]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/mm/tlbex.c
343fe0f559b1b246520863b02aaa0e6188df1e91
[mirror_ubuntu-artful-kernel.git] / arch / mips / mm / tlbex.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/cache.h>
30
31 #include <asm/cacheflush.h>
32 #include <asm/cpu-type.h>
33 #include <asm/pgtable.h>
34 #include <asm/war.h>
35 #include <asm/uasm.h>
36 #include <asm/setup.h>
37
38 /*
39 * TLB load/store/modify handlers.
40 *
41 * Only the fastpath gets synthesized at runtime, the slowpath for
42 * do_page_fault remains normal asm.
43 */
44 extern void tlb_do_page_fault_0(void);
45 extern void tlb_do_page_fault_1(void);
46
47 struct work_registers {
48 int r1;
49 int r2;
50 int r3;
51 };
52
53 struct tlb_reg_save {
54 unsigned long a;
55 unsigned long b;
56 } ____cacheline_aligned_in_smp;
57
58 static struct tlb_reg_save handler_reg_save[NR_CPUS];
59
60 static inline int r45k_bvahwbug(void)
61 {
62 /* XXX: We should probe for the presence of this bug, but we don't. */
63 return 0;
64 }
65
66 static inline int r4k_250MHZhwbug(void)
67 {
68 /* XXX: We should probe for the presence of this bug, but we don't. */
69 return 0;
70 }
71
72 static inline int __maybe_unused bcm1250_m3_war(void)
73 {
74 return BCM1250_M3_WAR;
75 }
76
77 static inline int __maybe_unused r10000_llsc_war(void)
78 {
79 return R10000_LLSC_WAR;
80 }
81
82 static int use_bbit_insns(void)
83 {
84 switch (current_cpu_type()) {
85 case CPU_CAVIUM_OCTEON:
86 case CPU_CAVIUM_OCTEON_PLUS:
87 case CPU_CAVIUM_OCTEON2:
88 case CPU_CAVIUM_OCTEON3:
89 return 1;
90 default:
91 return 0;
92 }
93 }
94
95 static int use_lwx_insns(void)
96 {
97 switch (current_cpu_type()) {
98 case CPU_CAVIUM_OCTEON2:
99 case CPU_CAVIUM_OCTEON3:
100 return 1;
101 default:
102 return 0;
103 }
104 }
105 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
106 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
107 static bool scratchpad_available(void)
108 {
109 return true;
110 }
111 static int scratchpad_offset(int i)
112 {
113 /*
114 * CVMSEG starts at address -32768 and extends for
115 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
116 */
117 i += 1; /* Kernel use starts at the top and works down. */
118 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
119 }
120 #else
121 static bool scratchpad_available(void)
122 {
123 return false;
124 }
125 static int scratchpad_offset(int i)
126 {
127 BUG();
128 /* Really unreachable, but evidently some GCC want this. */
129 return 0;
130 }
131 #endif
132 /*
133 * Found by experiment: At least some revisions of the 4kc throw under
134 * some circumstances a machine check exception, triggered by invalid
135 * values in the index register. Delaying the tlbp instruction until
136 * after the next branch, plus adding an additional nop in front of
137 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
138 * why; it's not an issue caused by the core RTL.
139 *
140 */
141 static int m4kc_tlbp_war(void)
142 {
143 return (current_cpu_data.processor_id & 0xffff00) ==
144 (PRID_COMP_MIPS | PRID_IMP_4KC);
145 }
146
147 /* Handle labels (which must be positive integers). */
148 enum label_id {
149 label_second_part = 1,
150 label_leave,
151 label_vmalloc,
152 label_vmalloc_done,
153 label_tlbw_hazard_0,
154 label_split = label_tlbw_hazard_0 + 8,
155 label_tlbl_goaround1,
156 label_tlbl_goaround2,
157 label_nopage_tlbl,
158 label_nopage_tlbs,
159 label_nopage_tlbm,
160 label_smp_pgtable_change,
161 label_r3000_write_probe_fail,
162 label_large_segbits_fault,
163 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
164 label_tlb_huge_update,
165 #endif
166 };
167
168 UASM_L_LA(_second_part)
169 UASM_L_LA(_leave)
170 UASM_L_LA(_vmalloc)
171 UASM_L_LA(_vmalloc_done)
172 /* _tlbw_hazard_x is handled differently. */
173 UASM_L_LA(_split)
174 UASM_L_LA(_tlbl_goaround1)
175 UASM_L_LA(_tlbl_goaround2)
176 UASM_L_LA(_nopage_tlbl)
177 UASM_L_LA(_nopage_tlbs)
178 UASM_L_LA(_nopage_tlbm)
179 UASM_L_LA(_smp_pgtable_change)
180 UASM_L_LA(_r3000_write_probe_fail)
181 UASM_L_LA(_large_segbits_fault)
182 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
183 UASM_L_LA(_tlb_huge_update)
184 #endif
185
186 static int hazard_instance;
187
188 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
189 {
190 switch (instance) {
191 case 0 ... 7:
192 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
193 return;
194 default:
195 BUG();
196 }
197 }
198
199 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
200 {
201 switch (instance) {
202 case 0 ... 7:
203 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
204 break;
205 default:
206 BUG();
207 }
208 }
209
210 /*
211 * pgtable bits are assigned dynamically depending on processor feature
212 * and statically based on kernel configuration. This spits out the actual
213 * values the kernel is using. Required to make sense from disassembled
214 * TLB exception handlers.
215 */
216 static void output_pgtable_bits_defines(void)
217 {
218 #define pr_define(fmt, ...) \
219 pr_debug("#define " fmt, ##__VA_ARGS__)
220
221 pr_debug("#include <asm/asm.h>\n");
222 pr_debug("#include <asm/regdef.h>\n");
223 pr_debug("\n");
224
225 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
226 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
227 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
228 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
229 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
230 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
231 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
232 pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
233 #endif
234 if (cpu_has_rixi) {
235 #ifdef _PAGE_NO_EXEC_SHIFT
236 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
237 #endif
238 #ifdef _PAGE_NO_READ_SHIFT
239 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
240 #endif
241 }
242 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
243 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
244 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
245 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
246 pr_debug("\n");
247 }
248
249 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
250 {
251 int i;
252
253 pr_debug("LEAF(%s)\n", symbol);
254
255 pr_debug("\t.set push\n");
256 pr_debug("\t.set noreorder\n");
257
258 for (i = 0; i < count; i++)
259 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
260
261 pr_debug("\t.set\tpop\n");
262
263 pr_debug("\tEND(%s)\n", symbol);
264 }
265
266 /* The only general purpose registers allowed in TLB handlers. */
267 #define K0 26
268 #define K1 27
269
270 /* Some CP0 registers */
271 #define C0_INDEX 0, 0
272 #define C0_ENTRYLO0 2, 0
273 #define C0_TCBIND 2, 2
274 #define C0_ENTRYLO1 3, 0
275 #define C0_CONTEXT 4, 0
276 #define C0_PAGEMASK 5, 0
277 #define C0_BADVADDR 8, 0
278 #define C0_ENTRYHI 10, 0
279 #define C0_EPC 14, 0
280 #define C0_XCONTEXT 20, 0
281
282 #ifdef CONFIG_64BIT
283 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
284 #else
285 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
286 #endif
287
288 /* The worst case length of the handler is around 18 instructions for
289 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
290 * Maximum space available is 32 instructions for R3000 and 64
291 * instructions for R4000.
292 *
293 * We deliberately chose a buffer size of 128, so we won't scribble
294 * over anything important on overflow before we panic.
295 */
296 static u32 tlb_handler[128];
297
298 /* simply assume worst case size for labels and relocs */
299 static struct uasm_label labels[128];
300 static struct uasm_reloc relocs[128];
301
302 static int check_for_high_segbits;
303
304 static unsigned int kscratch_used_mask;
305
306 static inline int __maybe_unused c0_kscratch(void)
307 {
308 switch (current_cpu_type()) {
309 case CPU_XLP:
310 case CPU_XLR:
311 return 22;
312 default:
313 return 31;
314 }
315 }
316
317 static int allocate_kscratch(void)
318 {
319 int r;
320 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
321
322 r = ffs(a);
323
324 if (r == 0)
325 return -1;
326
327 r--; /* make it zero based */
328
329 kscratch_used_mask |= (1 << r);
330
331 return r;
332 }
333
334 static int scratch_reg;
335 static int pgd_reg;
336 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
337
338 static struct work_registers build_get_work_registers(u32 **p)
339 {
340 struct work_registers r;
341
342 if (scratch_reg >= 0) {
343 /* Save in CPU local C0_KScratch? */
344 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
345 r.r1 = K0;
346 r.r2 = K1;
347 r.r3 = 1;
348 return r;
349 }
350
351 if (num_possible_cpus() > 1) {
352 /* Get smp_processor_id */
353 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
354 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
355
356 /* handler_reg_save index in K0 */
357 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
358
359 UASM_i_LA(p, K1, (long)&handler_reg_save);
360 UASM_i_ADDU(p, K0, K0, K1);
361 } else {
362 UASM_i_LA(p, K0, (long)&handler_reg_save);
363 }
364 /* K0 now points to save area, save $1 and $2 */
365 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
366 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
367
368 r.r1 = K1;
369 r.r2 = 1;
370 r.r3 = 2;
371 return r;
372 }
373
374 static void build_restore_work_registers(u32 **p)
375 {
376 if (scratch_reg >= 0) {
377 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
378 return;
379 }
380 /* K0 already points to save area, restore $1 and $2 */
381 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
382 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
383 }
384
385 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
386
387 /*
388 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
389 * we cannot do r3000 under these circumstances.
390 *
391 * Declare pgd_current here instead of including mmu_context.h to avoid type
392 * conflicts for tlbmiss_handler_setup_pgd
393 */
394 extern unsigned long pgd_current[];
395
396 /*
397 * The R3000 TLB handler is simple.
398 */
399 static void build_r3000_tlb_refill_handler(void)
400 {
401 long pgdc = (long)pgd_current;
402 u32 *p;
403
404 memset(tlb_handler, 0, sizeof(tlb_handler));
405 p = tlb_handler;
406
407 uasm_i_mfc0(&p, K0, C0_BADVADDR);
408 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
409 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
410 uasm_i_srl(&p, K0, K0, 22); /* load delay */
411 uasm_i_sll(&p, K0, K0, 2);
412 uasm_i_addu(&p, K1, K1, K0);
413 uasm_i_mfc0(&p, K0, C0_CONTEXT);
414 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
415 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
416 uasm_i_addu(&p, K1, K1, K0);
417 uasm_i_lw(&p, K0, 0, K1);
418 uasm_i_nop(&p); /* load delay */
419 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
420 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
421 uasm_i_tlbwr(&p); /* cp0 delay */
422 uasm_i_jr(&p, K1);
423 uasm_i_rfe(&p); /* branch delay */
424
425 if (p > tlb_handler + 32)
426 panic("TLB refill handler space exceeded");
427
428 pr_debug("Wrote TLB refill handler (%u instructions).\n",
429 (unsigned int)(p - tlb_handler));
430
431 memcpy((void *)ebase, tlb_handler, 0x80);
432
433 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
434 }
435 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
436
437 /*
438 * The R4000 TLB handler is much more complicated. We have two
439 * consecutive handler areas with 32 instructions space each.
440 * Since they aren't used at the same time, we can overflow in the
441 * other one.To keep things simple, we first assume linear space,
442 * then we relocate it to the final handler layout as needed.
443 */
444 static u32 final_handler[64];
445
446 /*
447 * Hazards
448 *
449 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
450 * 2. A timing hazard exists for the TLBP instruction.
451 *
452 * stalling_instruction
453 * TLBP
454 *
455 * The JTLB is being read for the TLBP throughout the stall generated by the
456 * previous instruction. This is not really correct as the stalling instruction
457 * can modify the address used to access the JTLB. The failure symptom is that
458 * the TLBP instruction will use an address created for the stalling instruction
459 * and not the address held in C0_ENHI and thus report the wrong results.
460 *
461 * The software work-around is to not allow the instruction preceding the TLBP
462 * to stall - make it an NOP or some other instruction guaranteed not to stall.
463 *
464 * Errata 2 will not be fixed. This errata is also on the R5000.
465 *
466 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
467 */
468 static void __maybe_unused build_tlb_probe_entry(u32 **p)
469 {
470 switch (current_cpu_type()) {
471 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
472 case CPU_R4600:
473 case CPU_R4700:
474 case CPU_R5000:
475 case CPU_NEVADA:
476 uasm_i_nop(p);
477 uasm_i_tlbp(p);
478 break;
479
480 default:
481 uasm_i_tlbp(p);
482 break;
483 }
484 }
485
486 /*
487 * Write random or indexed TLB entry, and care about the hazards from
488 * the preceding mtc0 and for the following eret.
489 */
490 enum tlb_write_entry { tlb_random, tlb_indexed };
491
492 static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
493 struct uasm_reloc **r,
494 enum tlb_write_entry wmode)
495 {
496 void(*tlbw)(u32 **) = NULL;
497
498 switch (wmode) {
499 case tlb_random: tlbw = uasm_i_tlbwr; break;
500 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
501 }
502
503 if (cpu_has_mips_r2) {
504 /*
505 * The architecture spec says an ehb is required here,
506 * but a number of cores do not have the hazard and
507 * using an ehb causes an expensive pipeline stall.
508 */
509 switch (current_cpu_type()) {
510 case CPU_M14KC:
511 case CPU_74K:
512 case CPU_1074K:
513 case CPU_PROAPTIV:
514 case CPU_P5600:
515 case CPU_M5150:
516 break;
517
518 default:
519 uasm_i_ehb(p);
520 break;
521 }
522 tlbw(p);
523 return;
524 }
525
526 switch (current_cpu_type()) {
527 case CPU_R4000PC:
528 case CPU_R4000SC:
529 case CPU_R4000MC:
530 case CPU_R4400PC:
531 case CPU_R4400SC:
532 case CPU_R4400MC:
533 /*
534 * This branch uses up a mtc0 hazard nop slot and saves
535 * two nops after the tlbw instruction.
536 */
537 uasm_bgezl_hazard(p, r, hazard_instance);
538 tlbw(p);
539 uasm_bgezl_label(l, p, hazard_instance);
540 hazard_instance++;
541 uasm_i_nop(p);
542 break;
543
544 case CPU_R4600:
545 case CPU_R4700:
546 uasm_i_nop(p);
547 tlbw(p);
548 uasm_i_nop(p);
549 break;
550
551 case CPU_R5000:
552 case CPU_NEVADA:
553 uasm_i_nop(p); /* QED specifies 2 nops hazard */
554 uasm_i_nop(p); /* QED specifies 2 nops hazard */
555 tlbw(p);
556 break;
557
558 case CPU_R4300:
559 case CPU_5KC:
560 case CPU_TX49XX:
561 case CPU_PR4450:
562 case CPU_XLR:
563 uasm_i_nop(p);
564 tlbw(p);
565 break;
566
567 case CPU_R10000:
568 case CPU_R12000:
569 case CPU_R14000:
570 case CPU_4KC:
571 case CPU_4KEC:
572 case CPU_M14KC:
573 case CPU_M14KEC:
574 case CPU_SB1:
575 case CPU_SB1A:
576 case CPU_4KSC:
577 case CPU_20KC:
578 case CPU_25KF:
579 case CPU_BMIPS32:
580 case CPU_BMIPS3300:
581 case CPU_BMIPS4350:
582 case CPU_BMIPS4380:
583 case CPU_BMIPS5000:
584 case CPU_LOONGSON2:
585 case CPU_LOONGSON3:
586 case CPU_R5500:
587 if (m4kc_tlbp_war())
588 uasm_i_nop(p);
589 case CPU_ALCHEMY:
590 tlbw(p);
591 break;
592
593 case CPU_RM7000:
594 uasm_i_nop(p);
595 uasm_i_nop(p);
596 uasm_i_nop(p);
597 uasm_i_nop(p);
598 tlbw(p);
599 break;
600
601 case CPU_VR4111:
602 case CPU_VR4121:
603 case CPU_VR4122:
604 case CPU_VR4181:
605 case CPU_VR4181A:
606 uasm_i_nop(p);
607 uasm_i_nop(p);
608 tlbw(p);
609 uasm_i_nop(p);
610 uasm_i_nop(p);
611 break;
612
613 case CPU_VR4131:
614 case CPU_VR4133:
615 case CPU_R5432:
616 uasm_i_nop(p);
617 uasm_i_nop(p);
618 tlbw(p);
619 break;
620
621 case CPU_JZRISC:
622 tlbw(p);
623 uasm_i_nop(p);
624 break;
625
626 default:
627 panic("No TLB refill handler yet (CPU type: %d)",
628 current_cpu_type());
629 break;
630 }
631 }
632
633 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
634 unsigned int reg)
635 {
636 if (cpu_has_rixi) {
637 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
638 } else {
639 #ifdef CONFIG_64BIT_PHYS_ADDR
640 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
641 #else
642 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
643 #endif
644 }
645 }
646
647 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
648
649 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
650 unsigned int tmp, enum label_id lid,
651 int restore_scratch)
652 {
653 if (restore_scratch) {
654 /* Reset default page size */
655 if (PM_DEFAULT_MASK >> 16) {
656 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
657 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
658 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
659 uasm_il_b(p, r, lid);
660 } else if (PM_DEFAULT_MASK) {
661 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
662 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
663 uasm_il_b(p, r, lid);
664 } else {
665 uasm_i_mtc0(p, 0, C0_PAGEMASK);
666 uasm_il_b(p, r, lid);
667 }
668 if (scratch_reg >= 0)
669 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
670 else
671 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
672 } else {
673 /* Reset default page size */
674 if (PM_DEFAULT_MASK >> 16) {
675 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
676 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
677 uasm_il_b(p, r, lid);
678 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
679 } else if (PM_DEFAULT_MASK) {
680 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
681 uasm_il_b(p, r, lid);
682 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
683 } else {
684 uasm_il_b(p, r, lid);
685 uasm_i_mtc0(p, 0, C0_PAGEMASK);
686 }
687 }
688 }
689
690 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
691 struct uasm_reloc **r,
692 unsigned int tmp,
693 enum tlb_write_entry wmode,
694 int restore_scratch)
695 {
696 /* Set huge page tlb entry size */
697 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
698 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
699 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
700
701 build_tlb_write_entry(p, l, r, wmode);
702
703 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
704 }
705
706 /*
707 * Check if Huge PTE is present, if so then jump to LABEL.
708 */
709 static void
710 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
711 unsigned int pmd, int lid)
712 {
713 UASM_i_LW(p, tmp, 0, pmd);
714 if (use_bbit_insns()) {
715 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
716 } else {
717 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
718 uasm_il_bnez(p, r, tmp, lid);
719 }
720 }
721
722 static void build_huge_update_entries(u32 **p, unsigned int pte,
723 unsigned int tmp)
724 {
725 int small_sequence;
726
727 /*
728 * A huge PTE describes an area the size of the
729 * configured huge page size. This is twice the
730 * of the large TLB entry size we intend to use.
731 * A TLB entry half the size of the configured
732 * huge page size is configured into entrylo0
733 * and entrylo1 to cover the contiguous huge PTE
734 * address space.
735 */
736 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
737
738 /* We can clobber tmp. It isn't used after this.*/
739 if (!small_sequence)
740 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
741
742 build_convert_pte_to_entrylo(p, pte);
743 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
744 /* convert to entrylo1 */
745 if (small_sequence)
746 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
747 else
748 UASM_i_ADDU(p, pte, pte, tmp);
749
750 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
751 }
752
753 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
754 struct uasm_label **l,
755 unsigned int pte,
756 unsigned int ptr)
757 {
758 #ifdef CONFIG_SMP
759 UASM_i_SC(p, pte, 0, ptr);
760 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
761 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
762 #else
763 UASM_i_SW(p, pte, 0, ptr);
764 #endif
765 build_huge_update_entries(p, pte, ptr);
766 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
767 }
768 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
769
770 #ifdef CONFIG_64BIT
771 /*
772 * TMP and PTR are scratch.
773 * TMP will be clobbered, PTR will hold the pmd entry.
774 */
775 static void
776 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
777 unsigned int tmp, unsigned int ptr)
778 {
779 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
780 long pgdc = (long)pgd_current;
781 #endif
782 /*
783 * The vmalloc handling is not in the hotpath.
784 */
785 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
786
787 if (check_for_high_segbits) {
788 /*
789 * The kernel currently implicitely assumes that the
790 * MIPS SEGBITS parameter for the processor is
791 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
792 * allocate virtual addresses outside the maximum
793 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
794 * that doesn't prevent user code from accessing the
795 * higher xuseg addresses. Here, we make sure that
796 * everything but the lower xuseg addresses goes down
797 * the module_alloc/vmalloc path.
798 */
799 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
800 uasm_il_bnez(p, r, ptr, label_vmalloc);
801 } else {
802 uasm_il_bltz(p, r, tmp, label_vmalloc);
803 }
804 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
805
806 if (pgd_reg != -1) {
807 /* pgd is in pgd_reg */
808 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
809 } else {
810 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
811 /*
812 * &pgd << 11 stored in CONTEXT [23..63].
813 */
814 UASM_i_MFC0(p, ptr, C0_CONTEXT);
815
816 /* Clear lower 23 bits of context. */
817 uasm_i_dins(p, ptr, 0, 0, 23);
818
819 /* 1 0 1 0 1 << 6 xkphys cached */
820 uasm_i_ori(p, ptr, ptr, 0x540);
821 uasm_i_drotr(p, ptr, ptr, 11);
822 #elif defined(CONFIG_SMP)
823 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
824 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
825 UASM_i_LA_mostly(p, tmp, pgdc);
826 uasm_i_daddu(p, ptr, ptr, tmp);
827 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
828 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
829 #else
830 UASM_i_LA_mostly(p, ptr, pgdc);
831 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
832 #endif
833 }
834
835 uasm_l_vmalloc_done(l, *p);
836
837 /* get pgd offset in bytes */
838 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
839
840 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
841 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
842 #ifndef __PAGETABLE_PMD_FOLDED
843 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
844 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
845 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
846 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
847 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
848 #endif
849 }
850
851 /*
852 * BVADDR is the faulting address, PTR is scratch.
853 * PTR will hold the pgd for vmalloc.
854 */
855 static void
856 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
857 unsigned int bvaddr, unsigned int ptr,
858 enum vmalloc64_mode mode)
859 {
860 long swpd = (long)swapper_pg_dir;
861 int single_insn_swpd;
862 int did_vmalloc_branch = 0;
863
864 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
865
866 uasm_l_vmalloc(l, *p);
867
868 if (mode != not_refill && check_for_high_segbits) {
869 if (single_insn_swpd) {
870 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
871 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
872 did_vmalloc_branch = 1;
873 /* fall through */
874 } else {
875 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
876 }
877 }
878 if (!did_vmalloc_branch) {
879 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
880 uasm_il_b(p, r, label_vmalloc_done);
881 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
882 } else {
883 UASM_i_LA_mostly(p, ptr, swpd);
884 uasm_il_b(p, r, label_vmalloc_done);
885 if (uasm_in_compat_space_p(swpd))
886 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
887 else
888 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
889 }
890 }
891 if (mode != not_refill && check_for_high_segbits) {
892 uasm_l_large_segbits_fault(l, *p);
893 /*
894 * We get here if we are an xsseg address, or if we are
895 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
896 *
897 * Ignoring xsseg (assume disabled so would generate
898 * (address errors?), the only remaining possibility
899 * is the upper xuseg addresses. On processors with
900 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
901 * addresses would have taken an address error. We try
902 * to mimic that here by taking a load/istream page
903 * fault.
904 */
905 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
906 uasm_i_jr(p, ptr);
907
908 if (mode == refill_scratch) {
909 if (scratch_reg >= 0)
910 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
911 else
912 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
913 } else {
914 uasm_i_nop(p);
915 }
916 }
917 }
918
919 #else /* !CONFIG_64BIT */
920
921 /*
922 * TMP and PTR are scratch.
923 * TMP will be clobbered, PTR will hold the pgd entry.
924 */
925 static void __maybe_unused
926 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
927 {
928 if (pgd_reg != -1) {
929 /* pgd is in pgd_reg */
930 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
931 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
932 } else {
933 long pgdc = (long)pgd_current;
934
935 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
936 #ifdef CONFIG_SMP
937 uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
938 UASM_i_LA_mostly(p, tmp, pgdc);
939 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
940 uasm_i_addu(p, ptr, tmp, ptr);
941 #else
942 UASM_i_LA_mostly(p, ptr, pgdc);
943 #endif
944 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
945 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
946 }
947 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
948 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
949 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
950 }
951
952 #endif /* !CONFIG_64BIT */
953
954 static void build_adjust_context(u32 **p, unsigned int ctx)
955 {
956 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
957 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
958
959 switch (current_cpu_type()) {
960 case CPU_VR41XX:
961 case CPU_VR4111:
962 case CPU_VR4121:
963 case CPU_VR4122:
964 case CPU_VR4131:
965 case CPU_VR4181:
966 case CPU_VR4181A:
967 case CPU_VR4133:
968 shift += 2;
969 break;
970
971 default:
972 break;
973 }
974
975 if (shift)
976 UASM_i_SRL(p, ctx, ctx, shift);
977 uasm_i_andi(p, ctx, ctx, mask);
978 }
979
980 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
981 {
982 /*
983 * Bug workaround for the Nevada. It seems as if under certain
984 * circumstances the move from cp0_context might produce a
985 * bogus result when the mfc0 instruction and its consumer are
986 * in a different cacheline or a load instruction, probably any
987 * memory reference, is between them.
988 */
989 switch (current_cpu_type()) {
990 case CPU_NEVADA:
991 UASM_i_LW(p, ptr, 0, ptr);
992 GET_CONTEXT(p, tmp); /* get context reg */
993 break;
994
995 default:
996 GET_CONTEXT(p, tmp); /* get context reg */
997 UASM_i_LW(p, ptr, 0, ptr);
998 break;
999 }
1000
1001 build_adjust_context(p, tmp);
1002 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1003 }
1004
1005 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1006 {
1007 /*
1008 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1009 * Kernel is a special case. Only a few CPUs use it.
1010 */
1011 #ifdef CONFIG_64BIT_PHYS_ADDR
1012 if (cpu_has_64bits) {
1013 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1014 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1015 if (cpu_has_rixi) {
1016 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1017 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1018 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1019 } else {
1020 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1021 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1022 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1023 }
1024 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1025 } else {
1026 int pte_off_even = sizeof(pte_t) / 2;
1027 int pte_off_odd = pte_off_even + sizeof(pte_t);
1028
1029 /* The pte entries are pre-shifted */
1030 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1031 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1032 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1033 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1034 }
1035 #else
1036 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1037 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1038 if (r45k_bvahwbug())
1039 build_tlb_probe_entry(p);
1040 if (cpu_has_rixi) {
1041 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1042 if (r4k_250MHZhwbug())
1043 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1044 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1045 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1046 } else {
1047 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1048 if (r4k_250MHZhwbug())
1049 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1050 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1051 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1052 if (r45k_bvahwbug())
1053 uasm_i_mfc0(p, tmp, C0_INDEX);
1054 }
1055 if (r4k_250MHZhwbug())
1056 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1057 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1058 #endif
1059 }
1060
1061 struct mips_huge_tlb_info {
1062 int huge_pte;
1063 int restore_scratch;
1064 };
1065
1066 static struct mips_huge_tlb_info
1067 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1068 struct uasm_reloc **r, unsigned int tmp,
1069 unsigned int ptr, int c0_scratch_reg)
1070 {
1071 struct mips_huge_tlb_info rv;
1072 unsigned int even, odd;
1073 int vmalloc_branch_delay_filled = 0;
1074 const int scratch = 1; /* Our extra working register */
1075
1076 rv.huge_pte = scratch;
1077 rv.restore_scratch = 0;
1078
1079 if (check_for_high_segbits) {
1080 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1081
1082 if (pgd_reg != -1)
1083 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1084 else
1085 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1086
1087 if (c0_scratch_reg >= 0)
1088 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1089 else
1090 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1091
1092 uasm_i_dsrl_safe(p, scratch, tmp,
1093 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1094 uasm_il_bnez(p, r, scratch, label_vmalloc);
1095
1096 if (pgd_reg == -1) {
1097 vmalloc_branch_delay_filled = 1;
1098 /* Clear lower 23 bits of context. */
1099 uasm_i_dins(p, ptr, 0, 0, 23);
1100 }
1101 } else {
1102 if (pgd_reg != -1)
1103 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1104 else
1105 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1106
1107 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1108
1109 if (c0_scratch_reg >= 0)
1110 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1111 else
1112 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1113
1114 if (pgd_reg == -1)
1115 /* Clear lower 23 bits of context. */
1116 uasm_i_dins(p, ptr, 0, 0, 23);
1117
1118 uasm_il_bltz(p, r, tmp, label_vmalloc);
1119 }
1120
1121 if (pgd_reg == -1) {
1122 vmalloc_branch_delay_filled = 1;
1123 /* 1 0 1 0 1 << 6 xkphys cached */
1124 uasm_i_ori(p, ptr, ptr, 0x540);
1125 uasm_i_drotr(p, ptr, ptr, 11);
1126 }
1127
1128 #ifdef __PAGETABLE_PMD_FOLDED
1129 #define LOC_PTEP scratch
1130 #else
1131 #define LOC_PTEP ptr
1132 #endif
1133
1134 if (!vmalloc_branch_delay_filled)
1135 /* get pgd offset in bytes */
1136 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1137
1138 uasm_l_vmalloc_done(l, *p);
1139
1140 /*
1141 * tmp ptr
1142 * fall-through case = badvaddr *pgd_current
1143 * vmalloc case = badvaddr swapper_pg_dir
1144 */
1145
1146 if (vmalloc_branch_delay_filled)
1147 /* get pgd offset in bytes */
1148 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1149
1150 #ifdef __PAGETABLE_PMD_FOLDED
1151 GET_CONTEXT(p, tmp); /* get context reg */
1152 #endif
1153 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1154
1155 if (use_lwx_insns()) {
1156 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1157 } else {
1158 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1159 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1160 }
1161
1162 #ifndef __PAGETABLE_PMD_FOLDED
1163 /* get pmd offset in bytes */
1164 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1165 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1166 GET_CONTEXT(p, tmp); /* get context reg */
1167
1168 if (use_lwx_insns()) {
1169 UASM_i_LWX(p, scratch, scratch, ptr);
1170 } else {
1171 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1172 UASM_i_LW(p, scratch, 0, ptr);
1173 }
1174 #endif
1175 /* Adjust the context during the load latency. */
1176 build_adjust_context(p, tmp);
1177
1178 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1179 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1180 /*
1181 * The in the LWX case we don't want to do the load in the
1182 * delay slot. It cannot issue in the same cycle and may be
1183 * speculative and unneeded.
1184 */
1185 if (use_lwx_insns())
1186 uasm_i_nop(p);
1187 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1188
1189
1190 /* build_update_entries */
1191 if (use_lwx_insns()) {
1192 even = ptr;
1193 odd = tmp;
1194 UASM_i_LWX(p, even, scratch, tmp);
1195 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1196 UASM_i_LWX(p, odd, scratch, tmp);
1197 } else {
1198 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1199 even = tmp;
1200 odd = ptr;
1201 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1202 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1203 }
1204 if (cpu_has_rixi) {
1205 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1206 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1207 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1208 } else {
1209 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1210 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1211 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1212 }
1213 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1214
1215 if (c0_scratch_reg >= 0) {
1216 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1217 build_tlb_write_entry(p, l, r, tlb_random);
1218 uasm_l_leave(l, *p);
1219 rv.restore_scratch = 1;
1220 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1221 build_tlb_write_entry(p, l, r, tlb_random);
1222 uasm_l_leave(l, *p);
1223 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1224 } else {
1225 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1226 build_tlb_write_entry(p, l, r, tlb_random);
1227 uasm_l_leave(l, *p);
1228 rv.restore_scratch = 1;
1229 }
1230
1231 uasm_i_eret(p); /* return from trap */
1232
1233 return rv;
1234 }
1235
1236 /*
1237 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1238 * because EXL == 0. If we wrap, we can also use the 32 instruction
1239 * slots before the XTLB refill exception handler which belong to the
1240 * unused TLB refill exception.
1241 */
1242 #define MIPS64_REFILL_INSNS 32
1243
1244 static void build_r4000_tlb_refill_handler(void)
1245 {
1246 u32 *p = tlb_handler;
1247 struct uasm_label *l = labels;
1248 struct uasm_reloc *r = relocs;
1249 u32 *f;
1250 unsigned int final_len;
1251 struct mips_huge_tlb_info htlb_info __maybe_unused;
1252 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1253
1254 memset(tlb_handler, 0, sizeof(tlb_handler));
1255 memset(labels, 0, sizeof(labels));
1256 memset(relocs, 0, sizeof(relocs));
1257 memset(final_handler, 0, sizeof(final_handler));
1258
1259 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1260 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1261 scratch_reg);
1262 vmalloc_mode = refill_scratch;
1263 } else {
1264 htlb_info.huge_pte = K0;
1265 htlb_info.restore_scratch = 0;
1266 vmalloc_mode = refill_noscratch;
1267 /*
1268 * create the plain linear handler
1269 */
1270 if (bcm1250_m3_war()) {
1271 unsigned int segbits = 44;
1272
1273 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1274 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1275 uasm_i_xor(&p, K0, K0, K1);
1276 uasm_i_dsrl_safe(&p, K1, K0, 62);
1277 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1278 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1279 uasm_i_or(&p, K0, K0, K1);
1280 uasm_il_bnez(&p, &r, K0, label_leave);
1281 /* No need for uasm_i_nop */
1282 }
1283
1284 #ifdef CONFIG_64BIT
1285 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1286 #else
1287 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1288 #endif
1289
1290 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1291 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1292 #endif
1293
1294 build_get_ptep(&p, K0, K1);
1295 build_update_entries(&p, K0, K1);
1296 build_tlb_write_entry(&p, &l, &r, tlb_random);
1297 uasm_l_leave(&l, p);
1298 uasm_i_eret(&p); /* return from trap */
1299 }
1300 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1301 uasm_l_tlb_huge_update(&l, p);
1302 UASM_i_LW(&p, K0, 0, K1);
1303 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1304 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1305 htlb_info.restore_scratch);
1306 #endif
1307
1308 #ifdef CONFIG_64BIT
1309 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1310 #endif
1311
1312 /*
1313 * Overflow check: For the 64bit handler, we need at least one
1314 * free instruction slot for the wrap-around branch. In worst
1315 * case, if the intended insertion point is a delay slot, we
1316 * need three, with the second nop'ed and the third being
1317 * unused.
1318 */
1319 switch (boot_cpu_type()) {
1320 default:
1321 if (sizeof(long) == 4) {
1322 case CPU_LOONGSON2:
1323 /* Loongson2 ebase is different than r4k, we have more space */
1324 if ((p - tlb_handler) > 64)
1325 panic("TLB refill handler space exceeded");
1326 /*
1327 * Now fold the handler in the TLB refill handler space.
1328 */
1329 f = final_handler;
1330 /* Simplest case, just copy the handler. */
1331 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1332 final_len = p - tlb_handler;
1333 break;
1334 } else {
1335 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1336 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1337 && uasm_insn_has_bdelay(relocs,
1338 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1339 panic("TLB refill handler space exceeded");
1340 /*
1341 * Now fold the handler in the TLB refill handler space.
1342 */
1343 f = final_handler + MIPS64_REFILL_INSNS;
1344 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1345 /* Just copy the handler. */
1346 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1347 final_len = p - tlb_handler;
1348 } else {
1349 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1350 const enum label_id ls = label_tlb_huge_update;
1351 #else
1352 const enum label_id ls = label_vmalloc;
1353 #endif
1354 u32 *split;
1355 int ov = 0;
1356 int i;
1357
1358 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1359 ;
1360 BUG_ON(i == ARRAY_SIZE(labels));
1361 split = labels[i].addr;
1362
1363 /*
1364 * See if we have overflown one way or the other.
1365 */
1366 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1367 split < p - MIPS64_REFILL_INSNS)
1368 ov = 1;
1369
1370 if (ov) {
1371 /*
1372 * Split two instructions before the end. One
1373 * for the branch and one for the instruction
1374 * in the delay slot.
1375 */
1376 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1377
1378 /*
1379 * If the branch would fall in a delay slot,
1380 * we must back up an additional instruction
1381 * so that it is no longer in a delay slot.
1382 */
1383 if (uasm_insn_has_bdelay(relocs, split - 1))
1384 split--;
1385 }
1386 /* Copy first part of the handler. */
1387 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1388 f += split - tlb_handler;
1389
1390 if (ov) {
1391 /* Insert branch. */
1392 uasm_l_split(&l, final_handler);
1393 uasm_il_b(&f, &r, label_split);
1394 if (uasm_insn_has_bdelay(relocs, split))
1395 uasm_i_nop(&f);
1396 else {
1397 uasm_copy_handler(relocs, labels,
1398 split, split + 1, f);
1399 uasm_move_labels(labels, f, f + 1, -1);
1400 f++;
1401 split++;
1402 }
1403 }
1404
1405 /* Copy the rest of the handler. */
1406 uasm_copy_handler(relocs, labels, split, p, final_handler);
1407 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1408 (p - split);
1409 }
1410 }
1411 break;
1412 }
1413
1414 uasm_resolve_relocs(relocs, labels);
1415 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1416 final_len);
1417
1418 memcpy((void *)ebase, final_handler, 0x100);
1419
1420 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1421 }
1422
1423 extern u32 handle_tlbl[], handle_tlbl_end[];
1424 extern u32 handle_tlbs[], handle_tlbs_end[];
1425 extern u32 handle_tlbm[], handle_tlbm_end[];
1426 extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
1427 extern u32 tlbmiss_handler_setup_pgd_end[];
1428
1429 static void build_setup_pgd(void)
1430 {
1431 const int a0 = 4;
1432 const int __maybe_unused a1 = 5;
1433 const int __maybe_unused a2 = 6;
1434 u32 *p = tlbmiss_handler_setup_pgd_start;
1435 const int tlbmiss_handler_setup_pgd_size =
1436 tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
1437 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1438 long pgdc = (long)pgd_current;
1439 #endif
1440
1441 memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1442 sizeof(tlbmiss_handler_setup_pgd[0]));
1443 memset(labels, 0, sizeof(labels));
1444 memset(relocs, 0, sizeof(relocs));
1445 pgd_reg = allocate_kscratch();
1446 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1447 if (pgd_reg == -1) {
1448 struct uasm_label *l = labels;
1449 struct uasm_reloc *r = relocs;
1450
1451 /* PGD << 11 in c0_Context */
1452 /*
1453 * If it is a ckseg0 address, convert to a physical
1454 * address. Shifting right by 29 and adding 4 will
1455 * result in zero for these addresses.
1456 *
1457 */
1458 UASM_i_SRA(&p, a1, a0, 29);
1459 UASM_i_ADDIU(&p, a1, a1, 4);
1460 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1461 uasm_i_nop(&p);
1462 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1463 uasm_l_tlbl_goaround1(&l, p);
1464 UASM_i_SLL(&p, a0, a0, 11);
1465 uasm_i_jr(&p, 31);
1466 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1467 } else {
1468 /* PGD in c0_KScratch */
1469 uasm_i_jr(&p, 31);
1470 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1471 }
1472 #else
1473 #ifdef CONFIG_SMP
1474 /* Save PGD to pgd_current[smp_processor_id()] */
1475 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1476 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1477 UASM_i_LA_mostly(&p, a2, pgdc);
1478 UASM_i_ADDU(&p, a2, a2, a1);
1479 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1480 #else
1481 UASM_i_LA_mostly(&p, a2, pgdc);
1482 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1483 #endif /* SMP */
1484 uasm_i_jr(&p, 31);
1485
1486 /* if pgd_reg is allocated, save PGD also to scratch register */
1487 if (pgd_reg != -1)
1488 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1489 else
1490 uasm_i_nop(&p);
1491 #endif
1492 if (p >= tlbmiss_handler_setup_pgd_end)
1493 panic("tlbmiss_handler_setup_pgd space exceeded");
1494
1495 uasm_resolve_relocs(relocs, labels);
1496 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1497 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1498
1499 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1500 tlbmiss_handler_setup_pgd_size);
1501 }
1502
1503 static void
1504 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1505 {
1506 #ifdef CONFIG_SMP
1507 # ifdef CONFIG_64BIT_PHYS_ADDR
1508 if (cpu_has_64bits)
1509 uasm_i_lld(p, pte, 0, ptr);
1510 else
1511 # endif
1512 UASM_i_LL(p, pte, 0, ptr);
1513 #else
1514 # ifdef CONFIG_64BIT_PHYS_ADDR
1515 if (cpu_has_64bits)
1516 uasm_i_ld(p, pte, 0, ptr);
1517 else
1518 # endif
1519 UASM_i_LW(p, pte, 0, ptr);
1520 #endif
1521 }
1522
1523 static void
1524 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1525 unsigned int mode)
1526 {
1527 #ifdef CONFIG_64BIT_PHYS_ADDR
1528 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1529 #endif
1530
1531 uasm_i_ori(p, pte, pte, mode);
1532 #ifdef CONFIG_SMP
1533 # ifdef CONFIG_64BIT_PHYS_ADDR
1534 if (cpu_has_64bits)
1535 uasm_i_scd(p, pte, 0, ptr);
1536 else
1537 # endif
1538 UASM_i_SC(p, pte, 0, ptr);
1539
1540 if (r10000_llsc_war())
1541 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1542 else
1543 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1544
1545 # ifdef CONFIG_64BIT_PHYS_ADDR
1546 if (!cpu_has_64bits) {
1547 /* no uasm_i_nop needed */
1548 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1549 uasm_i_ori(p, pte, pte, hwmode);
1550 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1551 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1552 /* no uasm_i_nop needed */
1553 uasm_i_lw(p, pte, 0, ptr);
1554 } else
1555 uasm_i_nop(p);
1556 # else
1557 uasm_i_nop(p);
1558 # endif
1559 #else
1560 # ifdef CONFIG_64BIT_PHYS_ADDR
1561 if (cpu_has_64bits)
1562 uasm_i_sd(p, pte, 0, ptr);
1563 else
1564 # endif
1565 UASM_i_SW(p, pte, 0, ptr);
1566
1567 # ifdef CONFIG_64BIT_PHYS_ADDR
1568 if (!cpu_has_64bits) {
1569 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1570 uasm_i_ori(p, pte, pte, hwmode);
1571 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1572 uasm_i_lw(p, pte, 0, ptr);
1573 }
1574 # endif
1575 #endif
1576 }
1577
1578 /*
1579 * Check if PTE is present, if not then jump to LABEL. PTR points to
1580 * the page table where this PTE is located, PTE will be re-loaded
1581 * with it's original value.
1582 */
1583 static void
1584 build_pte_present(u32 **p, struct uasm_reloc **r,
1585 int pte, int ptr, int scratch, enum label_id lid)
1586 {
1587 int t = scratch >= 0 ? scratch : pte;
1588
1589 if (cpu_has_rixi) {
1590 if (use_bbit_insns()) {
1591 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1592 uasm_i_nop(p);
1593 } else {
1594 uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1595 uasm_il_beqz(p, r, t, lid);
1596 if (pte == t)
1597 /* You lose the SMP race :-(*/
1598 iPTE_LW(p, pte, ptr);
1599 }
1600 } else {
1601 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1602 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1603 uasm_il_bnez(p, r, t, lid);
1604 if (pte == t)
1605 /* You lose the SMP race :-(*/
1606 iPTE_LW(p, pte, ptr);
1607 }
1608 }
1609
1610 /* Make PTE valid, store result in PTR. */
1611 static void
1612 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1613 unsigned int ptr)
1614 {
1615 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1616
1617 iPTE_SW(p, r, pte, ptr, mode);
1618 }
1619
1620 /*
1621 * Check if PTE can be written to, if not branch to LABEL. Regardless
1622 * restore PTE with value from PTR when done.
1623 */
1624 static void
1625 build_pte_writable(u32 **p, struct uasm_reloc **r,
1626 unsigned int pte, unsigned int ptr, int scratch,
1627 enum label_id lid)
1628 {
1629 int t = scratch >= 0 ? scratch : pte;
1630
1631 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1632 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1633 uasm_il_bnez(p, r, t, lid);
1634 if (pte == t)
1635 /* You lose the SMP race :-(*/
1636 iPTE_LW(p, pte, ptr);
1637 else
1638 uasm_i_nop(p);
1639 }
1640
1641 /* Make PTE writable, update software status bits as well, then store
1642 * at PTR.
1643 */
1644 static void
1645 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1646 unsigned int ptr)
1647 {
1648 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1649 | _PAGE_DIRTY);
1650
1651 iPTE_SW(p, r, pte, ptr, mode);
1652 }
1653
1654 /*
1655 * Check if PTE can be modified, if not branch to LABEL. Regardless
1656 * restore PTE with value from PTR when done.
1657 */
1658 static void
1659 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1660 unsigned int pte, unsigned int ptr, int scratch,
1661 enum label_id lid)
1662 {
1663 if (use_bbit_insns()) {
1664 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1665 uasm_i_nop(p);
1666 } else {
1667 int t = scratch >= 0 ? scratch : pte;
1668 uasm_i_andi(p, t, pte, _PAGE_WRITE);
1669 uasm_il_beqz(p, r, t, lid);
1670 if (pte == t)
1671 /* You lose the SMP race :-(*/
1672 iPTE_LW(p, pte, ptr);
1673 }
1674 }
1675
1676 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1677
1678
1679 /*
1680 * R3000 style TLB load/store/modify handlers.
1681 */
1682
1683 /*
1684 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1685 * Then it returns.
1686 */
1687 static void
1688 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1689 {
1690 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1691 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1692 uasm_i_tlbwi(p);
1693 uasm_i_jr(p, tmp);
1694 uasm_i_rfe(p); /* branch delay */
1695 }
1696
1697 /*
1698 * This places the pte into ENTRYLO0 and writes it with tlbwi
1699 * or tlbwr as appropriate. This is because the index register
1700 * may have the probe fail bit set as a result of a trap on a
1701 * kseg2 access, i.e. without refill. Then it returns.
1702 */
1703 static void
1704 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1705 struct uasm_reloc **r, unsigned int pte,
1706 unsigned int tmp)
1707 {
1708 uasm_i_mfc0(p, tmp, C0_INDEX);
1709 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1710 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1711 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1712 uasm_i_tlbwi(p); /* cp0 delay */
1713 uasm_i_jr(p, tmp);
1714 uasm_i_rfe(p); /* branch delay */
1715 uasm_l_r3000_write_probe_fail(l, *p);
1716 uasm_i_tlbwr(p); /* cp0 delay */
1717 uasm_i_jr(p, tmp);
1718 uasm_i_rfe(p); /* branch delay */
1719 }
1720
1721 static void
1722 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1723 unsigned int ptr)
1724 {
1725 long pgdc = (long)pgd_current;
1726
1727 uasm_i_mfc0(p, pte, C0_BADVADDR);
1728 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1729 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1730 uasm_i_srl(p, pte, pte, 22); /* load delay */
1731 uasm_i_sll(p, pte, pte, 2);
1732 uasm_i_addu(p, ptr, ptr, pte);
1733 uasm_i_mfc0(p, pte, C0_CONTEXT);
1734 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1735 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1736 uasm_i_addu(p, ptr, ptr, pte);
1737 uasm_i_lw(p, pte, 0, ptr);
1738 uasm_i_tlbp(p); /* load delay */
1739 }
1740
1741 static void build_r3000_tlb_load_handler(void)
1742 {
1743 u32 *p = handle_tlbl;
1744 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1745 struct uasm_label *l = labels;
1746 struct uasm_reloc *r = relocs;
1747
1748 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1749 memset(labels, 0, sizeof(labels));
1750 memset(relocs, 0, sizeof(relocs));
1751
1752 build_r3000_tlbchange_handler_head(&p, K0, K1);
1753 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1754 uasm_i_nop(&p); /* load delay */
1755 build_make_valid(&p, &r, K0, K1);
1756 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1757
1758 uasm_l_nopage_tlbl(&l, p);
1759 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1760 uasm_i_nop(&p);
1761
1762 if (p >= handle_tlbl_end)
1763 panic("TLB load handler fastpath space exceeded");
1764
1765 uasm_resolve_relocs(relocs, labels);
1766 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1767 (unsigned int)(p - handle_tlbl));
1768
1769 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1770 }
1771
1772 static void build_r3000_tlb_store_handler(void)
1773 {
1774 u32 *p = handle_tlbs;
1775 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1776 struct uasm_label *l = labels;
1777 struct uasm_reloc *r = relocs;
1778
1779 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1780 memset(labels, 0, sizeof(labels));
1781 memset(relocs, 0, sizeof(relocs));
1782
1783 build_r3000_tlbchange_handler_head(&p, K0, K1);
1784 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1785 uasm_i_nop(&p); /* load delay */
1786 build_make_write(&p, &r, K0, K1);
1787 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1788
1789 uasm_l_nopage_tlbs(&l, p);
1790 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1791 uasm_i_nop(&p);
1792
1793 if (p >= handle_tlbs_end)
1794 panic("TLB store handler fastpath space exceeded");
1795
1796 uasm_resolve_relocs(relocs, labels);
1797 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1798 (unsigned int)(p - handle_tlbs));
1799
1800 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1801 }
1802
1803 static void build_r3000_tlb_modify_handler(void)
1804 {
1805 u32 *p = handle_tlbm;
1806 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1807 struct uasm_label *l = labels;
1808 struct uasm_reloc *r = relocs;
1809
1810 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1811 memset(labels, 0, sizeof(labels));
1812 memset(relocs, 0, sizeof(relocs));
1813
1814 build_r3000_tlbchange_handler_head(&p, K0, K1);
1815 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1816 uasm_i_nop(&p); /* load delay */
1817 build_make_write(&p, &r, K0, K1);
1818 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1819
1820 uasm_l_nopage_tlbm(&l, p);
1821 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1822 uasm_i_nop(&p);
1823
1824 if (p >= handle_tlbm_end)
1825 panic("TLB modify handler fastpath space exceeded");
1826
1827 uasm_resolve_relocs(relocs, labels);
1828 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1829 (unsigned int)(p - handle_tlbm));
1830
1831 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1832 }
1833 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1834
1835 /*
1836 * R4000 style TLB load/store/modify handlers.
1837 */
1838 static struct work_registers
1839 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1840 struct uasm_reloc **r)
1841 {
1842 struct work_registers wr = build_get_work_registers(p);
1843
1844 #ifdef CONFIG_64BIT
1845 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1846 #else
1847 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1848 #endif
1849
1850 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1851 /*
1852 * For huge tlb entries, pmd doesn't contain an address but
1853 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1854 * see if we need to jump to huge tlb processing.
1855 */
1856 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1857 #endif
1858
1859 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1860 UASM_i_LW(p, wr.r2, 0, wr.r2);
1861 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1862 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1863 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1864
1865 #ifdef CONFIG_SMP
1866 uasm_l_smp_pgtable_change(l, *p);
1867 #endif
1868 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1869 if (!m4kc_tlbp_war())
1870 build_tlb_probe_entry(p);
1871 return wr;
1872 }
1873
1874 static void
1875 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1876 struct uasm_reloc **r, unsigned int tmp,
1877 unsigned int ptr)
1878 {
1879 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1880 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1881 build_update_entries(p, tmp, ptr);
1882 build_tlb_write_entry(p, l, r, tlb_indexed);
1883 uasm_l_leave(l, *p);
1884 build_restore_work_registers(p);
1885 uasm_i_eret(p); /* return from trap */
1886
1887 #ifdef CONFIG_64BIT
1888 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1889 #endif
1890 }
1891
1892 static void build_r4000_tlb_load_handler(void)
1893 {
1894 u32 *p = handle_tlbl;
1895 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1896 struct uasm_label *l = labels;
1897 struct uasm_reloc *r = relocs;
1898 struct work_registers wr;
1899
1900 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1901 memset(labels, 0, sizeof(labels));
1902 memset(relocs, 0, sizeof(relocs));
1903
1904 if (bcm1250_m3_war()) {
1905 unsigned int segbits = 44;
1906
1907 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1908 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1909 uasm_i_xor(&p, K0, K0, K1);
1910 uasm_i_dsrl_safe(&p, K1, K0, 62);
1911 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1912 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1913 uasm_i_or(&p, K0, K0, K1);
1914 uasm_il_bnez(&p, &r, K0, label_leave);
1915 /* No need for uasm_i_nop */
1916 }
1917
1918 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1919 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1920 if (m4kc_tlbp_war())
1921 build_tlb_probe_entry(&p);
1922
1923 if (cpu_has_rixi) {
1924 /*
1925 * If the page is not _PAGE_VALID, RI or XI could not
1926 * have triggered it. Skip the expensive test..
1927 */
1928 if (use_bbit_insns()) {
1929 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1930 label_tlbl_goaround1);
1931 } else {
1932 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1933 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1934 }
1935 uasm_i_nop(&p);
1936
1937 uasm_i_tlbr(&p);
1938
1939 switch (current_cpu_type()) {
1940 default:
1941 if (cpu_has_mips_r2) {
1942 uasm_i_ehb(&p);
1943
1944 case CPU_CAVIUM_OCTEON:
1945 case CPU_CAVIUM_OCTEON_PLUS:
1946 case CPU_CAVIUM_OCTEON2:
1947 break;
1948 }
1949 }
1950
1951 /* Examine entrylo 0 or 1 based on ptr. */
1952 if (use_bbit_insns()) {
1953 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1954 } else {
1955 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1956 uasm_i_beqz(&p, wr.r3, 8);
1957 }
1958 /* load it in the delay slot*/
1959 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1960 /* load it if ptr is odd */
1961 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1962 /*
1963 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1964 * XI must have triggered it.
1965 */
1966 if (use_bbit_insns()) {
1967 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1968 uasm_i_nop(&p);
1969 uasm_l_tlbl_goaround1(&l, p);
1970 } else {
1971 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1972 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1973 uasm_i_nop(&p);
1974 }
1975 uasm_l_tlbl_goaround1(&l, p);
1976 }
1977 build_make_valid(&p, &r, wr.r1, wr.r2);
1978 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1979
1980 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1981 /*
1982 * This is the entry point when build_r4000_tlbchange_handler_head
1983 * spots a huge page.
1984 */
1985 uasm_l_tlb_huge_update(&l, p);
1986 iPTE_LW(&p, wr.r1, wr.r2);
1987 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1988 build_tlb_probe_entry(&p);
1989
1990 if (cpu_has_rixi) {
1991 /*
1992 * If the page is not _PAGE_VALID, RI or XI could not
1993 * have triggered it. Skip the expensive test..
1994 */
1995 if (use_bbit_insns()) {
1996 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1997 label_tlbl_goaround2);
1998 } else {
1999 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2000 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2001 }
2002 uasm_i_nop(&p);
2003
2004 uasm_i_tlbr(&p);
2005
2006 switch (current_cpu_type()) {
2007 default:
2008 if (cpu_has_mips_r2) {
2009 uasm_i_ehb(&p);
2010
2011 case CPU_CAVIUM_OCTEON:
2012 case CPU_CAVIUM_OCTEON_PLUS:
2013 case CPU_CAVIUM_OCTEON2:
2014 break;
2015 }
2016 }
2017
2018 /* Examine entrylo 0 or 1 based on ptr. */
2019 if (use_bbit_insns()) {
2020 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2021 } else {
2022 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2023 uasm_i_beqz(&p, wr.r3, 8);
2024 }
2025 /* load it in the delay slot*/
2026 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2027 /* load it if ptr is odd */
2028 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2029 /*
2030 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2031 * XI must have triggered it.
2032 */
2033 if (use_bbit_insns()) {
2034 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2035 } else {
2036 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2037 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2038 }
2039 if (PM_DEFAULT_MASK == 0)
2040 uasm_i_nop(&p);
2041 /*
2042 * We clobbered C0_PAGEMASK, restore it. On the other branch
2043 * it is restored in build_huge_tlb_write_entry.
2044 */
2045 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2046
2047 uasm_l_tlbl_goaround2(&l, p);
2048 }
2049 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2050 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2051 #endif
2052
2053 uasm_l_nopage_tlbl(&l, p);
2054 build_restore_work_registers(&p);
2055 #ifdef CONFIG_CPU_MICROMIPS
2056 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2057 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2058 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2059 uasm_i_jr(&p, K0);
2060 } else
2061 #endif
2062 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2063 uasm_i_nop(&p);
2064
2065 if (p >= handle_tlbl_end)
2066 panic("TLB load handler fastpath space exceeded");
2067
2068 uasm_resolve_relocs(relocs, labels);
2069 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2070 (unsigned int)(p - handle_tlbl));
2071
2072 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2073 }
2074
2075 static void build_r4000_tlb_store_handler(void)
2076 {
2077 u32 *p = handle_tlbs;
2078 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2079 struct uasm_label *l = labels;
2080 struct uasm_reloc *r = relocs;
2081 struct work_registers wr;
2082
2083 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2084 memset(labels, 0, sizeof(labels));
2085 memset(relocs, 0, sizeof(relocs));
2086
2087 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2088 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2089 if (m4kc_tlbp_war())
2090 build_tlb_probe_entry(&p);
2091 build_make_write(&p, &r, wr.r1, wr.r2);
2092 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2093
2094 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2095 /*
2096 * This is the entry point when
2097 * build_r4000_tlbchange_handler_head spots a huge page.
2098 */
2099 uasm_l_tlb_huge_update(&l, p);
2100 iPTE_LW(&p, wr.r1, wr.r2);
2101 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2102 build_tlb_probe_entry(&p);
2103 uasm_i_ori(&p, wr.r1, wr.r1,
2104 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2105 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2106 #endif
2107
2108 uasm_l_nopage_tlbs(&l, p);
2109 build_restore_work_registers(&p);
2110 #ifdef CONFIG_CPU_MICROMIPS
2111 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2112 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2113 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2114 uasm_i_jr(&p, K0);
2115 } else
2116 #endif
2117 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2118 uasm_i_nop(&p);
2119
2120 if (p >= handle_tlbs_end)
2121 panic("TLB store handler fastpath space exceeded");
2122
2123 uasm_resolve_relocs(relocs, labels);
2124 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2125 (unsigned int)(p - handle_tlbs));
2126
2127 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2128 }
2129
2130 static void build_r4000_tlb_modify_handler(void)
2131 {
2132 u32 *p = handle_tlbm;
2133 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2134 struct uasm_label *l = labels;
2135 struct uasm_reloc *r = relocs;
2136 struct work_registers wr;
2137
2138 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2139 memset(labels, 0, sizeof(labels));
2140 memset(relocs, 0, sizeof(relocs));
2141
2142 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2143 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2144 if (m4kc_tlbp_war())
2145 build_tlb_probe_entry(&p);
2146 /* Present and writable bits set, set accessed and dirty bits. */
2147 build_make_write(&p, &r, wr.r1, wr.r2);
2148 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2149
2150 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2151 /*
2152 * This is the entry point when
2153 * build_r4000_tlbchange_handler_head spots a huge page.
2154 */
2155 uasm_l_tlb_huge_update(&l, p);
2156 iPTE_LW(&p, wr.r1, wr.r2);
2157 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2158 build_tlb_probe_entry(&p);
2159 uasm_i_ori(&p, wr.r1, wr.r1,
2160 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2161 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2162 #endif
2163
2164 uasm_l_nopage_tlbm(&l, p);
2165 build_restore_work_registers(&p);
2166 #ifdef CONFIG_CPU_MICROMIPS
2167 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2168 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2169 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2170 uasm_i_jr(&p, K0);
2171 } else
2172 #endif
2173 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2174 uasm_i_nop(&p);
2175
2176 if (p >= handle_tlbm_end)
2177 panic("TLB modify handler fastpath space exceeded");
2178
2179 uasm_resolve_relocs(relocs, labels);
2180 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2181 (unsigned int)(p - handle_tlbm));
2182
2183 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2184 }
2185
2186 static void flush_tlb_handlers(void)
2187 {
2188 local_flush_icache_range((unsigned long)handle_tlbl,
2189 (unsigned long)handle_tlbl_end);
2190 local_flush_icache_range((unsigned long)handle_tlbs,
2191 (unsigned long)handle_tlbs_end);
2192 local_flush_icache_range((unsigned long)handle_tlbm,
2193 (unsigned long)handle_tlbm_end);
2194 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2195 (unsigned long)tlbmiss_handler_setup_pgd_end);
2196 }
2197
2198 void build_tlb_refill_handler(void)
2199 {
2200 /*
2201 * The refill handler is generated per-CPU, multi-node systems
2202 * may have local storage for it. The other handlers are only
2203 * needed once.
2204 */
2205 static int run_once = 0;
2206
2207 output_pgtable_bits_defines();
2208
2209 #ifdef CONFIG_64BIT
2210 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2211 #endif
2212
2213 switch (current_cpu_type()) {
2214 case CPU_R2000:
2215 case CPU_R3000:
2216 case CPU_R3000A:
2217 case CPU_R3081E:
2218 case CPU_TX3912:
2219 case CPU_TX3922:
2220 case CPU_TX3927:
2221 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2222 if (cpu_has_local_ebase)
2223 build_r3000_tlb_refill_handler();
2224 if (!run_once) {
2225 if (!cpu_has_local_ebase)
2226 build_r3000_tlb_refill_handler();
2227 build_setup_pgd();
2228 build_r3000_tlb_load_handler();
2229 build_r3000_tlb_store_handler();
2230 build_r3000_tlb_modify_handler();
2231 flush_tlb_handlers();
2232 run_once++;
2233 }
2234 #else
2235 panic("No R3000 TLB refill handler");
2236 #endif
2237 break;
2238
2239 case CPU_R6000:
2240 case CPU_R6000A:
2241 panic("No R6000 TLB refill handler yet");
2242 break;
2243
2244 case CPU_R8000:
2245 panic("No R8000 TLB refill handler yet");
2246 break;
2247
2248 default:
2249 if (!run_once) {
2250 scratch_reg = allocate_kscratch();
2251 build_setup_pgd();
2252 build_r4000_tlb_load_handler();
2253 build_r4000_tlb_store_handler();
2254 build_r4000_tlb_modify_handler();
2255 if (!cpu_has_local_ebase)
2256 build_r4000_tlb_refill_handler();
2257 flush_tlb_handlers();
2258 run_once++;
2259 }
2260 if (cpu_has_local_ebase)
2261 build_r4000_tlb_refill_handler();
2262 }
2263 }