]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/mm/dma-default.c
Merge remote-tracking branch 'linus/master' into testing
[mirror_ubuntu-artful-kernel.git] / arch / mips / mm / dma-default.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
7 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9 */
10
11 #include <linux/types.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/scatterlist.h>
16 #include <linux/string.h>
17 #include <linux/gfp.h>
18 #include <linux/highmem.h>
19
20 #include <asm/cache.h>
21 #include <asm/io.h>
22
23 #include <dma-coherence.h>
24
25 int coherentio = 0; /* User defined DMA coherency from command line. */
26 EXPORT_SYMBOL_GPL(coherentio);
27 int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */
28
29 static int __init setcoherentio(char *str)
30 {
31 coherentio = 1;
32 pr_info("Hardware DMA cache coherency (command line)\n");
33 return 0;
34 }
35 early_param("coherentio", setcoherentio);
36
37 static int __init setnocoherentio(char *str)
38 {
39 coherentio = 0;
40 pr_info("Software DMA cache coherency (command line)\n");
41 return 0;
42 }
43 early_param("nocoherentio", setnocoherentio);
44
45 static inline struct page *dma_addr_to_page(struct device *dev,
46 dma_addr_t dma_addr)
47 {
48 return pfn_to_page(
49 plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
50 }
51
52 /*
53 * Warning on the terminology - Linux calls an uncached area coherent;
54 * MIPS terminology calls memory areas with hardware maintained coherency
55 * coherent.
56 */
57
58 static inline int cpu_is_noncoherent_r10000(struct device *dev)
59 {
60 return !plat_device_is_coherent(dev) &&
61 (current_cpu_type() == CPU_R10000 ||
62 current_cpu_type() == CPU_R12000);
63 }
64
65 static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
66 {
67 gfp_t dma_flag;
68
69 /* ignore region specifiers */
70 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
71
72 #ifdef CONFIG_ISA
73 if (dev == NULL)
74 dma_flag = __GFP_DMA;
75 else
76 #endif
77 #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
78 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
79 dma_flag = __GFP_DMA;
80 else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
81 dma_flag = __GFP_DMA32;
82 else
83 #endif
84 #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
85 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
86 dma_flag = __GFP_DMA32;
87 else
88 #endif
89 #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
90 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
91 dma_flag = __GFP_DMA;
92 else
93 #endif
94 dma_flag = 0;
95
96 /* Don't invoke OOM killer */
97 gfp |= __GFP_NORETRY;
98
99 return gfp | dma_flag;
100 }
101
102 void *dma_alloc_noncoherent(struct device *dev, size_t size,
103 dma_addr_t * dma_handle, gfp_t gfp)
104 {
105 void *ret;
106
107 gfp = massage_gfp_flags(dev, gfp);
108
109 ret = (void *) __get_free_pages(gfp, get_order(size));
110
111 if (ret != NULL) {
112 memset(ret, 0, size);
113 *dma_handle = plat_map_dma_mem(dev, ret, size);
114 }
115
116 return ret;
117 }
118 EXPORT_SYMBOL(dma_alloc_noncoherent);
119
120 static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
121 dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
122 {
123 void *ret;
124
125 if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
126 return ret;
127
128 gfp = massage_gfp_flags(dev, gfp);
129
130 ret = (void *) __get_free_pages(gfp, get_order(size));
131
132 if (ret) {
133 memset(ret, 0, size);
134 *dma_handle = plat_map_dma_mem(dev, ret, size);
135
136 if (!plat_device_is_coherent(dev)) {
137 dma_cache_wback_inv((unsigned long) ret, size);
138 if (!hw_coherentio)
139 ret = UNCAC_ADDR(ret);
140 }
141 }
142
143 return ret;
144 }
145
146
147 void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
148 dma_addr_t dma_handle)
149 {
150 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
151 free_pages((unsigned long) vaddr, get_order(size));
152 }
153 EXPORT_SYMBOL(dma_free_noncoherent);
154
155 static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
156 dma_addr_t dma_handle, struct dma_attrs *attrs)
157 {
158 unsigned long addr = (unsigned long) vaddr;
159 int order = get_order(size);
160
161 if (dma_release_from_coherent(dev, order, vaddr))
162 return;
163
164 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
165
166 if (!plat_device_is_coherent(dev) && !hw_coherentio)
167 addr = CAC_ADDR(addr);
168
169 free_pages(addr, get_order(size));
170 }
171
172 static inline void __dma_sync_virtual(void *addr, size_t size,
173 enum dma_data_direction direction)
174 {
175 switch (direction) {
176 case DMA_TO_DEVICE:
177 dma_cache_wback((unsigned long)addr, size);
178 break;
179
180 case DMA_FROM_DEVICE:
181 dma_cache_inv((unsigned long)addr, size);
182 break;
183
184 case DMA_BIDIRECTIONAL:
185 dma_cache_wback_inv((unsigned long)addr, size);
186 break;
187
188 default:
189 BUG();
190 }
191 }
192
193 /*
194 * A single sg entry may refer to multiple physically contiguous
195 * pages. But we still need to process highmem pages individually.
196 * If highmem is not configured then the bulk of this loop gets
197 * optimized out.
198 */
199 static inline void __dma_sync(struct page *page,
200 unsigned long offset, size_t size, enum dma_data_direction direction)
201 {
202 size_t left = size;
203
204 do {
205 size_t len = left;
206
207 if (PageHighMem(page)) {
208 void *addr;
209
210 if (offset + len > PAGE_SIZE) {
211 if (offset >= PAGE_SIZE) {
212 page += offset >> PAGE_SHIFT;
213 offset &= ~PAGE_MASK;
214 }
215 len = PAGE_SIZE - offset;
216 }
217
218 addr = kmap_atomic(page);
219 __dma_sync_virtual(addr + offset, len, direction);
220 kunmap_atomic(addr);
221 } else
222 __dma_sync_virtual(page_address(page) + offset,
223 size, direction);
224 offset = 0;
225 page++;
226 left -= len;
227 } while (left);
228 }
229
230 static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
231 size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
232 {
233 if (cpu_is_noncoherent_r10000(dev))
234 __dma_sync(dma_addr_to_page(dev, dma_addr),
235 dma_addr & ~PAGE_MASK, size, direction);
236
237 plat_unmap_dma_mem(dev, dma_addr, size, direction);
238 }
239
240 static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
241 int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
242 {
243 int i;
244
245 for (i = 0; i < nents; i++, sg++) {
246 if (!plat_device_is_coherent(dev))
247 __dma_sync(sg_page(sg), sg->offset, sg->length,
248 direction);
249 #ifdef CONFIG_NEED_SG_DMA_LENGTH
250 sg->dma_length = sg->length;
251 #endif
252 sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
253 sg->offset;
254 }
255
256 return nents;
257 }
258
259 static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
260 unsigned long offset, size_t size, enum dma_data_direction direction,
261 struct dma_attrs *attrs)
262 {
263 if (!plat_device_is_coherent(dev))
264 __dma_sync(page, offset, size, direction);
265
266 return plat_map_dma_mem_page(dev, page) + offset;
267 }
268
269 static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
270 int nhwentries, enum dma_data_direction direction,
271 struct dma_attrs *attrs)
272 {
273 int i;
274
275 for (i = 0; i < nhwentries; i++, sg++) {
276 if (!plat_device_is_coherent(dev) &&
277 direction != DMA_TO_DEVICE)
278 __dma_sync(sg_page(sg), sg->offset, sg->length,
279 direction);
280 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
281 }
282 }
283
284 static void mips_dma_sync_single_for_cpu(struct device *dev,
285 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
286 {
287 if (cpu_is_noncoherent_r10000(dev))
288 __dma_sync(dma_addr_to_page(dev, dma_handle),
289 dma_handle & ~PAGE_MASK, size, direction);
290 }
291
292 static void mips_dma_sync_single_for_device(struct device *dev,
293 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
294 {
295 plat_extra_sync_for_device(dev);
296 if (!plat_device_is_coherent(dev))
297 __dma_sync(dma_addr_to_page(dev, dma_handle),
298 dma_handle & ~PAGE_MASK, size, direction);
299 }
300
301 static void mips_dma_sync_sg_for_cpu(struct device *dev,
302 struct scatterlist *sg, int nelems, enum dma_data_direction direction)
303 {
304 int i;
305
306 /* Make sure that gcc doesn't leave the empty loop body. */
307 for (i = 0; i < nelems; i++, sg++) {
308 if (cpu_is_noncoherent_r10000(dev))
309 __dma_sync(sg_page(sg), sg->offset, sg->length,
310 direction);
311 }
312 }
313
314 static void mips_dma_sync_sg_for_device(struct device *dev,
315 struct scatterlist *sg, int nelems, enum dma_data_direction direction)
316 {
317 int i;
318
319 /* Make sure that gcc doesn't leave the empty loop body. */
320 for (i = 0; i < nelems; i++, sg++) {
321 if (!plat_device_is_coherent(dev))
322 __dma_sync(sg_page(sg), sg->offset, sg->length,
323 direction);
324 }
325 }
326
327 int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
328 {
329 return plat_dma_mapping_error(dev, dma_addr);
330 }
331
332 int mips_dma_supported(struct device *dev, u64 mask)
333 {
334 return plat_dma_supported(dev, mask);
335 }
336
337 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
338 enum dma_data_direction direction)
339 {
340 BUG_ON(direction == DMA_NONE);
341
342 plat_extra_sync_for_device(dev);
343 if (!plat_device_is_coherent(dev))
344 __dma_sync_virtual(vaddr, size, direction);
345 }
346
347 EXPORT_SYMBOL(dma_cache_sync);
348
349 static struct dma_map_ops mips_default_dma_map_ops = {
350 .alloc = mips_dma_alloc_coherent,
351 .free = mips_dma_free_coherent,
352 .map_page = mips_dma_map_page,
353 .unmap_page = mips_dma_unmap_page,
354 .map_sg = mips_dma_map_sg,
355 .unmap_sg = mips_dma_unmap_sg,
356 .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
357 .sync_single_for_device = mips_dma_sync_single_for_device,
358 .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
359 .sync_sg_for_device = mips_dma_sync_sg_for_device,
360 .mapping_error = mips_dma_mapping_error,
361 .dma_supported = mips_dma_supported
362 };
363
364 struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
365 EXPORT_SYMBOL(mips_dma_map_ops);
366
367 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
368
369 static int __init mips_dma_init(void)
370 {
371 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
372
373 return 0;
374 }
375 fs_initcall(mips_dma_init);