]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/mm/dma-default.c
Merge branch '3.11-fixes' into mips-for-linux-next
[mirror_ubuntu-artful-kernel.git] / arch / mips / mm / dma-default.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
7 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9 */
10
11 #include <linux/types.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/scatterlist.h>
16 #include <linux/string.h>
17 #include <linux/gfp.h>
18 #include <linux/highmem.h>
19
20 #include <asm/cache.h>
21 #include <asm/io.h>
22
23 #include <dma-coherence.h>
24
25 int coherentio = 0; /* User defined DMA coherency from command line. */
26 EXPORT_SYMBOL_GPL(coherentio);
27 int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */
28
29 static int __init setcoherentio(char *str)
30 {
31 coherentio = 1;
32 pr_info("Hardware DMA cache coherency (command line)\n");
33 return 0;
34 }
35 early_param("coherentio", setcoherentio);
36
37 static int __init setnocoherentio(char *str)
38 {
39 coherentio = 0;
40 pr_info("Software DMA cache coherency (command line)\n");
41 return 0;
42 }
43 early_param("nocoherentio", setnocoherentio);
44
45 static inline struct page *dma_addr_to_page(struct device *dev,
46 dma_addr_t dma_addr)
47 {
48 return pfn_to_page(
49 plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
50 }
51
52 /*
53 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
54 * speculatively fill random cachelines with stale data at any time,
55 * requiring an extra flush post-DMA.
56 *
57 * Warning on the terminology - Linux calls an uncached area coherent;
58 * MIPS terminology calls memory areas with hardware maintained coherency
59 * coherent.
60 */
61 static inline int cpu_needs_post_dma_flush(struct device *dev)
62 {
63 return !plat_device_is_coherent(dev) &&
64 (current_cpu_type() == CPU_R10000 ||
65 current_cpu_type() == CPU_R12000 ||
66 current_cpu_type() == CPU_BMIPS5000);
67 }
68
69 static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
70 {
71 gfp_t dma_flag;
72
73 /* ignore region specifiers */
74 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
75
76 #ifdef CONFIG_ISA
77 if (dev == NULL)
78 dma_flag = __GFP_DMA;
79 else
80 #endif
81 #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
82 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
83 dma_flag = __GFP_DMA;
84 else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
85 dma_flag = __GFP_DMA32;
86 else
87 #endif
88 #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
89 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
90 dma_flag = __GFP_DMA32;
91 else
92 #endif
93 #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
94 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
95 dma_flag = __GFP_DMA;
96 else
97 #endif
98 dma_flag = 0;
99
100 /* Don't invoke OOM killer */
101 gfp |= __GFP_NORETRY;
102
103 return gfp | dma_flag;
104 }
105
106 void *dma_alloc_noncoherent(struct device *dev, size_t size,
107 dma_addr_t * dma_handle, gfp_t gfp)
108 {
109 void *ret;
110
111 gfp = massage_gfp_flags(dev, gfp);
112
113 ret = (void *) __get_free_pages(gfp, get_order(size));
114
115 if (ret != NULL) {
116 memset(ret, 0, size);
117 *dma_handle = plat_map_dma_mem(dev, ret, size);
118 }
119
120 return ret;
121 }
122 EXPORT_SYMBOL(dma_alloc_noncoherent);
123
124 static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
125 dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
126 {
127 void *ret;
128
129 if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
130 return ret;
131
132 gfp = massage_gfp_flags(dev, gfp);
133
134 ret = (void *) __get_free_pages(gfp, get_order(size));
135
136 if (ret) {
137 memset(ret, 0, size);
138 *dma_handle = plat_map_dma_mem(dev, ret, size);
139
140 if (!plat_device_is_coherent(dev)) {
141 dma_cache_wback_inv((unsigned long) ret, size);
142 if (!hw_coherentio)
143 ret = UNCAC_ADDR(ret);
144 }
145 }
146
147 return ret;
148 }
149
150
151 void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
152 dma_addr_t dma_handle)
153 {
154 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
155 free_pages((unsigned long) vaddr, get_order(size));
156 }
157 EXPORT_SYMBOL(dma_free_noncoherent);
158
159 static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
160 dma_addr_t dma_handle, struct dma_attrs *attrs)
161 {
162 unsigned long addr = (unsigned long) vaddr;
163 int order = get_order(size);
164
165 if (dma_release_from_coherent(dev, order, vaddr))
166 return;
167
168 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
169
170 if (!plat_device_is_coherent(dev) && !hw_coherentio)
171 addr = CAC_ADDR(addr);
172
173 free_pages(addr, get_order(size));
174 }
175
176 static inline void __dma_sync_virtual(void *addr, size_t size,
177 enum dma_data_direction direction)
178 {
179 switch (direction) {
180 case DMA_TO_DEVICE:
181 dma_cache_wback((unsigned long)addr, size);
182 break;
183
184 case DMA_FROM_DEVICE:
185 dma_cache_inv((unsigned long)addr, size);
186 break;
187
188 case DMA_BIDIRECTIONAL:
189 dma_cache_wback_inv((unsigned long)addr, size);
190 break;
191
192 default:
193 BUG();
194 }
195 }
196
197 /*
198 * A single sg entry may refer to multiple physically contiguous
199 * pages. But we still need to process highmem pages individually.
200 * If highmem is not configured then the bulk of this loop gets
201 * optimized out.
202 */
203 static inline void __dma_sync(struct page *page,
204 unsigned long offset, size_t size, enum dma_data_direction direction)
205 {
206 size_t left = size;
207
208 do {
209 size_t len = left;
210
211 if (PageHighMem(page)) {
212 void *addr;
213
214 if (offset + len > PAGE_SIZE) {
215 if (offset >= PAGE_SIZE) {
216 page += offset >> PAGE_SHIFT;
217 offset &= ~PAGE_MASK;
218 }
219 len = PAGE_SIZE - offset;
220 }
221
222 addr = kmap_atomic(page);
223 __dma_sync_virtual(addr + offset, len, direction);
224 kunmap_atomic(addr);
225 } else
226 __dma_sync_virtual(page_address(page) + offset,
227 size, direction);
228 offset = 0;
229 page++;
230 left -= len;
231 } while (left);
232 }
233
234 static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
235 size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
236 {
237 if (cpu_needs_post_dma_flush(dev))
238 __dma_sync(dma_addr_to_page(dev, dma_addr),
239 dma_addr & ~PAGE_MASK, size, direction);
240
241 plat_unmap_dma_mem(dev, dma_addr, size, direction);
242 }
243
244 static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
245 int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
246 {
247 int i;
248
249 for (i = 0; i < nents; i++, sg++) {
250 if (!plat_device_is_coherent(dev))
251 __dma_sync(sg_page(sg), sg->offset, sg->length,
252 direction);
253 #ifdef CONFIG_NEED_SG_DMA_LENGTH
254 sg->dma_length = sg->length;
255 #endif
256 sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
257 sg->offset;
258 }
259
260 return nents;
261 }
262
263 static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
264 unsigned long offset, size_t size, enum dma_data_direction direction,
265 struct dma_attrs *attrs)
266 {
267 if (!plat_device_is_coherent(dev))
268 __dma_sync(page, offset, size, direction);
269
270 return plat_map_dma_mem_page(dev, page) + offset;
271 }
272
273 static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
274 int nhwentries, enum dma_data_direction direction,
275 struct dma_attrs *attrs)
276 {
277 int i;
278
279 for (i = 0; i < nhwentries; i++, sg++) {
280 if (!plat_device_is_coherent(dev) &&
281 direction != DMA_TO_DEVICE)
282 __dma_sync(sg_page(sg), sg->offset, sg->length,
283 direction);
284 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
285 }
286 }
287
288 static void mips_dma_sync_single_for_cpu(struct device *dev,
289 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
290 {
291 if (cpu_needs_post_dma_flush(dev))
292 __dma_sync(dma_addr_to_page(dev, dma_handle),
293 dma_handle & ~PAGE_MASK, size, direction);
294 }
295
296 static void mips_dma_sync_single_for_device(struct device *dev,
297 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
298 {
299 plat_extra_sync_for_device(dev);
300 if (!plat_device_is_coherent(dev))
301 __dma_sync(dma_addr_to_page(dev, dma_handle),
302 dma_handle & ~PAGE_MASK, size, direction);
303 }
304
305 static void mips_dma_sync_sg_for_cpu(struct device *dev,
306 struct scatterlist *sg, int nelems, enum dma_data_direction direction)
307 {
308 int i;
309
310 /* Make sure that gcc doesn't leave the empty loop body. */
311 for (i = 0; i < nelems; i++, sg++) {
312 if (cpu_needs_post_dma_flush(dev))
313 __dma_sync(sg_page(sg), sg->offset, sg->length,
314 direction);
315 }
316 }
317
318 static void mips_dma_sync_sg_for_device(struct device *dev,
319 struct scatterlist *sg, int nelems, enum dma_data_direction direction)
320 {
321 int i;
322
323 /* Make sure that gcc doesn't leave the empty loop body. */
324 for (i = 0; i < nelems; i++, sg++) {
325 if (!plat_device_is_coherent(dev))
326 __dma_sync(sg_page(sg), sg->offset, sg->length,
327 direction);
328 }
329 }
330
331 int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
332 {
333 return plat_dma_mapping_error(dev, dma_addr);
334 }
335
336 int mips_dma_supported(struct device *dev, u64 mask)
337 {
338 return plat_dma_supported(dev, mask);
339 }
340
341 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
342 enum dma_data_direction direction)
343 {
344 BUG_ON(direction == DMA_NONE);
345
346 plat_extra_sync_for_device(dev);
347 if (!plat_device_is_coherent(dev))
348 __dma_sync_virtual(vaddr, size, direction);
349 }
350
351 EXPORT_SYMBOL(dma_cache_sync);
352
353 static struct dma_map_ops mips_default_dma_map_ops = {
354 .alloc = mips_dma_alloc_coherent,
355 .free = mips_dma_free_coherent,
356 .map_page = mips_dma_map_page,
357 .unmap_page = mips_dma_unmap_page,
358 .map_sg = mips_dma_map_sg,
359 .unmap_sg = mips_dma_unmap_sg,
360 .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
361 .sync_single_for_device = mips_dma_sync_single_for_device,
362 .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
363 .sync_sg_for_device = mips_dma_sync_sg_for_device,
364 .mapping_error = mips_dma_mapping_error,
365 .dma_supported = mips_dma_supported
366 };
367
368 struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
369 EXPORT_SYMBOL(mips_dma_map_ops);
370
371 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
372
373 static int __init mips_dma_init(void)
374 {
375 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
376
377 return 0;
378 }
379 fs_initcall(mips_dma_init);