_range(start, end);
743 }
744 }
745
746 if (type == R4K_INDEX ||
747 (type & R4K_INDEX && end - start > icache_size))
748 r4k_blast_icache();
749 else {
750 switch (boot_cpu_type()) {
751 case CPU_LOONGSON2:
752 protected_loongson2_blast_icache_range(start, end);
753 break;
754
755 default:
756 if (user)
757 protected_blast_icache_range(start, end);
758 else
759 blast_icache_range(start, end);
760 break;
761 }
762 }
763 }
764
765 static inline void local_r4k_flush_icache_range(unsigned long start,
766 unsigned long end)
767 {
768 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
769 }
770
771 static inline void local_r4k_flush_icache_user_range(unsigned long start,
772 unsigned long end)
773 {
774 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
775 }
776
777 static inline void local_r4k_flush_icache_range_ipi(void *args)
778 {
779 struct flush_icache_range_args *fir_args = args;
780 unsigned long start = fir_args->start;
781 unsigned long end = fir_args->end;
782 unsigned int type = fir_args->type;
783 bool user = fir_args->user;
784
785 __local_r4k_flush_icache_range(start, end, type, user);
786 }
787
788 static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
789 bool user)
790 {
791 struct flush_icache_range_args args;
792 unsigned long size, cache_size;
793
794 args.start = start;
795 args.end = end;
796 args.type = R4K_HIT | R4K_INDEX;
797 args.user = user;
798
799 /*
800 * Indexed cache ops require an SMP call.
801 * Consider if that can or should be avoided.
802 */
803 preempt_disable();
804 if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
805 /*
806 * If address-based cache ops don't require an SMP call, then
807 * use them exclusively for small flushes.
808 */
809 size = end - start;
810 cache_size = icache_size;
811 if (!cpu_has_ic_fills_f_dc) {
812 size *= 2;
813 cache_size += dcache_size;
814 }
815 if (size <= cache_size)
816 args.type &= ~R4K_INDEX;
817 }
818 r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
819 preempt_enable();
820 instruction_hazard();
821 }
822
823 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
824 {
825 return __r4k_flush_icache_range(start, end, false);
826 }
827
828 static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
829 {
830 return __r4k_flush_icache_range(start, end, true);
831 }
832
833 #if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
834
835 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
836 {
837 /* Catch bad driver code */
838 BUG_ON(size == 0);
839
840 preempt_disable();
841 if (cpu_has_inclusive_pcaches) {
842 if (size >= scache_size)
843 r4k_blast_scache();
844 else
845 blast_scache_range(addr, addr + size);
846 preempt_enable();
847 __sync();
848 return;
849 }
850
851 /*
852 * Either no secondary cache or the available caches don't have the
853 * subset property so we have to flush the primary caches
854 * explicitly
855 */
856 if (size >= dcache_size) {
857 r4k_blast_dcache();
858 } else {
859 R4600_HIT_CACHEOP_WAR_IMPL;
860 blast_dcache_range(addr, addr + size);
861 }
862 preempt_enable();
863
864 bc_wback_inv(addr, size);
865 __sync();
866 }
867
868 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
869 {
870 /* Catch bad driver code */
871 BUG_ON(size == 0);
872
873 preempt_disable();
874 if (cpu_has_inclusive_pcaches) {
875 if (size >= scache_size)
876 r4k_blast_scache();
877 else {
878 /*
879 * There is no clearly documented alignment requirement
880 * for the cache instruction on MIPS processors and
881 * some processors, among them the RM5200 and RM7000
882 * QED processors will throw an address error for cache
883 * hit ops with insufficient alignment. Solved by
884 * aligning the address to cache line size.
885 */
886 blast_inv_scache_range(addr, addr + size);
887 }
888 preempt_enable();
889 __sync();
890 return;
891 }
892
893 if (size >= dcache_size) {
894 r4k_blast_dcache();
895 } else {
896 R4600_HIT_CACHEOP_WAR_IMPL;
897 blast_inv_dcache_range(addr, addr + size);
898 }
899 preempt_enable();
900
901 bc_inv(addr, size);
902 __sync();
903 }
904 #endif /* CONFIG_DMA_NONCOHERENT || CONFIG_DMA_MAYBE_COHERENT */
905
906 struct flush_cache_sigtramp_args {
907 struct mm_struct *mm;
908 struct page *page;
909 unsigned long addr;
910 };
911
912 /*
913 * While we're protected against bad userland addresses we don't care
914 * very much about what happens in that case. Usually a segmentation
915 * fault will dump the process later on anyway ...
916 */
917 static void local_r4k_flush_cache_sigtramp(void *args)
918 {
919 struct flush_cache_sigtramp_args *fcs_args = args;
920 unsigned long addr = fcs_args->addr;
921 struct page *page = fcs_args->page;
922 struct mm_struct *mm = fcs_args->mm;
923 int map_coherent = 0;
924 void *vaddr;
925
926 unsigned long ic_lsize = cpu_icache_line_size();
927 unsigned long dc_lsize = cpu_dcache_line_size();
928 unsigned long sc_lsize = cpu_scache_line_size();
929
930 /*
931 * If owns no valid ASID yet, cannot possibly have gotten
932 * this page into the cache.
933 */
934 if (!has_valid_asid(mm, R4K_HIT))
935 return;
936
937 if (mm == current->active_mm) {
938 vaddr = NULL;
939 } else {
940 /*
941 * Use kmap_coherent or kmap_atomic to do flushes for
942 * another ASID than the current one.
943 */
944 map_coherent = (cpu_has_dc_aliases &&
945 page_mapcount(page) &&
946 !Page_dcache_dirty(page));
947 if (map_coherent)
948 vaddr = kmap_coherent(page, addr);
949 else
950 vaddr = kmap_atomic(page);
951 addr = (unsigned long)vaddr + (addr & ~PAGE_MASK);
952 }
953
954 R4600_HIT_CACHEOP_WAR_IMPL;
955 if (!cpu_has_ic_fills_f_dc) {
956 if (dc_lsize)
957 vaddr ? flush_dcache_line(addr & ~(dc_lsize - 1))
958 : protected_writeback_dcache_line(
959 addr & ~(dc_lsize - 1));
960 if (!cpu_icache_snoops_remote_store && scache_size)
961 vaddr ? flush_scache_line(addr & ~(sc_lsize - 1))
962 : protected_writeback_scache_line(
963 addr & ~(sc_lsize - 1));
964 }
965 if (ic_lsize)
966 vaddr ? flush_icache_line(addr & ~(ic_lsize - 1))
967 : protected_flush_icache_line(addr & ~(ic_lsize - 1));
968
969 if (vaddr) {
970 if (map_coherent)
971 kunmap_coherent();
972 else
973 kunmap_atomic(vaddr);
974 }
975
976 if (MIPS4K_ICACHE_REFILL_WAR) {
977 __asm__ __volatile__ (
978 ".set push\n\t"
979 ".set noat\n\t"
980 ".set "MIPS_ISA_LEVEL"\n\t"
981 #ifdef CONFIG_32BIT
982 "la $at,1f\n\t"
983 #endif
984 #ifdef CONFIG_64BIT
985 "dla $at,1f\n\t"
986 #endif
987 "cache %0,($at)\n\t"
988 "nop; nop; nop\n"
989 "1:\n\t"
990 ".set pop"
991 :
992 : "i" (Hit_Invalidate_I));
993 }
994 if (MIPS_CACHE_SYNC_WAR)
995 __asm__ __volatile__ ("sync");
996 }
997
998 static void r4k_flush_cache_sigtramp(unsigned long addr)
999 {
1000 struct flush_cache_sigtramp_args args;
1001 int npages;
1002
1003 down_read(&current->mm->mmap_sem);
1004
1005 npages = get_user_pages_fast(addr, 1, 0, &args.page);
1006 if (npages < 1)
1007 goto out;
1008
1009 args.mm = current->mm;
1010 args.addr = addr;
1011
1012 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_sigtramp, &args);
1013
1014 put_page(args.page);
1015 out:
1016 up_read(&current->mm->mmap_sem);
1017 }
1018
1019 static void r4k_flush_icache_all(void)
1020 {
1021 if (cpu_has_vtag_icache)
1022 r4k_blast_icache();
1023 }
1024
1025 struct flush_kernel_vmap_range_args {
1026 unsigned long vaddr;
1027 int size;
1028 };
1029
1030 static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
1031 {
1032 /*
1033 * Aliases only affect the primary caches so don't bother with
1034 * S-caches or T-caches.
1035 */
1036 r4k_blast_dcache();
1037 }
1038
1039 static inline void local_r4k_flush_kernel_vmap_range(void *args)
1040 {
1041 struct flush_kernel_vmap_range_args *vmra = args;
1042 unsigned long vaddr = vmra->vaddr;
1043 int size = vmra->size;
1044
1045 /*
1046 * Aliases only affect the primary caches so don't bother with
1047 * S-caches or T-caches.
1048 */
1049 R4600_HIT_CACHEOP_WAR_IMPL;
1050 blast_dcache_range(vaddr, vaddr + size);
1051 }
1052
1053 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1054 {
1055 struct flush_kernel_vmap_range_args args;
1056
1057 args.vaddr = (unsigned long) vaddr;
1058 args.size = size;
1059
1060 if (size >= dcache_size)
1061 r4k_on_each_cpu(R4K_INDEX,
1062 local_r4k_flush_kernel_vmap_range_index, NULL);
1063 else
1064 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1065 &args);
1066 }
1067
1068 static inline void rm7k_erratum31(void)
1069 {
1070 const unsigned long ic_lsize = 32;
1071 unsigned long addr;
1072
1073 /* RM7000 erratum #31. The icache is screwed at startup. */
1074 write_c0_taglo(0);
1075 write_c0_taghi(0);
1076
1077 for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1078 __asm__ __volatile__ (
1079 ".set push\n\t"
1080 ".set noreorder\n\t"
1081 ".set mips3\n\t"
1082 "cache\t%1, 0(%0)\n\t"
1083 "cache\t%1, 0x1000(%0)\n\t"
1084 "cache\t%1, 0x2000(%0)\n\t"
1085 "cache\t%1, 0x3000(%0)\n\t"
1086 "cache\t%2, 0(%0)\n\t"
1087 "cache\t%2, 0x1000(%0)\n\t"
1088 "cache\t%2, 0x2000(%0)\n\t"
1089 "cache\t%2, 0x3000(%0)\n\t"
1090 "cache\t%1, 0(%0)\n\t"
1091 "cache\t%1, 0x1000(%0)\n\t"
1092 "cache\t%1, 0x2000(%0)\n\t"
1093 "cache\t%1, 0x3000(%0)\n\t"
1094 ".set pop\n"
1095 :
1096 : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
1097 }
1098 }
1099
1100 static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1101 {
1102 unsigned int imp = c->processor_id & PRID_IMP_MASK;
1103 unsigned int rev = c->processor_id & PRID_REV_MASK;
1104 int present = 0;
1105
1106 /*
1107 * Early versions of the 74K do not update the cache tags on a
1108 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1109 * aliases. In this case it is better to treat the cache as always
1110 * having aliases. Also disable the synonym tag update feature
1111 * where available. In this case no opportunistic tag update will
1112 * happen where a load causes a virtual address miss but a physical
1113 * address hit during a D-cache look-up.
1114 */
1115 switch (imp) {
1116 case PRID_IMP_74K:
1117 if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1118 present = 1;
1119 if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1120 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1121 break;
1122 case PRID_IMP_1074K:
1123 if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1124 present = 1;
1125 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1126 }
1127 break;
1128 default:
1129 BUG();
1130 }
1131
1132 return present;
1133 }
1134
1135 static void b5k_instruction_hazard(void)
1136 {
1137 __sync();
1138 __sync();
1139 __asm__ __volatile__(
1140 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1141 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1142 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1143 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1144 : : : "memory");
1145 }
1146
1147 static char *way_string[] = { NULL, "direct mapped", "2-way",
1148 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1149 "9-way", "10-way", "11-way", "12-way",
1150 "13-way", "14-way", "15-way", "16-way",
1151 };
1152
1153 static void probe_pcache(void)
1154 {
1155 struct cpuinfo_mips *c = &current_cpu_data;
1156 unsigned int config = read_c0_config();
1157 unsigned int prid = read_c0_prid();
1158 int has_74k_erratum = 0;
1159 unsigned long config1;
1160 unsigned int lsize;
1161
1162 switch (current_cpu_type()) {
1163 case CPU_R4600: /* QED style two way caches? */
1164 case CPU_R4700:
1165 case CPU_R5000:
1166 case CPU_NEVADA:
1167 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1168 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1169 c->icache.ways = 2;
1170 c->icache.waybit = __ffs(icache_size/2);
1171
1172 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1173 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1174 c->dcache.ways = 2;
1175 c->dcache.waybit= __ffs(dcache_size/2);
1176
1177 c->options |= MIPS_CPU_CACHE_CDEX_P;
1178 break;
1179
1180 case CPU_R5432:
1181 case CPU_R5500:
1182 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1183 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1184 c->icache.ways = 2;
1185 c->icache.waybit= 0;
1186
1187 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1188 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1189 c->dcache.ways = 2;
1190 c->dcache.waybit = 0;
1191
1192 c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1193 break;
1194
1195 case CPU_TX49XX:
1196 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1197 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1198 c->icache.ways = 4;
1199 c->icache.waybit= 0;
1200
1201 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1202 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1203 c->dcache.ways = 4;
1204 c->dcache.waybit = 0;
1205
1206 c->options |= MIPS_CPU_CACHE_CDEX_P;
1207 c->options |= MIPS_CPU_PREFETCH;
1208 break;
1209
1210 case CPU_R4000PC:
1211 case CPU_R4000SC:
1212 case CPU_R4000MC:
1213 case CPU_R4400PC:
1214 case CPU_R4400SC:
1215 case CPU_R4400MC:
1216 case CPU_R4300:
1217 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1218 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1219 c->icache.ways = 1;
1220 c->icache.waybit = 0; /* doesn't matter */
1221
1222 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1223 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1224 c->dcache.ways = 1;
1225 c->dcache.waybit = 0; /* does not matter */
1226
1227 c->options |= MIPS_CPU_CACHE_CDEX_P;
1228 break;
1229
1230 case CPU_R10000:
1231 case CPU_R12000:
1232 case CPU_R14000:
1233 case CPU_R16000:
1234 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1235 c->icache.linesz = 64;
1236 c->icache.ways = 2;
1237 c->icache.waybit = 0;
1238
1239 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1240 c->dcache.linesz = 32;
1241 c->dcache.ways = 2;
1242 c->dcache.waybit = 0;
1243
1244 c->options |= MIPS_CPU_PREFETCH;
1245 break;
1246
1247 case CPU_VR4133:
1248 write_c0_config(config & ~VR41_CONF_P4K);
1249 case CPU_VR4131:
1250 /* Workaround for cache instruction bug of VR4131 */
1251 if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
1252 c->processor_id == 0x0c82U) {
1253 config |= 0x00400000U;
1254 if (c->processor_id == 0x0c80U)
1255 config |= VR41_CONF_BP;
1256 write_c0_config(config);
1257 } else
1258 c->options |= MIPS_CPU_CACHE_CDEX_P;
1259
1260 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1261 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1262 c->icache.ways = 2;
1263 c->icache.waybit = __ffs(icache_size/2);
1264
1265 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1266 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1267 c->dcache.ways = 2;
1268 c->dcache.waybit = __ffs(dcache_size/2);
1269 break;
1270
1271 case CPU_VR41XX:
1272 case CPU_VR4111:
1273 case CPU_VR4121:
1274 case CPU_VR4122:
1275 case CPU_VR4181:
1276 case CPU_VR4181A:
1277 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1278 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1279 c->icache.ways = 1;
1280 c->icache.waybit = 0; /* doesn't matter */
1281
1282 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1283 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1284 c->dcache.ways = 1;
1285 c->dcache.waybit = 0; /* does not matter */
1286
1287 c->options |= MIPS_CPU_CACHE_CDEX_P;
1288 break;
1289
1290 case CPU_RM7000:
1291 rm7k_erratum31();
1292
1293 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1294 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1295 c->icache.ways = 4;
1296 c->icache.waybit = __ffs(icache_size / c->icache.ways);
1297
1298 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1299 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1300 c->dcache.ways = 4;
1301 c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1302
1303 c->options |= MIPS_CPU_CACHE_CDEX_P;
1304 c->options |= MIPS_CPU_PREFETCH;
1305 break;
1306
1307 case CPU_LOONGSON2:
1308 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1309 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1310 if (prid & 0x3)
1311 c->icache.ways = 4;
1312 else
1313 c->icache.ways = 2;
1314 c->icache.waybit = 0;
1315
1316 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1317 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1318 if (prid & 0x3)
1319 c->dcache.ways = 4;
1320 else
1321 c->dcache.ways = 2;
1322 c->dcache.waybit = 0;
1323 break;
1324
1325 case CPU_LOONGSON3:
1326 config1 = read_c0_config1();
1327 lsize = (config1 >> 19) & 7;
1328 if (lsize)
1329 c->icache.linesz = 2 << lsize;
1330 else
1331 c->icache.linesz = 0;
1332 c->icache.sets = 64 << ((config1 >> 22) & 7);
1333 c->icache.ways = 1 + ((config1 >> 16) & 7);
1334 icache_size = c->icache.sets *
1335 c->icache.ways *
1336 c->icache.linesz;
1337 c->icache.waybit = 0;
1338
1339 lsize = (config1 >> 10) & 7;
1340 if (lsize)
1341 c->dcache.linesz = 2 << lsize;
1342 else
1343 c->dcache.linesz = 0;
1344 c->dcache.sets = 64 << ((config1 >> 13) & 7);
1345 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1346 dcache_size = c->dcache.sets *
1347 c->dcache.ways *
1348 c->dcache.linesz;
1349 c->dcache.waybit = 0;
1350 if ((prid & PRID_REV_MASK) >= PRID_REV_LOONGSON3A_R2)
1351 c->options |= MIPS_CPU_PREFETCH;
1352 break;
1353
1354 case CPU_CAVIUM_OCTEON3:
1355 /* For now lie about the number of ways. */
1356 c->icache.linesz = 128;
1357 c->icache.sets = 16;
1358 c->icache.ways = 8;
1359 c->icache.flags |= MIPS_CACHE_VTAG;
1360 icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1361
1362 c->dcache.linesz = 128;
1363 c->dcache.ways = 8;
1364 c->dcache.sets = 8;
1365 dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1366 c->options |= MIPS_CPU_PREFETCH;
1367 break;
1368
1369 default:
1370 if (!(config & MIPS_CONF_M))
1371 panic("Don't know how to probe P-caches on this cpu.");
1372
1373 /*
1374 * So we seem to be a MIPS32 or MIPS64 CPU
1375 * So let's probe the I-cache ...
1376 */
1377 config1 = read_c0_config1();
1378
1379 lsize = (config1 >> 19) & 7;
1380
1381 /* IL == 7 is reserved */
1382 if (lsize == 7)
1383 panic("Invalid icache line size");
1384
1385 c->icache.linesz = lsize ? 2 << lsize : 0;
1386
1387 c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1388 c->icache.ways = 1 + ((config1 >> 16) & 7);
1389
1390 icache_size = c->icache.sets *
1391 c->icache.ways *
1392 c->icache.linesz;
1393 c->icache.waybit = __ffs(icache_size/c->icache.ways);
1394
1395 if (config & MIPS_CONF_VI)
1396 c->icache.flags |= MIPS_CACHE_VTAG;
1397
1398 /*
1399 * Now probe the MIPS32 / MIPS64 data cache.
1400 */
1401 c->dcache.flags = 0;
1402
1403 lsize = (config1 >> 10) & 7;
1404
1405 /* DL == 7 is reserved */
1406 if (lsize == 7)
1407 panic("Invalid dcache line size");
1408
1409 c->dcache.linesz = lsize ? 2 << lsize : 0;
1410
1411 c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1412 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1413
1414 dcache_size = c->dcache.sets *
1415 c->dcache.ways *
1416 c->dcache.linesz;
1417 c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1418
1419 c->options |= MIPS_CPU_PREFETCH;
1420 break;
1421 }
1422
1423 /*
1424 * Processor configuration sanity check for the R4000SC erratum
1425 * #5. With page sizes larger than 32kB there is no possibility
1426 * to get a VCE exception anymore so we don't care about this
1427 * misconfiguration. The case is rather theoretical anyway;
1428 * presumably no vendor is shipping his hardware in the "bad"
1429 * configuration.
1430 */
1431 if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1432 (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1433 !(config & CONF_SC) && c->icache.linesz != 16 &&
1434 PAGE_SIZE <= 0x8000)
1435 panic("Improper R4000SC processor configuration detected");
1436
1437 /* compute a couple of other cache variables */
1438 c->icache.waysize = icache_size / c->icache.ways;
1439 c->dcache.waysize = dcache_size / c->dcache.ways;
1440
1441 c->icache.sets = c->icache.linesz ?
1442 icache_size / (c->icache.linesz * c->icache.ways) : 0;
1443 c->dcache.sets = c->dcache.linesz ?
1444 dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1445
1446 /*
1447 * R1x000 P-caches are odd in a positive way. They're 32kB 2-way
1448 * virtually indexed so normally would suffer from aliases. So
1449 * normally they'd suffer from aliases but magic in the hardware deals
1450 * with that for us so we don't need to take care ourselves.
1451 */
1452 switch (current_cpu_type()) {
1453 case CPU_20KC:
1454 case CPU_25KF:
1455 case CPU_I6400:
1456 case CPU_SB1:
1457 case CPU_SB1A:
1458 case CPU_XLR:
1459 c->dcache.flags |= MIPS_CACHE_PINDEX;
1460 break;
1461
1462 case CPU_R10000:
1463 case CPU_R12000:
1464 case CPU_R14000:
1465 case CPU_R16000:
1466 break;
1467
1468 case CPU_74K:
1469 case CPU_1074K:
1470 has_74k_erratum = alias_74k_erratum(c);
1471 /* Fall through. */
1472 case CPU_M14KC:
1473 case CPU_M14KEC:
1474 case CPU_24K:
1475 case CPU_34K:
1476 case CPU_1004K:
1477 case CPU_INTERAPTIV:
1478 case CPU_P5600:
1479 case CPU_PROAPTIV:
1480 case CPU_M5150:
1481 case CPU_QEMU_GENERIC:
1482 case CPU_P6600:
1483 case CPU_M6250:
1484 if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1485 (c->icache.waysize > PAGE_SIZE))
1486 c->icache.flags |= MIPS_CACHE_ALIASES;
1487 if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1488 /*
1489 * Effectively physically indexed dcache,
1490 * thus no virtual aliases.
1491 */
1492 c->dcache.flags |= MIPS_CACHE_PINDEX;
1493 break;
1494 }
1495 default:
1496 if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1497 c->dcache.flags |= MIPS_CACHE_ALIASES;
1498 }
1499
1500 /* Physically indexed caches don't suffer from virtual aliasing */
1501 if (c->dcache.flags & MIPS_CACHE_PINDEX)
1502 c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1503
1504 switch (current_cpu_type()) {
1505 case CPU_20KC:
1506 /*
1507 * Some older 20Kc chips doesn't have the 'VI' bit in
1508 * the config register.
1509 */
1510 c->icache.flags |= MIPS_CACHE_VTAG;
1511 break;
1512
1513 case CPU_ALCHEMY:
1514 case CPU_I6400:
1515 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1516 break;
1517
1518 case CPU_BMIPS5000:
1519 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1520 /* Cache aliases are handled in hardware; allow HIGHMEM */
1521 c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1522 break;
1523
1524 case CPU_LOONGSON2:
1525 /*
1526 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1527 * one op will act on all 4 ways
1528 */
1529 c->icache.ways = 1;
1530 }
1531
1532 printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1533 icache_size >> 10,
1534 c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1535 way_string[c->icache.ways], c->icache.linesz);
1536
1537 printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1538 dcache_size >> 10, way_string[c->dcache.ways],
1539 (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1540 (c->dcache.flags & MIPS_CACHE_ALIASES) ?
1541 "cache aliases" : "no aliases",
1542 c->dcache.linesz);
1543 }
1544
1545 static void probe_vcache(void)
1546 {
1547 struct cpuinfo_mips *c = &current_cpu_data;
1548 unsigned int config2, lsize;
1549
1550 if (current_cpu_type() != CPU_LOONGSON3)
1551 return;
1552
1553 config2 = read_c0_config2();
1554 if ((lsize = ((config2 >> 20) & 15)))
1555 c->vcache.linesz = 2 << lsize;
1556 else
1557 c->vcache.linesz = lsize;
1558
1559 c->vcache.sets = 64 << ((config2 >> 24) & 15);
1560 c->vcache.ways = 1 + ((config2 >> 16) & 15);
1561
1562 vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1563
1564 c->vcache.waybit = 0;
1565
1566 pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1567 vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1568 }
1569
1570 /*
1571 * If you even _breathe_ on this function, look at the gcc output and make sure
1572 * it does not pop things on and off the stack for the cache sizing loop that
1573 * executes in KSEG1 space or else you will crash and burn badly. You have
1574 * been warned.
1575 */
1576 static int probe_scache(void)
1577 {
1578 unsigned long flags, addr, begin, end, pow2;
1579 unsigned int config = read_c0_config();
1580 struct cpuinfo_mips *c = &current_cpu_data;
1581
1582 if (config & CONF_SC)
1583 return 0;
1584
1585 begin = (unsigned long) &_stext;
1586 begin &= ~((4 * 1024 * 1024) - 1);
1587 end = begin + (4 * 1024 * 1024);
1588
1589 /*
1590 * This is such a bitch, you'd think they would make it easy to do
1591 * this. Away you daemons of stupidity!
1592 */
1593 local_irq_save(flags);
1594
1595 /* Fill each size-multiple cache line with a valid tag. */
1596 pow2 = (64 * 1024);
1597 for (addr = begin; addr < end; addr = (begin + pow2)) {
1598 unsigned long *p = (unsigned long *) addr;
1599 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1600 pow2 <<= 1;
1601 }
1602
1603 /* Load first line with zero (therefore invalid) tag. */
1604 write_c0_taglo(0);
1605 write_c0_taghi(0);
1606 __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1607 cache_op(Index_Store_Tag_I, begin);
1608 cache_op(Index_Store_Tag_D, begin);
1609 cache_op(Index_Store_Tag_SD, begin);
1610
1611 /* Now search for the wrap around point. */
1612 pow2 = (128 * 1024);
1613 for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1614 cache_op(Index_Load_Tag_SD, addr);
1615 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1616 if (!read_c0_taglo())
1617 break;
1618 pow2 <<= 1;
1619 }
1620 local_irq_restore(flags);
1621 addr -= begin;
1622
1623 scache_size = addr;
1624 c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1625 c->scache.ways = 1;
1626 c->scache.waybit = 0; /* does not matter */
1627
1628 return 1;
1629 }
1630
1631 static void __init loongson2_sc_init(void)
1632 {
1633 struct cpuinfo_mips *c = &current_cpu_data;
1634
1635 scache_size = 512*1024;
1636 c->scache.linesz = 32;
1637 c->scache.ways = 4;
1638 c->scache.waybit = 0;
1639 c->scache.waysize = scache_size / (c->scache.ways);
1640 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1641 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1642 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1643
1644 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1645 }
1646
1647 static void __init loongson3_sc_init(void)
1648 {
1649 struct cpuinfo_mips *c = &current_cpu_data;
1650 unsigned int config2, lsize;
1651
1652 config2 = read_c0_config2();
1653 lsize = (config2 >> 4) & 15;
1654 if (lsize)
1655 c->scache.linesz = 2 << lsize;
1656 else
1657 c->scache.linesz = 0;
1658 c->scache.sets = 64 << ((config2 >> 8) & 15);
1659 c->scache.ways = 1 + (config2 & 15);
1660
1661 scache_size = c->scache.sets *
1662 c->scache.ways *
1663 c->scache.linesz;
1664 /* Loongson-3 has 4 cores, 1MB scache for each. scaches are shared */
1665 scache_size *= 4;
1666 c->scache.waybit = 0;
1667 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1668 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1669 if (scache_size)
1670 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1671 return;
1672 }
1673
1674 extern int r5k_sc_init(void);
1675 extern int rm7k_sc_init(void);
1676 extern int mips_sc_init(void);
1677
1678 static void setup_scache(void)
1679 {
1680 struct cpuinfo_mips *c = &current_cpu_data;
1681 unsigned int config = read_c0_config();
1682 int sc_present = 0;
1683
1684 /*
1685 * Do the probing thing on R4000SC and R4400SC processors. Other
1686 * processors don't have a S-cache that would be relevant to the
1687 * Linux memory management.
1688 */
1689 switch (current_cpu_type()) {
1690 case CPU_R4000SC:
1691 case CPU_R4000MC:
1692 case CPU_R4400SC:
1693 case CPU_R4400MC:
1694 sc_present = run_uncached(probe_scache);
1695 if (sc_present)
1696 c->options |= MIPS_CPU_CACHE_CDEX_S;
1697 break;
1698
1699 case CPU_R10000:
1700 case CPU_R12000:
1701 case CPU_R14000:
1702 case CPU_R16000:
1703 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1704 c->scache.linesz = 64 << ((config >> 13) & 1);
1705 c->scache.ways = 2;
1706 c->scache.waybit= 0;
1707 sc_present = 1;
1708 break;
1709
1710 case CPU_R5000:
1711 case CPU_NEVADA:
1712 #ifdef CONFIG_R5000_CPU_SCACHE
1713 r5k_sc_init();
1714 #endif
1715 return;
1716
1717 case CPU_RM7000:
1718 #ifdef CONFIG_RM7000_CPU_SCACHE
1719 rm7k_sc_init();
1720 #endif
1721 return;
1722
1723 case CPU_LOONGSON2:
1724 loongson2_sc_init();
1725 return;
1726
1727 case CPU_LOONGSON3:
1728 loongson3_sc_init();
1729 return;
1730
1731 case CPU_CAVIUM_OCTEON3:
1732 case CPU_XLP:
1733 /* don't need to worry about L2, fully coherent */
1734 return;
1735
1736 default:
1737 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M32R2 |
1738 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R1 |
1739 MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M64R6)) {
1740 #ifdef CONFIG_MIPS_CPU_SCACHE
1741 if (mips_sc_init ()) {
1742 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1743 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1744 scache_size >> 10,
1745 way_string[c->scache.ways], c->scache.linesz);
1746 }
1747 #else
1748 if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1749 panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1750 #endif
1751 return;
1752 }
1753 sc_present = 0;
1754 }
1755
1756 if (!sc_present)
1757 return;
1758
1759 /* compute a couple of other cache variables */
1760 c->scache.waysize = scache_size / c->scache.ways;
1761
1762 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1763
1764 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1765 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1766
1767 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1768 }
1769
1770 void au1x00_fixup_config_od(void)
1771 {
1772 /*
1773 * c0_config.od (bit 19) was write only (and read as 0)
1774 * on the early revisions of Alchemy SOCs. It disables the bus
1775 * transaction overlapping and needs to be set to fix various errata.
1776 */
1777 switch (read_c0_prid()) {
1778 case 0x00030100: /* Au1000 DA */
1779 case 0x00030201: /* Au1000 HA */
1780 case 0x00030202: /* Au1000 HB */
1781 case 0x01030200: /* Au1500 AB */
1782 /*
1783 * Au1100 errata actually keeps silence about this bit, so we set it
1784 * just in case for those revisions that require it to be set according
1785 * to the (now gone) cpu table.
1786 */
1787 case 0x02030200: /* Au1100 AB */
1788 case 0x02030201: /* Au1100 BA */
1789 case 0x02030202: /* Au1100 BC */
1790 set_c0_config(1 << 19);
1791 break;
1792 }
1793 }
1794
1795 /* CP0 hazard avoidance. */
1796 #define NXP_BARRIER() \
1797 __asm__ __volatile__( \
1798 ".set noreorder\n\t" \
1799 "nop; nop; nop; nop; nop; nop;\n\t" \
1800 ".set reorder\n\t")
1801
1802 static void nxp_pr4450_fixup_config(void)
1803 {
1804 unsigned long config0;
1805
1806 config0 = read_c0_config();
1807
1808 /* clear all three cache coherency fields */
1809 config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1810 config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) |
1811 ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1812 ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1813 write_c0_config(config0);
1814 NXP_BARRIER();
1815 }
1816
1817 static int cca = -1;
1818
1819 static int __init cca_setup(char *str)
1820 {
1821 get_option(&str, &cca);
1822
1823 return 0;
1824 }
1825
1826 early_param("cca", cca_setup);
1827
1828 static void coherency_setup(void)
1829 {
1830 if (cca < 0 || cca > 7)
1831 cca = read_c0_config() & CONF_CM_CMASK;
1832 _page_cachable_default = cca << _CACHE_SHIFT;
1833
1834 pr_debug("Using cache attribute %d\n", cca);
1835 change_c0_config(CONF_CM_CMASK, cca);
1836
1837 /*
1838 * c0_status.cu=0 specifies that updates by the sc instruction use
1839 * the coherency mode specified by the TLB; 1 means cachable
1840 * coherent update on write will be used. Not all processors have
1841 * this bit and; some wire it to zero, others like Toshiba had the
1842 * silly idea of putting something else there ...
1843 */
1844 switch (current_cpu_type()) {
1845 case CPU_R4000PC:
1846 case CPU_R4000SC:
1847 case CPU_R4000MC:
1848 case CPU_R4400PC:
1849 case CPU_R4400SC:
1850 case CPU_R4400MC:
1851 clear_c0_config(CONF_CU);
1852 break;
1853 /*
1854 * We need to catch the early Alchemy SOCs with
1855 * the write-only co_config.od bit and set it back to one on:
1856 * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB
1857 */
1858 case CPU_ALCHEMY:
1859 au1x00_fixup_config_od();
1860 break;
1861
1862 case PRID_IMP_PR4450:
1863 nxp_pr4450_fixup_config();
1864 break;
1865 }
1866 }
1867
1868 static void r4k_cache_error_setup(void)
1869 {
1870 extern char __weak except_vec2_generic;
1871 extern char __weak except_vec2_sb1;
1872
1873 switch (current_cpu_type()) {
1874 case CPU_SB1:
1875 case CPU_SB1A:
1876 set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1877 break;
1878
1879 default:
1880 set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1881 break;
1882 }
1883 }
1884
1885 void r4k_cache_init(void)
1886 {
1887 extern void build_clear_page(void);
1888 extern void build_copy_page(void);
1889 struct cpuinfo_mips *c = &current_cpu_data;
1890
1891 probe_pcache();
1892 probe_vcache();
1893 setup_scache();
1894
1895 r4k_blast_dcache_page_setup();
1896 r4k_blast_dcache_page_indexed_setup();
1897 r4k_blast_dcache_setup();
1898 r4k_blast_icache_page_setup();
1899 r4k_blast_icache_page_indexed_setup();
1900 r4k_blast_icache_setup();
1901 r4k_blast_scache_page_setup();
1902 r4k_blast_scache_page_indexed_setup();
1903 r4k_blast_scache_setup();
1904 #ifdef CONFIG_EVA
1905 r4k_blast_dcache_user_page_setup();
1906 r4k_blast_icache_user_page_setup();
1907 #endif
1908
1909 /*
1910 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1911 * This code supports virtually indexed processors and will be
1912 * unnecessarily inefficient on physically indexed processors.
1913 */
1914 if (c->dcache.linesz && cpu_has_dc_aliases)
1915 shm_align_mask = max_t( unsigned long,
1916 c->dcache.sets * c->dcache.linesz - 1,
1917 PAGE_SIZE - 1);
1918 else
1919 shm_align_mask = PAGE_SIZE-1;
1920
1921 __flush_cache_vmap = r4k__flush_cache_vmap;
1922 __flush_cache_vunmap = r4k__flush_cache_vunmap;
1923
1924 flush_cache_all = cache_noop;
1925 __flush_cache_all = r4k___flush_cache_all;
1926 flush_cache_mm = r4k_flush_cache_mm;
1927 flush_cache_page = r4k_flush_cache_page;
1928 flush_cache_range = r4k_flush_cache_range;
1929
1930 __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1931
1932 flush_cache_sigtramp = r4k_flush_cache_sigtramp;
1933 flush_icache_all = r4k_flush_icache_all;
1934 local_flush_data_cache_page = local_r4k_flush_data_cache_page;
1935 flush_data_cache_page = r4k_flush_data_cache_page;
1936 flush_icache_range = r4k_flush_icache_range;
1937 local_flush_icache_range = local_r4k_flush_icache_range;
1938 __flush_icache_user_range = r4k_flush_icache_user_range;
1939 __local_flush_icache_user_range = local_r4k_flush_icache_user_range;
1940
1941 #if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
1942 # if defined(CONFIG_DMA_PERDEV_COHERENT)
1943 if (0) {
1944 # else
1945 if ((coherentio == IO_COHERENCE_ENABLED) ||
1946 ((coherentio == IO_COHERENCE_DEFAULT) && hw_coherentio)) {
1947 # endif
1948 _dma_cache_wback_inv = (void *)cache_noop;
1949 _dma_cache_wback = (void *)cache_noop;
1950 _dma_cache_inv = (void *)cache_noop;
1951 } else {
1952 _dma_cache_wback_inv = r4k_dma_cache_wback_inv;
1953 _dma_cache_wback = r4k_dma_cache_wback_inv;
1954 _dma_cache_inv = r4k_dma_cache_inv;
1955 }
1956 #endif
1957
1958 build_clear_page();
1959 build_copy_page();
1960
1961 /*
1962 * We want to run CMP kernels on core with and without coherent
1963 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1964 * or not to flush caches.
1965 */
1966 local_r4k___flush_cache_all(NULL);
1967
1968 coherency_setup();
1969 board_cache_error_setup = r4k_cache_error_setup;
1970
1971 /*
1972 * Per-CPU overrides
1973 */
1974 switch (current_cpu_type()) {
1975 case CPU_BMIPS4350:
1976 case CPU_BMIPS4380:
1977 /* No IPI is needed because all CPUs share the same D$ */
1978 flush_data_cache_page = r4k_blast_dcache_page;
1979 break;
1980 case CPU_BMIPS5000:
1981 /* We lose our superpowers if L2 is disabled */
1982 if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1983 break;
1984
1985 /* I$ fills from D$ just by emptying the write buffers */
1986 flush_cache_page = (void *)b5k_instruction_hazard;
1987 flush_cache_range = (void *)b5k_instruction_hazard;
1988 flush_cache_sigtramp = (void *)b5k_instruction_hazard;
1989 local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1990 flush_data_cache_page = (void *)b5k_instruction_hazard;
1991 flush_icache_range = (void *)b5k_instruction_hazard;
1992 local_flush_icache_range = (void *)b5k_instruction_hazard;
1993
1994
1995 /* Optimization: an L2 flush implicitly flushes the L1 */
1996 current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1997 break;
1998 case CPU_LOONGSON3:
1999 /* Loongson-3 maintains cache coherency by hardware */
2000 __flush_cache_all = cache_noop;
2001 __flush_cache_vmap = cache_noop;
2002 __flush_cache_vunmap = cache_noop;
2003 __flush_kernel_vmap_range = (void *)cache_noop;
2004 flush_cache_mm = (void *)cache_noop;
2005 flush_cache_page = (void *)cache_noop;
2006 flush_cache_range = (void *)cache_noop;
2007 flush_cache_sigtramp = (void *)cache_noop;
2008 flush_icache_all = (void *)cache_noop;
2009 flush_data_cache_page = (void *)cache_noop;
2010 local_flush_data_cache_page = (void *)cache_noop;
2011 break;
2012 }
2013 }
2014
2015 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
2016 void *v)
2017 {
2018 switch (cmd) {
2019 case CPU_PM_ENTER_FAILED:
2020 case CPU_PM_EXIT:
2021 coherency_setup();
2022 break;
2023 }
2024
2025 return NOTIFY_OK;
2026 }
2027
2028 static struct notifier_block r4k_cache_pm_notifier_block = {
2029 .notifier_call = r4k_cache_pm_notifier,
2030 };
2031
2032 int __init r4k_cache_init_pm(void)
2033 {
2034 return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
2035 }
2036 arch_initcall(r4k_cache_init_pm);