]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/mm/dma-default.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / arch / mips / mm / dma-default.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
7 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9 */
10
11 #include <linux/types.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/mm.h>
14 #include <linux/export.h>
15 #include <linux/scatterlist.h>
16 #include <linux/string.h>
17 #include <linux/gfp.h>
18 #include <linux/highmem.h>
19 #include <linux/dma-contiguous.h>
20
21 #include <asm/cache.h>
22 #include <asm/cpu-type.h>
23 #include <asm/io.h>
24
25 #include <dma-coherence.h>
26
27 #if defined(CONFIG_DMA_MAYBE_COHERENT) && !defined(CONFIG_DMA_PERDEV_COHERENT)
28 /* User defined DMA coherency from command line. */
29 enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT;
30 EXPORT_SYMBOL_GPL(coherentio);
31 int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */
32
33 static int __init setcoherentio(char *str)
34 {
35 coherentio = IO_COHERENCE_ENABLED;
36 pr_info("Hardware DMA cache coherency (command line)\n");
37 return 0;
38 }
39 early_param("coherentio", setcoherentio);
40
41 static int __init setnocoherentio(char *str)
42 {
43 coherentio = IO_COHERENCE_DISABLED;
44 pr_info("Software DMA cache coherency (command line)\n");
45 return 0;
46 }
47 early_param("nocoherentio", setnocoherentio);
48 #endif
49
50 static inline struct page *dma_addr_to_page(struct device *dev,
51 dma_addr_t dma_addr)
52 {
53 return pfn_to_page(
54 plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
55 }
56
57 /*
58 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
59 * speculatively fill random cachelines with stale data at any time,
60 * requiring an extra flush post-DMA.
61 *
62 * Warning on the terminology - Linux calls an uncached area coherent;
63 * MIPS terminology calls memory areas with hardware maintained coherency
64 * coherent.
65 *
66 * Note that the R14000 and R16000 should also be checked for in this
67 * condition. However this function is only called on non-I/O-coherent
68 * systems and only the R10000 and R12000 are used in such systems, the
69 * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
70 */
71 static inline bool cpu_needs_post_dma_flush(struct device *dev)
72 {
73 if (plat_device_is_coherent(dev))
74 return false;
75
76 switch (boot_cpu_type()) {
77 case CPU_R10000:
78 case CPU_R12000:
79 case CPU_BMIPS5000:
80 return true;
81
82 default:
83 /*
84 * Presence of MAARs suggests that the CPU supports
85 * speculatively prefetching data, and therefore requires
86 * the post-DMA flush/invalidate.
87 */
88 return cpu_has_maar;
89 }
90 }
91
92 static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
93 {
94 gfp_t dma_flag;
95
96 /* ignore region specifiers */
97 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
98
99 #ifdef CONFIG_ISA
100 if (dev == NULL)
101 dma_flag = __GFP_DMA;
102 else
103 #endif
104 #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
105 if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(32))
106 dma_flag = __GFP_DMA;
107 else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
108 dma_flag = __GFP_DMA32;
109 else
110 #endif
111 #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
112 if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(64))
113 dma_flag = __GFP_DMA32;
114 else
115 #endif
116 #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
117 if (dev == NULL ||
118 dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8))
119 dma_flag = __GFP_DMA;
120 else
121 #endif
122 dma_flag = 0;
123
124 /* Don't invoke OOM killer */
125 gfp |= __GFP_NORETRY;
126
127 return gfp | dma_flag;
128 }
129
130 static void *mips_dma_alloc_noncoherent(struct device *dev, size_t size,
131 dma_addr_t * dma_handle, gfp_t gfp)
132 {
133 void *ret;
134
135 gfp = massage_gfp_flags(dev, gfp);
136
137 ret = (void *) __get_free_pages(gfp, get_order(size));
138
139 if (ret != NULL) {
140 memset(ret, 0, size);
141 *dma_handle = plat_map_dma_mem(dev, ret, size);
142 }
143
144 return ret;
145 }
146
147 static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
148 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
149 {
150 void *ret;
151 struct page *page = NULL;
152 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
153
154 /*
155 * XXX: seems like the coherent and non-coherent implementations could
156 * be consolidated.
157 */
158 if (attrs & DMA_ATTR_NON_CONSISTENT)
159 return mips_dma_alloc_noncoherent(dev, size, dma_handle, gfp);
160
161 gfp = massage_gfp_flags(dev, gfp);
162
163 if (IS_ENABLED(CONFIG_DMA_CMA) && gfpflags_allow_blocking(gfp))
164 page = dma_alloc_from_contiguous(dev, count, get_order(size),
165 gfp);
166 if (!page)
167 page = alloc_pages(gfp, get_order(size));
168
169 if (!page)
170 return NULL;
171
172 ret = page_address(page);
173 memset(ret, 0, size);
174 *dma_handle = plat_map_dma_mem(dev, ret, size);
175 if (!plat_device_is_coherent(dev)) {
176 dma_cache_wback_inv((unsigned long) ret, size);
177 ret = UNCAC_ADDR(ret);
178 }
179
180 return ret;
181 }
182
183
184 static void mips_dma_free_noncoherent(struct device *dev, size_t size,
185 void *vaddr, dma_addr_t dma_handle)
186 {
187 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
188 free_pages((unsigned long) vaddr, get_order(size));
189 }
190
191 static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
192 dma_addr_t dma_handle, unsigned long attrs)
193 {
194 unsigned long addr = (unsigned long) vaddr;
195 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
196 struct page *page = NULL;
197
198 if (attrs & DMA_ATTR_NON_CONSISTENT) {
199 mips_dma_free_noncoherent(dev, size, vaddr, dma_handle);
200 return;
201 }
202
203 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
204
205 if (!plat_device_is_coherent(dev))
206 addr = CAC_ADDR(addr);
207
208 page = virt_to_page((void *) addr);
209
210 if (!dma_release_from_contiguous(dev, page, count))
211 __free_pages(page, get_order(size));
212 }
213
214 static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma,
215 void *cpu_addr, dma_addr_t dma_addr, size_t size,
216 unsigned long attrs)
217 {
218 unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
219 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
220 unsigned long addr = (unsigned long)cpu_addr;
221 unsigned long off = vma->vm_pgoff;
222 unsigned long pfn;
223 int ret = -ENXIO;
224
225 if (!plat_device_is_coherent(dev))
226 addr = CAC_ADDR(addr);
227
228 pfn = page_to_pfn(virt_to_page((void *)addr));
229
230 if (attrs & DMA_ATTR_WRITE_COMBINE)
231 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
232 else
233 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
234
235 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
236 return ret;
237
238 if (off < count && user_count <= (count - off)) {
239 ret = remap_pfn_range(vma, vma->vm_start,
240 pfn + off,
241 user_count << PAGE_SHIFT,
242 vma->vm_page_prot);
243 }
244
245 return ret;
246 }
247
248 static inline void __dma_sync_virtual(void *addr, size_t size,
249 enum dma_data_direction direction)
250 {
251 switch (direction) {
252 case DMA_TO_DEVICE:
253 dma_cache_wback((unsigned long)addr, size);
254 break;
255
256 case DMA_FROM_DEVICE:
257 dma_cache_inv((unsigned long)addr, size);
258 break;
259
260 case DMA_BIDIRECTIONAL:
261 dma_cache_wback_inv((unsigned long)addr, size);
262 break;
263
264 default:
265 BUG();
266 }
267 }
268
269 /*
270 * A single sg entry may refer to multiple physically contiguous
271 * pages. But we still need to process highmem pages individually.
272 * If highmem is not configured then the bulk of this loop gets
273 * optimized out.
274 */
275 static inline void __dma_sync(struct page *page,
276 unsigned long offset, size_t size, enum dma_data_direction direction)
277 {
278 size_t left = size;
279
280 do {
281 size_t len = left;
282
283 if (PageHighMem(page)) {
284 void *addr;
285
286 if (offset + len > PAGE_SIZE) {
287 if (offset >= PAGE_SIZE) {
288 page += offset >> PAGE_SHIFT;
289 offset &= ~PAGE_MASK;
290 }
291 len = PAGE_SIZE - offset;
292 }
293
294 addr = kmap_atomic(page);
295 __dma_sync_virtual(addr + offset, len, direction);
296 kunmap_atomic(addr);
297 } else
298 __dma_sync_virtual(page_address(page) + offset,
299 size, direction);
300 offset = 0;
301 page++;
302 left -= len;
303 } while (left);
304 }
305
306 static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
307 size_t size, enum dma_data_direction direction, unsigned long attrs)
308 {
309 if (cpu_needs_post_dma_flush(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
310 __dma_sync(dma_addr_to_page(dev, dma_addr),
311 dma_addr & ~PAGE_MASK, size, direction);
312 plat_post_dma_flush(dev);
313 plat_unmap_dma_mem(dev, dma_addr, size, direction);
314 }
315
316 static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
317 int nents, enum dma_data_direction direction, unsigned long attrs)
318 {
319 int i;
320 struct scatterlist *sg;
321
322 for_each_sg(sglist, sg, nents, i) {
323 if (!plat_device_is_coherent(dev) &&
324 !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
325 __dma_sync(sg_page(sg), sg->offset, sg->length,
326 direction);
327 #ifdef CONFIG_NEED_SG_DMA_LENGTH
328 sg->dma_length = sg->length;
329 #endif
330 sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
331 sg->offset;
332 }
333
334 return nents;
335 }
336
337 static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
338 unsigned long offset, size_t size, enum dma_data_direction direction,
339 unsigned long attrs)
340 {
341 if (!plat_device_is_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
342 __dma_sync(page, offset, size, direction);
343
344 return plat_map_dma_mem_page(dev, page) + offset;
345 }
346
347 static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
348 int nhwentries, enum dma_data_direction direction,
349 unsigned long attrs)
350 {
351 int i;
352 struct scatterlist *sg;
353
354 for_each_sg(sglist, sg, nhwentries, i) {
355 if (!plat_device_is_coherent(dev) &&
356 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
357 direction != DMA_TO_DEVICE)
358 __dma_sync(sg_page(sg), sg->offset, sg->length,
359 direction);
360 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
361 }
362 }
363
364 static void mips_dma_sync_single_for_cpu(struct device *dev,
365 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
366 {
367 if (cpu_needs_post_dma_flush(dev))
368 __dma_sync(dma_addr_to_page(dev, dma_handle),
369 dma_handle & ~PAGE_MASK, size, direction);
370 plat_post_dma_flush(dev);
371 }
372
373 static void mips_dma_sync_single_for_device(struct device *dev,
374 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
375 {
376 if (!plat_device_is_coherent(dev))
377 __dma_sync(dma_addr_to_page(dev, dma_handle),
378 dma_handle & ~PAGE_MASK, size, direction);
379 }
380
381 static void mips_dma_sync_sg_for_cpu(struct device *dev,
382 struct scatterlist *sglist, int nelems,
383 enum dma_data_direction direction)
384 {
385 int i;
386 struct scatterlist *sg;
387
388 if (cpu_needs_post_dma_flush(dev)) {
389 for_each_sg(sglist, sg, nelems, i) {
390 __dma_sync(sg_page(sg), sg->offset, sg->length,
391 direction);
392 }
393 }
394 plat_post_dma_flush(dev);
395 }
396
397 static void mips_dma_sync_sg_for_device(struct device *dev,
398 struct scatterlist *sglist, int nelems,
399 enum dma_data_direction direction)
400 {
401 int i;
402 struct scatterlist *sg;
403
404 if (!plat_device_is_coherent(dev)) {
405 for_each_sg(sglist, sg, nelems, i) {
406 __dma_sync(sg_page(sg), sg->offset, sg->length,
407 direction);
408 }
409 }
410 }
411
412 int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
413 {
414 return 0;
415 }
416
417 int mips_dma_supported(struct device *dev, u64 mask)
418 {
419 return plat_dma_supported(dev, mask);
420 }
421
422 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
423 enum dma_data_direction direction)
424 {
425 BUG_ON(direction == DMA_NONE);
426
427 if (!plat_device_is_coherent(dev))
428 __dma_sync_virtual(vaddr, size, direction);
429 }
430
431 EXPORT_SYMBOL(dma_cache_sync);
432
433 static const struct dma_map_ops mips_default_dma_map_ops = {
434 .alloc = mips_dma_alloc_coherent,
435 .free = mips_dma_free_coherent,
436 .mmap = mips_dma_mmap,
437 .map_page = mips_dma_map_page,
438 .unmap_page = mips_dma_unmap_page,
439 .map_sg = mips_dma_map_sg,
440 .unmap_sg = mips_dma_unmap_sg,
441 .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
442 .sync_single_for_device = mips_dma_sync_single_for_device,
443 .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
444 .sync_sg_for_device = mips_dma_sync_sg_for_device,
445 .mapping_error = mips_dma_mapping_error,
446 .dma_supported = mips_dma_supported
447 };
448
449 const struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
450 EXPORT_SYMBOL(mips_dma_map_ops);
451
452 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
453
454 static int __init mips_dma_init(void)
455 {
456 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
457
458 return 0;
459 }
460 fs_initcall(mips_dma_init);