]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/mm/tlbex.c
MIPS: Move definition of SMP processor id register to header file
[mirror_ubuntu-artful-kernel.git] / arch / mips / mm / tlbex.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/init.h>
30 #include <linux/cache.h>
31
32 #include <asm/cacheflush.h>
33 #include <asm/cpu-type.h>
34 #include <asm/pgtable.h>
35 #include <asm/war.h>
36 #include <asm/uasm.h>
37 #include <asm/setup.h>
38
39 /*
40 * TLB load/store/modify handlers.
41 *
42 * Only the fastpath gets synthesized at runtime, the slowpath for
43 * do_page_fault remains normal asm.
44 */
45 extern void tlb_do_page_fault_0(void);
46 extern void tlb_do_page_fault_1(void);
47
48 struct work_registers {
49 int r1;
50 int r2;
51 int r3;
52 };
53
54 struct tlb_reg_save {
55 unsigned long a;
56 unsigned long b;
57 } ____cacheline_aligned_in_smp;
58
59 static struct tlb_reg_save handler_reg_save[NR_CPUS];
60
61 static inline int r45k_bvahwbug(void)
62 {
63 /* XXX: We should probe for the presence of this bug, but we don't. */
64 return 0;
65 }
66
67 static inline int r4k_250MHZhwbug(void)
68 {
69 /* XXX: We should probe for the presence of this bug, but we don't. */
70 return 0;
71 }
72
73 static inline int __maybe_unused bcm1250_m3_war(void)
74 {
75 return BCM1250_M3_WAR;
76 }
77
78 static inline int __maybe_unused r10000_llsc_war(void)
79 {
80 return R10000_LLSC_WAR;
81 }
82
83 static int use_bbit_insns(void)
84 {
85 switch (current_cpu_type()) {
86 case CPU_CAVIUM_OCTEON:
87 case CPU_CAVIUM_OCTEON_PLUS:
88 case CPU_CAVIUM_OCTEON2:
89 case CPU_CAVIUM_OCTEON3:
90 return 1;
91 default:
92 return 0;
93 }
94 }
95
96 static int use_lwx_insns(void)
97 {
98 switch (current_cpu_type()) {
99 case CPU_CAVIUM_OCTEON2:
100 case CPU_CAVIUM_OCTEON3:
101 return 1;
102 default:
103 return 0;
104 }
105 }
106 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
107 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
108 static bool scratchpad_available(void)
109 {
110 return true;
111 }
112 static int scratchpad_offset(int i)
113 {
114 /*
115 * CVMSEG starts at address -32768 and extends for
116 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
117 */
118 i += 1; /* Kernel use starts at the top and works down. */
119 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
120 }
121 #else
122 static bool scratchpad_available(void)
123 {
124 return false;
125 }
126 static int scratchpad_offset(int i)
127 {
128 BUG();
129 /* Really unreachable, but evidently some GCC want this. */
130 return 0;
131 }
132 #endif
133 /*
134 * Found by experiment: At least some revisions of the 4kc throw under
135 * some circumstances a machine check exception, triggered by invalid
136 * values in the index register. Delaying the tlbp instruction until
137 * after the next branch, plus adding an additional nop in front of
138 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
139 * why; it's not an issue caused by the core RTL.
140 *
141 */
142 static int m4kc_tlbp_war(void)
143 {
144 return (current_cpu_data.processor_id & 0xffff00) ==
145 (PRID_COMP_MIPS | PRID_IMP_4KC);
146 }
147
148 /* Handle labels (which must be positive integers). */
149 enum label_id {
150 label_second_part = 1,
151 label_leave,
152 label_vmalloc,
153 label_vmalloc_done,
154 label_tlbw_hazard_0,
155 label_split = label_tlbw_hazard_0 + 8,
156 label_tlbl_goaround1,
157 label_tlbl_goaround2,
158 label_nopage_tlbl,
159 label_nopage_tlbs,
160 label_nopage_tlbm,
161 label_smp_pgtable_change,
162 label_r3000_write_probe_fail,
163 label_large_segbits_fault,
164 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
165 label_tlb_huge_update,
166 #endif
167 };
168
169 UASM_L_LA(_second_part)
170 UASM_L_LA(_leave)
171 UASM_L_LA(_vmalloc)
172 UASM_L_LA(_vmalloc_done)
173 /* _tlbw_hazard_x is handled differently. */
174 UASM_L_LA(_split)
175 UASM_L_LA(_tlbl_goaround1)
176 UASM_L_LA(_tlbl_goaround2)
177 UASM_L_LA(_nopage_tlbl)
178 UASM_L_LA(_nopage_tlbs)
179 UASM_L_LA(_nopage_tlbm)
180 UASM_L_LA(_smp_pgtable_change)
181 UASM_L_LA(_r3000_write_probe_fail)
182 UASM_L_LA(_large_segbits_fault)
183 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
184 UASM_L_LA(_tlb_huge_update)
185 #endif
186
187 static int hazard_instance;
188
189 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
190 {
191 switch (instance) {
192 case 0 ... 7:
193 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
194 return;
195 default:
196 BUG();
197 }
198 }
199
200 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
201 {
202 switch (instance) {
203 case 0 ... 7:
204 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
205 break;
206 default:
207 BUG();
208 }
209 }
210
211 /*
212 * pgtable bits are assigned dynamically depending on processor feature
213 * and statically based on kernel configuration. This spits out the actual
214 * values the kernel is using. Required to make sense from disassembled
215 * TLB exception handlers.
216 */
217 static void output_pgtable_bits_defines(void)
218 {
219 #define pr_define(fmt, ...) \
220 pr_debug("#define " fmt, ##__VA_ARGS__)
221
222 pr_debug("#include <asm/asm.h>\n");
223 pr_debug("#include <asm/regdef.h>\n");
224 pr_debug("\n");
225
226 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
227 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
228 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
229 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
230 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
231 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
232 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
233 pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
234 #endif
235 if (cpu_has_rixi) {
236 #ifdef _PAGE_NO_EXEC_SHIFT
237 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
238 #endif
239 #ifdef _PAGE_NO_READ_SHIFT
240 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
241 #endif
242 }
243 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
244 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
245 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
246 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
247 pr_debug("\n");
248 }
249
250 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
251 {
252 int i;
253
254 pr_debug("LEAF(%s)\n", symbol);
255
256 pr_debug("\t.set push\n");
257 pr_debug("\t.set noreorder\n");
258
259 for (i = 0; i < count; i++)
260 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
261
262 pr_debug("\t.set\tpop\n");
263
264 pr_debug("\tEND(%s)\n", symbol);
265 }
266
267 /* The only general purpose registers allowed in TLB handlers. */
268 #define K0 26
269 #define K1 27
270
271 /* Some CP0 registers */
272 #define C0_INDEX 0, 0
273 #define C0_ENTRYLO0 2, 0
274 #define C0_TCBIND 2, 2
275 #define C0_ENTRYLO1 3, 0
276 #define C0_CONTEXT 4, 0
277 #define C0_PAGEMASK 5, 0
278 #define C0_BADVADDR 8, 0
279 #define C0_ENTRYHI 10, 0
280 #define C0_EPC 14, 0
281 #define C0_XCONTEXT 20, 0
282
283 #ifdef CONFIG_64BIT
284 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
285 #else
286 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
287 #endif
288
289 /* The worst case length of the handler is around 18 instructions for
290 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
291 * Maximum space available is 32 instructions for R3000 and 64
292 * instructions for R4000.
293 *
294 * We deliberately chose a buffer size of 128, so we won't scribble
295 * over anything important on overflow before we panic.
296 */
297 static u32 tlb_handler[128];
298
299 /* simply assume worst case size for labels and relocs */
300 static struct uasm_label labels[128];
301 static struct uasm_reloc relocs[128];
302
303 static int check_for_high_segbits;
304
305 static unsigned int kscratch_used_mask;
306
307 static inline int __maybe_unused c0_kscratch(void)
308 {
309 switch (current_cpu_type()) {
310 case CPU_XLP:
311 case CPU_XLR:
312 return 22;
313 default:
314 return 31;
315 }
316 }
317
318 static int allocate_kscratch(void)
319 {
320 int r;
321 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
322
323 r = ffs(a);
324
325 if (r == 0)
326 return -1;
327
328 r--; /* make it zero based */
329
330 kscratch_used_mask |= (1 << r);
331
332 return r;
333 }
334
335 static int scratch_reg;
336 static int pgd_reg;
337 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
338
339 static struct work_registers build_get_work_registers(u32 **p)
340 {
341 struct work_registers r;
342
343 if (scratch_reg >= 0) {
344 /* Save in CPU local C0_KScratch? */
345 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
346 r.r1 = K0;
347 r.r2 = K1;
348 r.r3 = 1;
349 return r;
350 }
351
352 if (num_possible_cpus() > 1) {
353 /* Get smp_processor_id */
354 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
355 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
356
357 /* handler_reg_save index in K0 */
358 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
359
360 UASM_i_LA(p, K1, (long)&handler_reg_save);
361 UASM_i_ADDU(p, K0, K0, K1);
362 } else {
363 UASM_i_LA(p, K0, (long)&handler_reg_save);
364 }
365 /* K0 now points to save area, save $1 and $2 */
366 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
367 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
368
369 r.r1 = K1;
370 r.r2 = 1;
371 r.r3 = 2;
372 return r;
373 }
374
375 static void build_restore_work_registers(u32 **p)
376 {
377 if (scratch_reg >= 0) {
378 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
379 return;
380 }
381 /* K0 already points to save area, restore $1 and $2 */
382 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
383 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
384 }
385
386 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
387
388 /*
389 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
390 * we cannot do r3000 under these circumstances.
391 *
392 * Declare pgd_current here instead of including mmu_context.h to avoid type
393 * conflicts for tlbmiss_handler_setup_pgd
394 */
395 extern unsigned long pgd_current[];
396
397 /*
398 * The R3000 TLB handler is simple.
399 */
400 static void build_r3000_tlb_refill_handler(void)
401 {
402 long pgdc = (long)pgd_current;
403 u32 *p;
404
405 memset(tlb_handler, 0, sizeof(tlb_handler));
406 p = tlb_handler;
407
408 uasm_i_mfc0(&p, K0, C0_BADVADDR);
409 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
410 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
411 uasm_i_srl(&p, K0, K0, 22); /* load delay */
412 uasm_i_sll(&p, K0, K0, 2);
413 uasm_i_addu(&p, K1, K1, K0);
414 uasm_i_mfc0(&p, K0, C0_CONTEXT);
415 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
416 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
417 uasm_i_addu(&p, K1, K1, K0);
418 uasm_i_lw(&p, K0, 0, K1);
419 uasm_i_nop(&p); /* load delay */
420 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
421 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
422 uasm_i_tlbwr(&p); /* cp0 delay */
423 uasm_i_jr(&p, K1);
424 uasm_i_rfe(&p); /* branch delay */
425
426 if (p > tlb_handler + 32)
427 panic("TLB refill handler space exceeded");
428
429 pr_debug("Wrote TLB refill handler (%u instructions).\n",
430 (unsigned int)(p - tlb_handler));
431
432 memcpy((void *)ebase, tlb_handler, 0x80);
433
434 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
435 }
436 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
437
438 /*
439 * The R4000 TLB handler is much more complicated. We have two
440 * consecutive handler areas with 32 instructions space each.
441 * Since they aren't used at the same time, we can overflow in the
442 * other one.To keep things simple, we first assume linear space,
443 * then we relocate it to the final handler layout as needed.
444 */
445 static u32 final_handler[64];
446
447 /*
448 * Hazards
449 *
450 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
451 * 2. A timing hazard exists for the TLBP instruction.
452 *
453 * stalling_instruction
454 * TLBP
455 *
456 * The JTLB is being read for the TLBP throughout the stall generated by the
457 * previous instruction. This is not really correct as the stalling instruction
458 * can modify the address used to access the JTLB. The failure symptom is that
459 * the TLBP instruction will use an address created for the stalling instruction
460 * and not the address held in C0_ENHI and thus report the wrong results.
461 *
462 * The software work-around is to not allow the instruction preceding the TLBP
463 * to stall - make it an NOP or some other instruction guaranteed not to stall.
464 *
465 * Errata 2 will not be fixed. This errata is also on the R5000.
466 *
467 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
468 */
469 static void __maybe_unused build_tlb_probe_entry(u32 **p)
470 {
471 switch (current_cpu_type()) {
472 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
473 case CPU_R4600:
474 case CPU_R4700:
475 case CPU_R5000:
476 case CPU_NEVADA:
477 uasm_i_nop(p);
478 uasm_i_tlbp(p);
479 break;
480
481 default:
482 uasm_i_tlbp(p);
483 break;
484 }
485 }
486
487 /*
488 * Write random or indexed TLB entry, and care about the hazards from
489 * the preceding mtc0 and for the following eret.
490 */
491 enum tlb_write_entry { tlb_random, tlb_indexed };
492
493 static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
494 struct uasm_reloc **r,
495 enum tlb_write_entry wmode)
496 {
497 void(*tlbw)(u32 **) = NULL;
498
499 switch (wmode) {
500 case tlb_random: tlbw = uasm_i_tlbwr; break;
501 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
502 }
503
504 if (cpu_has_mips_r2) {
505 /*
506 * The architecture spec says an ehb is required here,
507 * but a number of cores do not have the hazard and
508 * using an ehb causes an expensive pipeline stall.
509 */
510 switch (current_cpu_type()) {
511 case CPU_M14KC:
512 case CPU_74K:
513 break;
514
515 default:
516 uasm_i_ehb(p);
517 break;
518 }
519 tlbw(p);
520 return;
521 }
522
523 switch (current_cpu_type()) {
524 case CPU_R4000PC:
525 case CPU_R4000SC:
526 case CPU_R4000MC:
527 case CPU_R4400PC:
528 case CPU_R4400SC:
529 case CPU_R4400MC:
530 /*
531 * This branch uses up a mtc0 hazard nop slot and saves
532 * two nops after the tlbw instruction.
533 */
534 uasm_bgezl_hazard(p, r, hazard_instance);
535 tlbw(p);
536 uasm_bgezl_label(l, p, hazard_instance);
537 hazard_instance++;
538 uasm_i_nop(p);
539 break;
540
541 case CPU_R4600:
542 case CPU_R4700:
543 uasm_i_nop(p);
544 tlbw(p);
545 uasm_i_nop(p);
546 break;
547
548 case CPU_R5000:
549 case CPU_NEVADA:
550 uasm_i_nop(p); /* QED specifies 2 nops hazard */
551 uasm_i_nop(p); /* QED specifies 2 nops hazard */
552 tlbw(p);
553 break;
554
555 case CPU_R4300:
556 case CPU_5KC:
557 case CPU_TX49XX:
558 case CPU_PR4450:
559 case CPU_XLR:
560 uasm_i_nop(p);
561 tlbw(p);
562 break;
563
564 case CPU_R10000:
565 case CPU_R12000:
566 case CPU_R14000:
567 case CPU_4KC:
568 case CPU_4KEC:
569 case CPU_M14KC:
570 case CPU_M14KEC:
571 case CPU_SB1:
572 case CPU_SB1A:
573 case CPU_4KSC:
574 case CPU_20KC:
575 case CPU_25KF:
576 case CPU_BMIPS32:
577 case CPU_BMIPS3300:
578 case CPU_BMIPS4350:
579 case CPU_BMIPS4380:
580 case CPU_BMIPS5000:
581 case CPU_LOONGSON2:
582 case CPU_R5500:
583 if (m4kc_tlbp_war())
584 uasm_i_nop(p);
585 case CPU_ALCHEMY:
586 tlbw(p);
587 break;
588
589 case CPU_RM7000:
590 uasm_i_nop(p);
591 uasm_i_nop(p);
592 uasm_i_nop(p);
593 uasm_i_nop(p);
594 tlbw(p);
595 break;
596
597 case CPU_VR4111:
598 case CPU_VR4121:
599 case CPU_VR4122:
600 case CPU_VR4181:
601 case CPU_VR4181A:
602 uasm_i_nop(p);
603 uasm_i_nop(p);
604 tlbw(p);
605 uasm_i_nop(p);
606 uasm_i_nop(p);
607 break;
608
609 case CPU_VR4131:
610 case CPU_VR4133:
611 case CPU_R5432:
612 uasm_i_nop(p);
613 uasm_i_nop(p);
614 tlbw(p);
615 break;
616
617 case CPU_JZRISC:
618 tlbw(p);
619 uasm_i_nop(p);
620 break;
621
622 default:
623 panic("No TLB refill handler yet (CPU type: %d)",
624 current_cpu_data.cputype);
625 break;
626 }
627 }
628
629 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
630 unsigned int reg)
631 {
632 if (cpu_has_rixi) {
633 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
634 } else {
635 #ifdef CONFIG_64BIT_PHYS_ADDR
636 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
637 #else
638 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
639 #endif
640 }
641 }
642
643 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
644
645 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
646 unsigned int tmp, enum label_id lid,
647 int restore_scratch)
648 {
649 if (restore_scratch) {
650 /* Reset default page size */
651 if (PM_DEFAULT_MASK >> 16) {
652 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
653 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
654 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
655 uasm_il_b(p, r, lid);
656 } else if (PM_DEFAULT_MASK) {
657 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
658 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
659 uasm_il_b(p, r, lid);
660 } else {
661 uasm_i_mtc0(p, 0, C0_PAGEMASK);
662 uasm_il_b(p, r, lid);
663 }
664 if (scratch_reg >= 0)
665 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
666 else
667 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
668 } else {
669 /* Reset default page size */
670 if (PM_DEFAULT_MASK >> 16) {
671 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
672 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
673 uasm_il_b(p, r, lid);
674 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
675 } else if (PM_DEFAULT_MASK) {
676 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
677 uasm_il_b(p, r, lid);
678 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
679 } else {
680 uasm_il_b(p, r, lid);
681 uasm_i_mtc0(p, 0, C0_PAGEMASK);
682 }
683 }
684 }
685
686 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
687 struct uasm_reloc **r,
688 unsigned int tmp,
689 enum tlb_write_entry wmode,
690 int restore_scratch)
691 {
692 /* Set huge page tlb entry size */
693 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
694 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
695 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
696
697 build_tlb_write_entry(p, l, r, wmode);
698
699 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
700 }
701
702 /*
703 * Check if Huge PTE is present, if so then jump to LABEL.
704 */
705 static void
706 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
707 unsigned int pmd, int lid)
708 {
709 UASM_i_LW(p, tmp, 0, pmd);
710 if (use_bbit_insns()) {
711 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
712 } else {
713 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
714 uasm_il_bnez(p, r, tmp, lid);
715 }
716 }
717
718 static void build_huge_update_entries(u32 **p, unsigned int pte,
719 unsigned int tmp)
720 {
721 int small_sequence;
722
723 /*
724 * A huge PTE describes an area the size of the
725 * configured huge page size. This is twice the
726 * of the large TLB entry size we intend to use.
727 * A TLB entry half the size of the configured
728 * huge page size is configured into entrylo0
729 * and entrylo1 to cover the contiguous huge PTE
730 * address space.
731 */
732 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
733
734 /* We can clobber tmp. It isn't used after this.*/
735 if (!small_sequence)
736 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
737
738 build_convert_pte_to_entrylo(p, pte);
739 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
740 /* convert to entrylo1 */
741 if (small_sequence)
742 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
743 else
744 UASM_i_ADDU(p, pte, pte, tmp);
745
746 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
747 }
748
749 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
750 struct uasm_label **l,
751 unsigned int pte,
752 unsigned int ptr)
753 {
754 #ifdef CONFIG_SMP
755 UASM_i_SC(p, pte, 0, ptr);
756 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
757 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
758 #else
759 UASM_i_SW(p, pte, 0, ptr);
760 #endif
761 build_huge_update_entries(p, pte, ptr);
762 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
763 }
764 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
765
766 #ifdef CONFIG_64BIT
767 /*
768 * TMP and PTR are scratch.
769 * TMP will be clobbered, PTR will hold the pmd entry.
770 */
771 static void
772 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
773 unsigned int tmp, unsigned int ptr)
774 {
775 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
776 long pgdc = (long)pgd_current;
777 #endif
778 /*
779 * The vmalloc handling is not in the hotpath.
780 */
781 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
782
783 if (check_for_high_segbits) {
784 /*
785 * The kernel currently implicitely assumes that the
786 * MIPS SEGBITS parameter for the processor is
787 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
788 * allocate virtual addresses outside the maximum
789 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
790 * that doesn't prevent user code from accessing the
791 * higher xuseg addresses. Here, we make sure that
792 * everything but the lower xuseg addresses goes down
793 * the module_alloc/vmalloc path.
794 */
795 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
796 uasm_il_bnez(p, r, ptr, label_vmalloc);
797 } else {
798 uasm_il_bltz(p, r, tmp, label_vmalloc);
799 }
800 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
801
802 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
803 if (pgd_reg != -1) {
804 /* pgd is in pgd_reg */
805 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
806 } else {
807 /*
808 * &pgd << 11 stored in CONTEXT [23..63].
809 */
810 UASM_i_MFC0(p, ptr, C0_CONTEXT);
811
812 /* Clear lower 23 bits of context. */
813 uasm_i_dins(p, ptr, 0, 0, 23);
814
815 /* 1 0 1 0 1 << 6 xkphys cached */
816 uasm_i_ori(p, ptr, ptr, 0x540);
817 uasm_i_drotr(p, ptr, ptr, 11);
818 }
819 #elif defined(CONFIG_SMP)
820 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
821 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
822 UASM_i_LA_mostly(p, tmp, pgdc);
823 uasm_i_daddu(p, ptr, ptr, tmp);
824 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
825 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
826 #else
827 UASM_i_LA_mostly(p, ptr, pgdc);
828 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
829 #endif
830
831 uasm_l_vmalloc_done(l, *p);
832
833 /* get pgd offset in bytes */
834 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
835
836 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
837 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
838 #ifndef __PAGETABLE_PMD_FOLDED
839 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
840 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
841 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
842 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
843 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
844 #endif
845 }
846
847 /*
848 * BVADDR is the faulting address, PTR is scratch.
849 * PTR will hold the pgd for vmalloc.
850 */
851 static void
852 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
853 unsigned int bvaddr, unsigned int ptr,
854 enum vmalloc64_mode mode)
855 {
856 long swpd = (long)swapper_pg_dir;
857 int single_insn_swpd;
858 int did_vmalloc_branch = 0;
859
860 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
861
862 uasm_l_vmalloc(l, *p);
863
864 if (mode != not_refill && check_for_high_segbits) {
865 if (single_insn_swpd) {
866 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
867 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
868 did_vmalloc_branch = 1;
869 /* fall through */
870 } else {
871 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
872 }
873 }
874 if (!did_vmalloc_branch) {
875 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
876 uasm_il_b(p, r, label_vmalloc_done);
877 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
878 } else {
879 UASM_i_LA_mostly(p, ptr, swpd);
880 uasm_il_b(p, r, label_vmalloc_done);
881 if (uasm_in_compat_space_p(swpd))
882 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
883 else
884 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
885 }
886 }
887 if (mode != not_refill && check_for_high_segbits) {
888 uasm_l_large_segbits_fault(l, *p);
889 /*
890 * We get here if we are an xsseg address, or if we are
891 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
892 *
893 * Ignoring xsseg (assume disabled so would generate
894 * (address errors?), the only remaining possibility
895 * is the upper xuseg addresses. On processors with
896 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
897 * addresses would have taken an address error. We try
898 * to mimic that here by taking a load/istream page
899 * fault.
900 */
901 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
902 uasm_i_jr(p, ptr);
903
904 if (mode == refill_scratch) {
905 if (scratch_reg >= 0)
906 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
907 else
908 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
909 } else {
910 uasm_i_nop(p);
911 }
912 }
913 }
914
915 #else /* !CONFIG_64BIT */
916
917 /*
918 * TMP and PTR are scratch.
919 * TMP will be clobbered, PTR will hold the pgd entry.
920 */
921 static void __maybe_unused
922 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
923 {
924 long pgdc = (long)pgd_current;
925
926 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
927 #ifdef CONFIG_SMP
928 uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
929 UASM_i_LA_mostly(p, tmp, pgdc);
930 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
931 uasm_i_addu(p, ptr, tmp, ptr);
932 #else
933 UASM_i_LA_mostly(p, ptr, pgdc);
934 #endif
935 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
936 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
937 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
938 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
939 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
940 }
941
942 #endif /* !CONFIG_64BIT */
943
944 static void build_adjust_context(u32 **p, unsigned int ctx)
945 {
946 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
947 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
948
949 switch (current_cpu_type()) {
950 case CPU_VR41XX:
951 case CPU_VR4111:
952 case CPU_VR4121:
953 case CPU_VR4122:
954 case CPU_VR4131:
955 case CPU_VR4181:
956 case CPU_VR4181A:
957 case CPU_VR4133:
958 shift += 2;
959 break;
960
961 default:
962 break;
963 }
964
965 if (shift)
966 UASM_i_SRL(p, ctx, ctx, shift);
967 uasm_i_andi(p, ctx, ctx, mask);
968 }
969
970 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
971 {
972 /*
973 * Bug workaround for the Nevada. It seems as if under certain
974 * circumstances the move from cp0_context might produce a
975 * bogus result when the mfc0 instruction and its consumer are
976 * in a different cacheline or a load instruction, probably any
977 * memory reference, is between them.
978 */
979 switch (current_cpu_type()) {
980 case CPU_NEVADA:
981 UASM_i_LW(p, ptr, 0, ptr);
982 GET_CONTEXT(p, tmp); /* get context reg */
983 break;
984
985 default:
986 GET_CONTEXT(p, tmp); /* get context reg */
987 UASM_i_LW(p, ptr, 0, ptr);
988 break;
989 }
990
991 build_adjust_context(p, tmp);
992 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
993 }
994
995 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
996 {
997 /*
998 * 64bit address support (36bit on a 32bit CPU) in a 32bit
999 * Kernel is a special case. Only a few CPUs use it.
1000 */
1001 #ifdef CONFIG_64BIT_PHYS_ADDR
1002 if (cpu_has_64bits) {
1003 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1004 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1005 if (cpu_has_rixi) {
1006 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1007 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1008 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1009 } else {
1010 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1011 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1012 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1013 }
1014 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1015 } else {
1016 int pte_off_even = sizeof(pte_t) / 2;
1017 int pte_off_odd = pte_off_even + sizeof(pte_t);
1018
1019 /* The pte entries are pre-shifted */
1020 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1021 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1022 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1023 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1024 }
1025 #else
1026 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1027 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1028 if (r45k_bvahwbug())
1029 build_tlb_probe_entry(p);
1030 if (cpu_has_rixi) {
1031 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1032 if (r4k_250MHZhwbug())
1033 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1034 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1035 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1036 } else {
1037 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1038 if (r4k_250MHZhwbug())
1039 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1040 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1041 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1042 if (r45k_bvahwbug())
1043 uasm_i_mfc0(p, tmp, C0_INDEX);
1044 }
1045 if (r4k_250MHZhwbug())
1046 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1047 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1048 #endif
1049 }
1050
1051 struct mips_huge_tlb_info {
1052 int huge_pte;
1053 int restore_scratch;
1054 };
1055
1056 static struct mips_huge_tlb_info
1057 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1058 struct uasm_reloc **r, unsigned int tmp,
1059 unsigned int ptr, int c0_scratch_reg)
1060 {
1061 struct mips_huge_tlb_info rv;
1062 unsigned int even, odd;
1063 int vmalloc_branch_delay_filled = 0;
1064 const int scratch = 1; /* Our extra working register */
1065
1066 rv.huge_pte = scratch;
1067 rv.restore_scratch = 0;
1068
1069 if (check_for_high_segbits) {
1070 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1071
1072 if (pgd_reg != -1)
1073 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1074 else
1075 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1076
1077 if (c0_scratch_reg >= 0)
1078 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1079 else
1080 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1081
1082 uasm_i_dsrl_safe(p, scratch, tmp,
1083 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1084 uasm_il_bnez(p, r, scratch, label_vmalloc);
1085
1086 if (pgd_reg == -1) {
1087 vmalloc_branch_delay_filled = 1;
1088 /* Clear lower 23 bits of context. */
1089 uasm_i_dins(p, ptr, 0, 0, 23);
1090 }
1091 } else {
1092 if (pgd_reg != -1)
1093 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1094 else
1095 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1096
1097 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1098
1099 if (c0_scratch_reg >= 0)
1100 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1101 else
1102 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1103
1104 if (pgd_reg == -1)
1105 /* Clear lower 23 bits of context. */
1106 uasm_i_dins(p, ptr, 0, 0, 23);
1107
1108 uasm_il_bltz(p, r, tmp, label_vmalloc);
1109 }
1110
1111 if (pgd_reg == -1) {
1112 vmalloc_branch_delay_filled = 1;
1113 /* 1 0 1 0 1 << 6 xkphys cached */
1114 uasm_i_ori(p, ptr, ptr, 0x540);
1115 uasm_i_drotr(p, ptr, ptr, 11);
1116 }
1117
1118 #ifdef __PAGETABLE_PMD_FOLDED
1119 #define LOC_PTEP scratch
1120 #else
1121 #define LOC_PTEP ptr
1122 #endif
1123
1124 if (!vmalloc_branch_delay_filled)
1125 /* get pgd offset in bytes */
1126 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1127
1128 uasm_l_vmalloc_done(l, *p);
1129
1130 /*
1131 * tmp ptr
1132 * fall-through case = badvaddr *pgd_current
1133 * vmalloc case = badvaddr swapper_pg_dir
1134 */
1135
1136 if (vmalloc_branch_delay_filled)
1137 /* get pgd offset in bytes */
1138 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1139
1140 #ifdef __PAGETABLE_PMD_FOLDED
1141 GET_CONTEXT(p, tmp); /* get context reg */
1142 #endif
1143 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1144
1145 if (use_lwx_insns()) {
1146 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1147 } else {
1148 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1149 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1150 }
1151
1152 #ifndef __PAGETABLE_PMD_FOLDED
1153 /* get pmd offset in bytes */
1154 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1155 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1156 GET_CONTEXT(p, tmp); /* get context reg */
1157
1158 if (use_lwx_insns()) {
1159 UASM_i_LWX(p, scratch, scratch, ptr);
1160 } else {
1161 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1162 UASM_i_LW(p, scratch, 0, ptr);
1163 }
1164 #endif
1165 /* Adjust the context during the load latency. */
1166 build_adjust_context(p, tmp);
1167
1168 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1169 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1170 /*
1171 * The in the LWX case we don't want to do the load in the
1172 * delay slot. It cannot issue in the same cycle and may be
1173 * speculative and unneeded.
1174 */
1175 if (use_lwx_insns())
1176 uasm_i_nop(p);
1177 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1178
1179
1180 /* build_update_entries */
1181 if (use_lwx_insns()) {
1182 even = ptr;
1183 odd = tmp;
1184 UASM_i_LWX(p, even, scratch, tmp);
1185 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1186 UASM_i_LWX(p, odd, scratch, tmp);
1187 } else {
1188 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1189 even = tmp;
1190 odd = ptr;
1191 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1192 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1193 }
1194 if (cpu_has_rixi) {
1195 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1196 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1197 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1198 } else {
1199 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1200 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1201 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1202 }
1203 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1204
1205 if (c0_scratch_reg >= 0) {
1206 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1207 build_tlb_write_entry(p, l, r, tlb_random);
1208 uasm_l_leave(l, *p);
1209 rv.restore_scratch = 1;
1210 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1211 build_tlb_write_entry(p, l, r, tlb_random);
1212 uasm_l_leave(l, *p);
1213 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1214 } else {
1215 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1216 build_tlb_write_entry(p, l, r, tlb_random);
1217 uasm_l_leave(l, *p);
1218 rv.restore_scratch = 1;
1219 }
1220
1221 uasm_i_eret(p); /* return from trap */
1222
1223 return rv;
1224 }
1225
1226 /*
1227 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1228 * because EXL == 0. If we wrap, we can also use the 32 instruction
1229 * slots before the XTLB refill exception handler which belong to the
1230 * unused TLB refill exception.
1231 */
1232 #define MIPS64_REFILL_INSNS 32
1233
1234 static void build_r4000_tlb_refill_handler(void)
1235 {
1236 u32 *p = tlb_handler;
1237 struct uasm_label *l = labels;
1238 struct uasm_reloc *r = relocs;
1239 u32 *f;
1240 unsigned int final_len;
1241 struct mips_huge_tlb_info htlb_info __maybe_unused;
1242 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1243
1244 memset(tlb_handler, 0, sizeof(tlb_handler));
1245 memset(labels, 0, sizeof(labels));
1246 memset(relocs, 0, sizeof(relocs));
1247 memset(final_handler, 0, sizeof(final_handler));
1248
1249 if ((scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1250 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1251 scratch_reg);
1252 vmalloc_mode = refill_scratch;
1253 } else {
1254 htlb_info.huge_pte = K0;
1255 htlb_info.restore_scratch = 0;
1256 vmalloc_mode = refill_noscratch;
1257 /*
1258 * create the plain linear handler
1259 */
1260 if (bcm1250_m3_war()) {
1261 unsigned int segbits = 44;
1262
1263 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1264 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1265 uasm_i_xor(&p, K0, K0, K1);
1266 uasm_i_dsrl_safe(&p, K1, K0, 62);
1267 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1268 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1269 uasm_i_or(&p, K0, K0, K1);
1270 uasm_il_bnez(&p, &r, K0, label_leave);
1271 /* No need for uasm_i_nop */
1272 }
1273
1274 #ifdef CONFIG_64BIT
1275 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1276 #else
1277 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1278 #endif
1279
1280 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1281 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1282 #endif
1283
1284 build_get_ptep(&p, K0, K1);
1285 build_update_entries(&p, K0, K1);
1286 build_tlb_write_entry(&p, &l, &r, tlb_random);
1287 uasm_l_leave(&l, p);
1288 uasm_i_eret(&p); /* return from trap */
1289 }
1290 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1291 uasm_l_tlb_huge_update(&l, p);
1292 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1293 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1294 htlb_info.restore_scratch);
1295 #endif
1296
1297 #ifdef CONFIG_64BIT
1298 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1299 #endif
1300
1301 /*
1302 * Overflow check: For the 64bit handler, we need at least one
1303 * free instruction slot for the wrap-around branch. In worst
1304 * case, if the intended insertion point is a delay slot, we
1305 * need three, with the second nop'ed and the third being
1306 * unused.
1307 */
1308 /* Loongson2 ebase is different than r4k, we have more space */
1309 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1310 if ((p - tlb_handler) > 64)
1311 panic("TLB refill handler space exceeded");
1312 #else
1313 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1314 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1315 && uasm_insn_has_bdelay(relocs,
1316 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1317 panic("TLB refill handler space exceeded");
1318 #endif
1319
1320 /*
1321 * Now fold the handler in the TLB refill handler space.
1322 */
1323 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1324 f = final_handler;
1325 /* Simplest case, just copy the handler. */
1326 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1327 final_len = p - tlb_handler;
1328 #else /* CONFIG_64BIT */
1329 f = final_handler + MIPS64_REFILL_INSNS;
1330 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1331 /* Just copy the handler. */
1332 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1333 final_len = p - tlb_handler;
1334 } else {
1335 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1336 const enum label_id ls = label_tlb_huge_update;
1337 #else
1338 const enum label_id ls = label_vmalloc;
1339 #endif
1340 u32 *split;
1341 int ov = 0;
1342 int i;
1343
1344 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1345 ;
1346 BUG_ON(i == ARRAY_SIZE(labels));
1347 split = labels[i].addr;
1348
1349 /*
1350 * See if we have overflown one way or the other.
1351 */
1352 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1353 split < p - MIPS64_REFILL_INSNS)
1354 ov = 1;
1355
1356 if (ov) {
1357 /*
1358 * Split two instructions before the end. One
1359 * for the branch and one for the instruction
1360 * in the delay slot.
1361 */
1362 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1363
1364 /*
1365 * If the branch would fall in a delay slot,
1366 * we must back up an additional instruction
1367 * so that it is no longer in a delay slot.
1368 */
1369 if (uasm_insn_has_bdelay(relocs, split - 1))
1370 split--;
1371 }
1372 /* Copy first part of the handler. */
1373 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1374 f += split - tlb_handler;
1375
1376 if (ov) {
1377 /* Insert branch. */
1378 uasm_l_split(&l, final_handler);
1379 uasm_il_b(&f, &r, label_split);
1380 if (uasm_insn_has_bdelay(relocs, split))
1381 uasm_i_nop(&f);
1382 else {
1383 uasm_copy_handler(relocs, labels,
1384 split, split + 1, f);
1385 uasm_move_labels(labels, f, f + 1, -1);
1386 f++;
1387 split++;
1388 }
1389 }
1390
1391 /* Copy the rest of the handler. */
1392 uasm_copy_handler(relocs, labels, split, p, final_handler);
1393 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1394 (p - split);
1395 }
1396 #endif /* CONFIG_64BIT */
1397
1398 uasm_resolve_relocs(relocs, labels);
1399 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1400 final_len);
1401
1402 memcpy((void *)ebase, final_handler, 0x100);
1403
1404 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1405 }
1406
1407 extern u32 handle_tlbl[], handle_tlbl_end[];
1408 extern u32 handle_tlbs[], handle_tlbs_end[];
1409 extern u32 handle_tlbm[], handle_tlbm_end[];
1410
1411 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1412 extern u32 tlbmiss_handler_setup_pgd[], tlbmiss_handler_setup_pgd_end[];
1413
1414 static void build_r4000_setup_pgd(void)
1415 {
1416 const int a0 = 4;
1417 const int a1 = 5;
1418 u32 *p = tlbmiss_handler_setup_pgd;
1419 const int tlbmiss_handler_setup_pgd_size =
1420 tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd;
1421 struct uasm_label *l = labels;
1422 struct uasm_reloc *r = relocs;
1423
1424 memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1425 sizeof(tlbmiss_handler_setup_pgd[0]));
1426 memset(labels, 0, sizeof(labels));
1427 memset(relocs, 0, sizeof(relocs));
1428
1429 pgd_reg = allocate_kscratch();
1430
1431 if (pgd_reg == -1) {
1432 /* PGD << 11 in c0_Context */
1433 /*
1434 * If it is a ckseg0 address, convert to a physical
1435 * address. Shifting right by 29 and adding 4 will
1436 * result in zero for these addresses.
1437 *
1438 */
1439 UASM_i_SRA(&p, a1, a0, 29);
1440 UASM_i_ADDIU(&p, a1, a1, 4);
1441 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1442 uasm_i_nop(&p);
1443 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1444 uasm_l_tlbl_goaround1(&l, p);
1445 UASM_i_SLL(&p, a0, a0, 11);
1446 uasm_i_jr(&p, 31);
1447 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1448 } else {
1449 /* PGD in c0_KScratch */
1450 uasm_i_jr(&p, 31);
1451 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1452 }
1453 if (p >= tlbmiss_handler_setup_pgd_end)
1454 panic("tlbmiss_handler_setup_pgd space exceeded");
1455
1456 uasm_resolve_relocs(relocs, labels);
1457 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1458 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1459
1460 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1461 tlbmiss_handler_setup_pgd_size);
1462 }
1463 #endif
1464
1465 static void
1466 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1467 {
1468 #ifdef CONFIG_SMP
1469 # ifdef CONFIG_64BIT_PHYS_ADDR
1470 if (cpu_has_64bits)
1471 uasm_i_lld(p, pte, 0, ptr);
1472 else
1473 # endif
1474 UASM_i_LL(p, pte, 0, ptr);
1475 #else
1476 # ifdef CONFIG_64BIT_PHYS_ADDR
1477 if (cpu_has_64bits)
1478 uasm_i_ld(p, pte, 0, ptr);
1479 else
1480 # endif
1481 UASM_i_LW(p, pte, 0, ptr);
1482 #endif
1483 }
1484
1485 static void
1486 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1487 unsigned int mode)
1488 {
1489 #ifdef CONFIG_64BIT_PHYS_ADDR
1490 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1491 #endif
1492
1493 uasm_i_ori(p, pte, pte, mode);
1494 #ifdef CONFIG_SMP
1495 # ifdef CONFIG_64BIT_PHYS_ADDR
1496 if (cpu_has_64bits)
1497 uasm_i_scd(p, pte, 0, ptr);
1498 else
1499 # endif
1500 UASM_i_SC(p, pte, 0, ptr);
1501
1502 if (r10000_llsc_war())
1503 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1504 else
1505 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1506
1507 # ifdef CONFIG_64BIT_PHYS_ADDR
1508 if (!cpu_has_64bits) {
1509 /* no uasm_i_nop needed */
1510 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1511 uasm_i_ori(p, pte, pte, hwmode);
1512 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1513 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1514 /* no uasm_i_nop needed */
1515 uasm_i_lw(p, pte, 0, ptr);
1516 } else
1517 uasm_i_nop(p);
1518 # else
1519 uasm_i_nop(p);
1520 # endif
1521 #else
1522 # ifdef CONFIG_64BIT_PHYS_ADDR
1523 if (cpu_has_64bits)
1524 uasm_i_sd(p, pte, 0, ptr);
1525 else
1526 # endif
1527 UASM_i_SW(p, pte, 0, ptr);
1528
1529 # ifdef CONFIG_64BIT_PHYS_ADDR
1530 if (!cpu_has_64bits) {
1531 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1532 uasm_i_ori(p, pte, pte, hwmode);
1533 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1534 uasm_i_lw(p, pte, 0, ptr);
1535 }
1536 # endif
1537 #endif
1538 }
1539
1540 /*
1541 * Check if PTE is present, if not then jump to LABEL. PTR points to
1542 * the page table where this PTE is located, PTE will be re-loaded
1543 * with it's original value.
1544 */
1545 static void
1546 build_pte_present(u32 **p, struct uasm_reloc **r,
1547 int pte, int ptr, int scratch, enum label_id lid)
1548 {
1549 int t = scratch >= 0 ? scratch : pte;
1550
1551 if (cpu_has_rixi) {
1552 if (use_bbit_insns()) {
1553 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1554 uasm_i_nop(p);
1555 } else {
1556 uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1557 uasm_il_beqz(p, r, t, lid);
1558 if (pte == t)
1559 /* You lose the SMP race :-(*/
1560 iPTE_LW(p, pte, ptr);
1561 }
1562 } else {
1563 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1564 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1565 uasm_il_bnez(p, r, t, lid);
1566 if (pte == t)
1567 /* You lose the SMP race :-(*/
1568 iPTE_LW(p, pte, ptr);
1569 }
1570 }
1571
1572 /* Make PTE valid, store result in PTR. */
1573 static void
1574 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1575 unsigned int ptr)
1576 {
1577 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1578
1579 iPTE_SW(p, r, pte, ptr, mode);
1580 }
1581
1582 /*
1583 * Check if PTE can be written to, if not branch to LABEL. Regardless
1584 * restore PTE with value from PTR when done.
1585 */
1586 static void
1587 build_pte_writable(u32 **p, struct uasm_reloc **r,
1588 unsigned int pte, unsigned int ptr, int scratch,
1589 enum label_id lid)
1590 {
1591 int t = scratch >= 0 ? scratch : pte;
1592
1593 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1594 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1595 uasm_il_bnez(p, r, t, lid);
1596 if (pte == t)
1597 /* You lose the SMP race :-(*/
1598 iPTE_LW(p, pte, ptr);
1599 else
1600 uasm_i_nop(p);
1601 }
1602
1603 /* Make PTE writable, update software status bits as well, then store
1604 * at PTR.
1605 */
1606 static void
1607 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1608 unsigned int ptr)
1609 {
1610 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1611 | _PAGE_DIRTY);
1612
1613 iPTE_SW(p, r, pte, ptr, mode);
1614 }
1615
1616 /*
1617 * Check if PTE can be modified, if not branch to LABEL. Regardless
1618 * restore PTE with value from PTR when done.
1619 */
1620 static void
1621 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1622 unsigned int pte, unsigned int ptr, int scratch,
1623 enum label_id lid)
1624 {
1625 if (use_bbit_insns()) {
1626 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1627 uasm_i_nop(p);
1628 } else {
1629 int t = scratch >= 0 ? scratch : pte;
1630 uasm_i_andi(p, t, pte, _PAGE_WRITE);
1631 uasm_il_beqz(p, r, t, lid);
1632 if (pte == t)
1633 /* You lose the SMP race :-(*/
1634 iPTE_LW(p, pte, ptr);
1635 }
1636 }
1637
1638 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1639
1640
1641 /*
1642 * R3000 style TLB load/store/modify handlers.
1643 */
1644
1645 /*
1646 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1647 * Then it returns.
1648 */
1649 static void
1650 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1651 {
1652 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1653 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1654 uasm_i_tlbwi(p);
1655 uasm_i_jr(p, tmp);
1656 uasm_i_rfe(p); /* branch delay */
1657 }
1658
1659 /*
1660 * This places the pte into ENTRYLO0 and writes it with tlbwi
1661 * or tlbwr as appropriate. This is because the index register
1662 * may have the probe fail bit set as a result of a trap on a
1663 * kseg2 access, i.e. without refill. Then it returns.
1664 */
1665 static void
1666 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1667 struct uasm_reloc **r, unsigned int pte,
1668 unsigned int tmp)
1669 {
1670 uasm_i_mfc0(p, tmp, C0_INDEX);
1671 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1672 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1673 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1674 uasm_i_tlbwi(p); /* cp0 delay */
1675 uasm_i_jr(p, tmp);
1676 uasm_i_rfe(p); /* branch delay */
1677 uasm_l_r3000_write_probe_fail(l, *p);
1678 uasm_i_tlbwr(p); /* cp0 delay */
1679 uasm_i_jr(p, tmp);
1680 uasm_i_rfe(p); /* branch delay */
1681 }
1682
1683 static void
1684 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1685 unsigned int ptr)
1686 {
1687 long pgdc = (long)pgd_current;
1688
1689 uasm_i_mfc0(p, pte, C0_BADVADDR);
1690 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1691 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1692 uasm_i_srl(p, pte, pte, 22); /* load delay */
1693 uasm_i_sll(p, pte, pte, 2);
1694 uasm_i_addu(p, ptr, ptr, pte);
1695 uasm_i_mfc0(p, pte, C0_CONTEXT);
1696 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1697 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1698 uasm_i_addu(p, ptr, ptr, pte);
1699 uasm_i_lw(p, pte, 0, ptr);
1700 uasm_i_tlbp(p); /* load delay */
1701 }
1702
1703 static void build_r3000_tlb_load_handler(void)
1704 {
1705 u32 *p = handle_tlbl;
1706 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1707 struct uasm_label *l = labels;
1708 struct uasm_reloc *r = relocs;
1709
1710 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1711 memset(labels, 0, sizeof(labels));
1712 memset(relocs, 0, sizeof(relocs));
1713
1714 build_r3000_tlbchange_handler_head(&p, K0, K1);
1715 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1716 uasm_i_nop(&p); /* load delay */
1717 build_make_valid(&p, &r, K0, K1);
1718 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1719
1720 uasm_l_nopage_tlbl(&l, p);
1721 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1722 uasm_i_nop(&p);
1723
1724 if (p >= handle_tlbl_end)
1725 panic("TLB load handler fastpath space exceeded");
1726
1727 uasm_resolve_relocs(relocs, labels);
1728 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1729 (unsigned int)(p - handle_tlbl));
1730
1731 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1732 }
1733
1734 static void build_r3000_tlb_store_handler(void)
1735 {
1736 u32 *p = handle_tlbs;
1737 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1738 struct uasm_label *l = labels;
1739 struct uasm_reloc *r = relocs;
1740
1741 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1742 memset(labels, 0, sizeof(labels));
1743 memset(relocs, 0, sizeof(relocs));
1744
1745 build_r3000_tlbchange_handler_head(&p, K0, K1);
1746 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1747 uasm_i_nop(&p); /* load delay */
1748 build_make_write(&p, &r, K0, K1);
1749 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1750
1751 uasm_l_nopage_tlbs(&l, p);
1752 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1753 uasm_i_nop(&p);
1754
1755 if (p >= handle_tlbs_end)
1756 panic("TLB store handler fastpath space exceeded");
1757
1758 uasm_resolve_relocs(relocs, labels);
1759 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1760 (unsigned int)(p - handle_tlbs));
1761
1762 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1763 }
1764
1765 static void build_r3000_tlb_modify_handler(void)
1766 {
1767 u32 *p = handle_tlbm;
1768 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1769 struct uasm_label *l = labels;
1770 struct uasm_reloc *r = relocs;
1771
1772 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1773 memset(labels, 0, sizeof(labels));
1774 memset(relocs, 0, sizeof(relocs));
1775
1776 build_r3000_tlbchange_handler_head(&p, K0, K1);
1777 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1778 uasm_i_nop(&p); /* load delay */
1779 build_make_write(&p, &r, K0, K1);
1780 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1781
1782 uasm_l_nopage_tlbm(&l, p);
1783 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1784 uasm_i_nop(&p);
1785
1786 if (p >= handle_tlbm_end)
1787 panic("TLB modify handler fastpath space exceeded");
1788
1789 uasm_resolve_relocs(relocs, labels);
1790 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1791 (unsigned int)(p - handle_tlbm));
1792
1793 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1794 }
1795 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1796
1797 /*
1798 * R4000 style TLB load/store/modify handlers.
1799 */
1800 static struct work_registers
1801 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1802 struct uasm_reloc **r)
1803 {
1804 struct work_registers wr = build_get_work_registers(p);
1805
1806 #ifdef CONFIG_64BIT
1807 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1808 #else
1809 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1810 #endif
1811
1812 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1813 /*
1814 * For huge tlb entries, pmd doesn't contain an address but
1815 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1816 * see if we need to jump to huge tlb processing.
1817 */
1818 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1819 #endif
1820
1821 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1822 UASM_i_LW(p, wr.r2, 0, wr.r2);
1823 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1824 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1825 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1826
1827 #ifdef CONFIG_SMP
1828 uasm_l_smp_pgtable_change(l, *p);
1829 #endif
1830 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1831 if (!m4kc_tlbp_war())
1832 build_tlb_probe_entry(p);
1833 return wr;
1834 }
1835
1836 static void
1837 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1838 struct uasm_reloc **r, unsigned int tmp,
1839 unsigned int ptr)
1840 {
1841 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1842 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1843 build_update_entries(p, tmp, ptr);
1844 build_tlb_write_entry(p, l, r, tlb_indexed);
1845 uasm_l_leave(l, *p);
1846 build_restore_work_registers(p);
1847 uasm_i_eret(p); /* return from trap */
1848
1849 #ifdef CONFIG_64BIT
1850 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1851 #endif
1852 }
1853
1854 static void build_r4000_tlb_load_handler(void)
1855 {
1856 u32 *p = handle_tlbl;
1857 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1858 struct uasm_label *l = labels;
1859 struct uasm_reloc *r = relocs;
1860 struct work_registers wr;
1861
1862 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1863 memset(labels, 0, sizeof(labels));
1864 memset(relocs, 0, sizeof(relocs));
1865
1866 if (bcm1250_m3_war()) {
1867 unsigned int segbits = 44;
1868
1869 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1870 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1871 uasm_i_xor(&p, K0, K0, K1);
1872 uasm_i_dsrl_safe(&p, K1, K0, 62);
1873 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1874 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1875 uasm_i_or(&p, K0, K0, K1);
1876 uasm_il_bnez(&p, &r, K0, label_leave);
1877 /* No need for uasm_i_nop */
1878 }
1879
1880 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1881 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1882 if (m4kc_tlbp_war())
1883 build_tlb_probe_entry(&p);
1884
1885 if (cpu_has_rixi) {
1886 /*
1887 * If the page is not _PAGE_VALID, RI or XI could not
1888 * have triggered it. Skip the expensive test..
1889 */
1890 if (use_bbit_insns()) {
1891 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1892 label_tlbl_goaround1);
1893 } else {
1894 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1895 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1896 }
1897 uasm_i_nop(&p);
1898
1899 uasm_i_tlbr(&p);
1900
1901 switch (current_cpu_type()) {
1902 default:
1903 if (cpu_has_mips_r2) {
1904 uasm_i_ehb(&p);
1905
1906 case CPU_CAVIUM_OCTEON:
1907 case CPU_CAVIUM_OCTEON_PLUS:
1908 case CPU_CAVIUM_OCTEON2:
1909 break;
1910 }
1911 }
1912
1913 /* Examine entrylo 0 or 1 based on ptr. */
1914 if (use_bbit_insns()) {
1915 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1916 } else {
1917 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1918 uasm_i_beqz(&p, wr.r3, 8);
1919 }
1920 /* load it in the delay slot*/
1921 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1922 /* load it if ptr is odd */
1923 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1924 /*
1925 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1926 * XI must have triggered it.
1927 */
1928 if (use_bbit_insns()) {
1929 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1930 uasm_i_nop(&p);
1931 uasm_l_tlbl_goaround1(&l, p);
1932 } else {
1933 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1934 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1935 uasm_i_nop(&p);
1936 }
1937 uasm_l_tlbl_goaround1(&l, p);
1938 }
1939 build_make_valid(&p, &r, wr.r1, wr.r2);
1940 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1941
1942 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1943 /*
1944 * This is the entry point when build_r4000_tlbchange_handler_head
1945 * spots a huge page.
1946 */
1947 uasm_l_tlb_huge_update(&l, p);
1948 iPTE_LW(&p, wr.r1, wr.r2);
1949 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1950 build_tlb_probe_entry(&p);
1951
1952 if (cpu_has_rixi) {
1953 /*
1954 * If the page is not _PAGE_VALID, RI or XI could not
1955 * have triggered it. Skip the expensive test..
1956 */
1957 if (use_bbit_insns()) {
1958 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1959 label_tlbl_goaround2);
1960 } else {
1961 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1962 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1963 }
1964 uasm_i_nop(&p);
1965
1966 uasm_i_tlbr(&p);
1967
1968 switch (current_cpu_type()) {
1969 default:
1970 if (cpu_has_mips_r2) {
1971 uasm_i_ehb(&p);
1972
1973 case CPU_CAVIUM_OCTEON:
1974 case CPU_CAVIUM_OCTEON_PLUS:
1975 case CPU_CAVIUM_OCTEON2:
1976 break;
1977 }
1978 }
1979
1980 /* Examine entrylo 0 or 1 based on ptr. */
1981 if (use_bbit_insns()) {
1982 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1983 } else {
1984 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1985 uasm_i_beqz(&p, wr.r3, 8);
1986 }
1987 /* load it in the delay slot*/
1988 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1989 /* load it if ptr is odd */
1990 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1991 /*
1992 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1993 * XI must have triggered it.
1994 */
1995 if (use_bbit_insns()) {
1996 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
1997 } else {
1998 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1999 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2000 }
2001 if (PM_DEFAULT_MASK == 0)
2002 uasm_i_nop(&p);
2003 /*
2004 * We clobbered C0_PAGEMASK, restore it. On the other branch
2005 * it is restored in build_huge_tlb_write_entry.
2006 */
2007 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2008
2009 uasm_l_tlbl_goaround2(&l, p);
2010 }
2011 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2012 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2013 #endif
2014
2015 uasm_l_nopage_tlbl(&l, p);
2016 build_restore_work_registers(&p);
2017 #ifdef CONFIG_CPU_MICROMIPS
2018 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2019 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2020 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2021 uasm_i_jr(&p, K0);
2022 } else
2023 #endif
2024 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2025 uasm_i_nop(&p);
2026
2027 if (p >= handle_tlbl_end)
2028 panic("TLB load handler fastpath space exceeded");
2029
2030 uasm_resolve_relocs(relocs, labels);
2031 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2032 (unsigned int)(p - handle_tlbl));
2033
2034 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2035 }
2036
2037 static void build_r4000_tlb_store_handler(void)
2038 {
2039 u32 *p = handle_tlbs;
2040 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2041 struct uasm_label *l = labels;
2042 struct uasm_reloc *r = relocs;
2043 struct work_registers wr;
2044
2045 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2046 memset(labels, 0, sizeof(labels));
2047 memset(relocs, 0, sizeof(relocs));
2048
2049 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2050 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2051 if (m4kc_tlbp_war())
2052 build_tlb_probe_entry(&p);
2053 build_make_write(&p, &r, wr.r1, wr.r2);
2054 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2055
2056 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2057 /*
2058 * This is the entry point when
2059 * build_r4000_tlbchange_handler_head spots a huge page.
2060 */
2061 uasm_l_tlb_huge_update(&l, p);
2062 iPTE_LW(&p, wr.r1, wr.r2);
2063 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2064 build_tlb_probe_entry(&p);
2065 uasm_i_ori(&p, wr.r1, wr.r1,
2066 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2067 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2068 #endif
2069
2070 uasm_l_nopage_tlbs(&l, p);
2071 build_restore_work_registers(&p);
2072 #ifdef CONFIG_CPU_MICROMIPS
2073 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2074 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2075 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2076 uasm_i_jr(&p, K0);
2077 } else
2078 #endif
2079 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2080 uasm_i_nop(&p);
2081
2082 if (p >= handle_tlbs_end)
2083 panic("TLB store handler fastpath space exceeded");
2084
2085 uasm_resolve_relocs(relocs, labels);
2086 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2087 (unsigned int)(p - handle_tlbs));
2088
2089 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2090 }
2091
2092 static void build_r4000_tlb_modify_handler(void)
2093 {
2094 u32 *p = handle_tlbm;
2095 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2096 struct uasm_label *l = labels;
2097 struct uasm_reloc *r = relocs;
2098 struct work_registers wr;
2099
2100 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2101 memset(labels, 0, sizeof(labels));
2102 memset(relocs, 0, sizeof(relocs));
2103
2104 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2105 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2106 if (m4kc_tlbp_war())
2107 build_tlb_probe_entry(&p);
2108 /* Present and writable bits set, set accessed and dirty bits. */
2109 build_make_write(&p, &r, wr.r1, wr.r2);
2110 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2111
2112 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2113 /*
2114 * This is the entry point when
2115 * build_r4000_tlbchange_handler_head spots a huge page.
2116 */
2117 uasm_l_tlb_huge_update(&l, p);
2118 iPTE_LW(&p, wr.r1, wr.r2);
2119 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2120 build_tlb_probe_entry(&p);
2121 uasm_i_ori(&p, wr.r1, wr.r1,
2122 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2123 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2124 #endif
2125
2126 uasm_l_nopage_tlbm(&l, p);
2127 build_restore_work_registers(&p);
2128 #ifdef CONFIG_CPU_MICROMIPS
2129 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2130 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2131 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2132 uasm_i_jr(&p, K0);
2133 } else
2134 #endif
2135 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2136 uasm_i_nop(&p);
2137
2138 if (p >= handle_tlbm_end)
2139 panic("TLB modify handler fastpath space exceeded");
2140
2141 uasm_resolve_relocs(relocs, labels);
2142 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2143 (unsigned int)(p - handle_tlbm));
2144
2145 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2146 }
2147
2148 static void flush_tlb_handlers(void)
2149 {
2150 local_flush_icache_range((unsigned long)handle_tlbl,
2151 (unsigned long)handle_tlbl_end);
2152 local_flush_icache_range((unsigned long)handle_tlbs,
2153 (unsigned long)handle_tlbs_end);
2154 local_flush_icache_range((unsigned long)handle_tlbm,
2155 (unsigned long)handle_tlbm_end);
2156 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2157 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2158 (unsigned long)tlbmiss_handler_setup_pgd_end);
2159 #endif
2160 }
2161
2162 void build_tlb_refill_handler(void)
2163 {
2164 /*
2165 * The refill handler is generated per-CPU, multi-node systems
2166 * may have local storage for it. The other handlers are only
2167 * needed once.
2168 */
2169 static int run_once = 0;
2170
2171 output_pgtable_bits_defines();
2172
2173 #ifdef CONFIG_64BIT
2174 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2175 #endif
2176
2177 switch (current_cpu_type()) {
2178 case CPU_R2000:
2179 case CPU_R3000:
2180 case CPU_R3000A:
2181 case CPU_R3081E:
2182 case CPU_TX3912:
2183 case CPU_TX3922:
2184 case CPU_TX3927:
2185 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2186 if (cpu_has_local_ebase)
2187 build_r3000_tlb_refill_handler();
2188 if (!run_once) {
2189 if (!cpu_has_local_ebase)
2190 build_r3000_tlb_refill_handler();
2191 build_r3000_tlb_load_handler();
2192 build_r3000_tlb_store_handler();
2193 build_r3000_tlb_modify_handler();
2194 flush_tlb_handlers();
2195 run_once++;
2196 }
2197 #else
2198 panic("No R3000 TLB refill handler");
2199 #endif
2200 break;
2201
2202 case CPU_R6000:
2203 case CPU_R6000A:
2204 panic("No R6000 TLB refill handler yet");
2205 break;
2206
2207 case CPU_R8000:
2208 panic("No R8000 TLB refill handler yet");
2209 break;
2210
2211 default:
2212 if (!run_once) {
2213 scratch_reg = allocate_kscratch();
2214 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2215 build_r4000_setup_pgd();
2216 #endif
2217 build_r4000_tlb_load_handler();
2218 build_r4000_tlb_store_handler();
2219 build_r4000_tlb_modify_handler();
2220 if (!cpu_has_local_ebase)
2221 build_r4000_tlb_refill_handler();
2222 flush_tlb_handlers();
2223 run_once++;
2224 }
2225 if (cpu_has_local_ebase)
2226 build_r4000_tlb_refill_handler();
2227 }
2228 }