]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/mm/tlbex.c
MIPS: mm: Use scratch for PGD when !CONFIG_MIPS_PGD_C0_CONTEXT
[mirror_ubuntu-artful-kernel.git] / arch / mips / mm / tlbex.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/init.h>
30 #include <linux/cache.h>
31
32 #include <asm/cacheflush.h>
33 #include <asm/cpu-type.h>
34 #include <asm/pgtable.h>
35 #include <asm/war.h>
36 #include <asm/uasm.h>
37 #include <asm/setup.h>
38
39 /*
40 * TLB load/store/modify handlers.
41 *
42 * Only the fastpath gets synthesized at runtime, the slowpath for
43 * do_page_fault remains normal asm.
44 */
45 extern void tlb_do_page_fault_0(void);
46 extern void tlb_do_page_fault_1(void);
47
48 struct work_registers {
49 int r1;
50 int r2;
51 int r3;
52 };
53
54 struct tlb_reg_save {
55 unsigned long a;
56 unsigned long b;
57 } ____cacheline_aligned_in_smp;
58
59 static struct tlb_reg_save handler_reg_save[NR_CPUS];
60
61 static inline int r45k_bvahwbug(void)
62 {
63 /* XXX: We should probe for the presence of this bug, but we don't. */
64 return 0;
65 }
66
67 static inline int r4k_250MHZhwbug(void)
68 {
69 /* XXX: We should probe for the presence of this bug, but we don't. */
70 return 0;
71 }
72
73 static inline int __maybe_unused bcm1250_m3_war(void)
74 {
75 return BCM1250_M3_WAR;
76 }
77
78 static inline int __maybe_unused r10000_llsc_war(void)
79 {
80 return R10000_LLSC_WAR;
81 }
82
83 static int use_bbit_insns(void)
84 {
85 switch (current_cpu_type()) {
86 case CPU_CAVIUM_OCTEON:
87 case CPU_CAVIUM_OCTEON_PLUS:
88 case CPU_CAVIUM_OCTEON2:
89 case CPU_CAVIUM_OCTEON3:
90 return 1;
91 default:
92 return 0;
93 }
94 }
95
96 static int use_lwx_insns(void)
97 {
98 switch (current_cpu_type()) {
99 case CPU_CAVIUM_OCTEON2:
100 case CPU_CAVIUM_OCTEON3:
101 return 1;
102 default:
103 return 0;
104 }
105 }
106 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
107 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
108 static bool scratchpad_available(void)
109 {
110 return true;
111 }
112 static int scratchpad_offset(int i)
113 {
114 /*
115 * CVMSEG starts at address -32768 and extends for
116 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
117 */
118 i += 1; /* Kernel use starts at the top and works down. */
119 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
120 }
121 #else
122 static bool scratchpad_available(void)
123 {
124 return false;
125 }
126 static int scratchpad_offset(int i)
127 {
128 BUG();
129 /* Really unreachable, but evidently some GCC want this. */
130 return 0;
131 }
132 #endif
133 /*
134 * Found by experiment: At least some revisions of the 4kc throw under
135 * some circumstances a machine check exception, triggered by invalid
136 * values in the index register. Delaying the tlbp instruction until
137 * after the next branch, plus adding an additional nop in front of
138 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
139 * why; it's not an issue caused by the core RTL.
140 *
141 */
142 static int m4kc_tlbp_war(void)
143 {
144 return (current_cpu_data.processor_id & 0xffff00) ==
145 (PRID_COMP_MIPS | PRID_IMP_4KC);
146 }
147
148 /* Handle labels (which must be positive integers). */
149 enum label_id {
150 label_second_part = 1,
151 label_leave,
152 label_vmalloc,
153 label_vmalloc_done,
154 label_tlbw_hazard_0,
155 label_split = label_tlbw_hazard_0 + 8,
156 label_tlbl_goaround1,
157 label_tlbl_goaround2,
158 label_nopage_tlbl,
159 label_nopage_tlbs,
160 label_nopage_tlbm,
161 label_smp_pgtable_change,
162 label_r3000_write_probe_fail,
163 label_large_segbits_fault,
164 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
165 label_tlb_huge_update,
166 #endif
167 };
168
169 UASM_L_LA(_second_part)
170 UASM_L_LA(_leave)
171 UASM_L_LA(_vmalloc)
172 UASM_L_LA(_vmalloc_done)
173 /* _tlbw_hazard_x is handled differently. */
174 UASM_L_LA(_split)
175 UASM_L_LA(_tlbl_goaround1)
176 UASM_L_LA(_tlbl_goaround2)
177 UASM_L_LA(_nopage_tlbl)
178 UASM_L_LA(_nopage_tlbs)
179 UASM_L_LA(_nopage_tlbm)
180 UASM_L_LA(_smp_pgtable_change)
181 UASM_L_LA(_r3000_write_probe_fail)
182 UASM_L_LA(_large_segbits_fault)
183 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
184 UASM_L_LA(_tlb_huge_update)
185 #endif
186
187 static int hazard_instance;
188
189 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
190 {
191 switch (instance) {
192 case 0 ... 7:
193 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
194 return;
195 default:
196 BUG();
197 }
198 }
199
200 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
201 {
202 switch (instance) {
203 case 0 ... 7:
204 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
205 break;
206 default:
207 BUG();
208 }
209 }
210
211 /*
212 * pgtable bits are assigned dynamically depending on processor feature
213 * and statically based on kernel configuration. This spits out the actual
214 * values the kernel is using. Required to make sense from disassembled
215 * TLB exception handlers.
216 */
217 static void output_pgtable_bits_defines(void)
218 {
219 #define pr_define(fmt, ...) \
220 pr_debug("#define " fmt, ##__VA_ARGS__)
221
222 pr_debug("#include <asm/asm.h>\n");
223 pr_debug("#include <asm/regdef.h>\n");
224 pr_debug("\n");
225
226 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
227 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
228 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
229 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
230 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
231 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
232 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
233 pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
234 #endif
235 if (cpu_has_rixi) {
236 #ifdef _PAGE_NO_EXEC_SHIFT
237 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
238 #endif
239 #ifdef _PAGE_NO_READ_SHIFT
240 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
241 #endif
242 }
243 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
244 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
245 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
246 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
247 pr_debug("\n");
248 }
249
250 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
251 {
252 int i;
253
254 pr_debug("LEAF(%s)\n", symbol);
255
256 pr_debug("\t.set push\n");
257 pr_debug("\t.set noreorder\n");
258
259 for (i = 0; i < count; i++)
260 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
261
262 pr_debug("\t.set\tpop\n");
263
264 pr_debug("\tEND(%s)\n", symbol);
265 }
266
267 /* The only general purpose registers allowed in TLB handlers. */
268 #define K0 26
269 #define K1 27
270
271 /* Some CP0 registers */
272 #define C0_INDEX 0, 0
273 #define C0_ENTRYLO0 2, 0
274 #define C0_TCBIND 2, 2
275 #define C0_ENTRYLO1 3, 0
276 #define C0_CONTEXT 4, 0
277 #define C0_PAGEMASK 5, 0
278 #define C0_BADVADDR 8, 0
279 #define C0_ENTRYHI 10, 0
280 #define C0_EPC 14, 0
281 #define C0_XCONTEXT 20, 0
282
283 #ifdef CONFIG_64BIT
284 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
285 #else
286 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
287 #endif
288
289 /* The worst case length of the handler is around 18 instructions for
290 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
291 * Maximum space available is 32 instructions for R3000 and 64
292 * instructions for R4000.
293 *
294 * We deliberately chose a buffer size of 128, so we won't scribble
295 * over anything important on overflow before we panic.
296 */
297 static u32 tlb_handler[128];
298
299 /* simply assume worst case size for labels and relocs */
300 static struct uasm_label labels[128];
301 static struct uasm_reloc relocs[128];
302
303 static int check_for_high_segbits;
304
305 static unsigned int kscratch_used_mask;
306
307 static inline int __maybe_unused c0_kscratch(void)
308 {
309 switch (current_cpu_type()) {
310 case CPU_XLP:
311 case CPU_XLR:
312 return 22;
313 default:
314 return 31;
315 }
316 }
317
318 static int allocate_kscratch(void)
319 {
320 int r;
321 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
322
323 r = ffs(a);
324
325 if (r == 0)
326 return -1;
327
328 r--; /* make it zero based */
329
330 kscratch_used_mask |= (1 << r);
331
332 return r;
333 }
334
335 static int scratch_reg;
336 static int pgd_reg;
337 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
338
339 static struct work_registers build_get_work_registers(u32 **p)
340 {
341 struct work_registers r;
342
343 if (scratch_reg >= 0) {
344 /* Save in CPU local C0_KScratch? */
345 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
346 r.r1 = K0;
347 r.r2 = K1;
348 r.r3 = 1;
349 return r;
350 }
351
352 if (num_possible_cpus() > 1) {
353 /* Get smp_processor_id */
354 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
355 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
356
357 /* handler_reg_save index in K0 */
358 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
359
360 UASM_i_LA(p, K1, (long)&handler_reg_save);
361 UASM_i_ADDU(p, K0, K0, K1);
362 } else {
363 UASM_i_LA(p, K0, (long)&handler_reg_save);
364 }
365 /* K0 now points to save area, save $1 and $2 */
366 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
367 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
368
369 r.r1 = K1;
370 r.r2 = 1;
371 r.r3 = 2;
372 return r;
373 }
374
375 static void build_restore_work_registers(u32 **p)
376 {
377 if (scratch_reg >= 0) {
378 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
379 return;
380 }
381 /* K0 already points to save area, restore $1 and $2 */
382 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
383 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
384 }
385
386 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
387
388 /*
389 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
390 * we cannot do r3000 under these circumstances.
391 *
392 * Declare pgd_current here instead of including mmu_context.h to avoid type
393 * conflicts for tlbmiss_handler_setup_pgd
394 */
395 extern unsigned long pgd_current[];
396
397 /*
398 * The R3000 TLB handler is simple.
399 */
400 static void build_r3000_tlb_refill_handler(void)
401 {
402 long pgdc = (long)pgd_current;
403 u32 *p;
404
405 memset(tlb_handler, 0, sizeof(tlb_handler));
406 p = tlb_handler;
407
408 uasm_i_mfc0(&p, K0, C0_BADVADDR);
409 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
410 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
411 uasm_i_srl(&p, K0, K0, 22); /* load delay */
412 uasm_i_sll(&p, K0, K0, 2);
413 uasm_i_addu(&p, K1, K1, K0);
414 uasm_i_mfc0(&p, K0, C0_CONTEXT);
415 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
416 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
417 uasm_i_addu(&p, K1, K1, K0);
418 uasm_i_lw(&p, K0, 0, K1);
419 uasm_i_nop(&p); /* load delay */
420 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
421 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
422 uasm_i_tlbwr(&p); /* cp0 delay */
423 uasm_i_jr(&p, K1);
424 uasm_i_rfe(&p); /* branch delay */
425
426 if (p > tlb_handler + 32)
427 panic("TLB refill handler space exceeded");
428
429 pr_debug("Wrote TLB refill handler (%u instructions).\n",
430 (unsigned int)(p - tlb_handler));
431
432 memcpy((void *)ebase, tlb_handler, 0x80);
433
434 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
435 }
436 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
437
438 /*
439 * The R4000 TLB handler is much more complicated. We have two
440 * consecutive handler areas with 32 instructions space each.
441 * Since they aren't used at the same time, we can overflow in the
442 * other one.To keep things simple, we first assume linear space,
443 * then we relocate it to the final handler layout as needed.
444 */
445 static u32 final_handler[64];
446
447 /*
448 * Hazards
449 *
450 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
451 * 2. A timing hazard exists for the TLBP instruction.
452 *
453 * stalling_instruction
454 * TLBP
455 *
456 * The JTLB is being read for the TLBP throughout the stall generated by the
457 * previous instruction. This is not really correct as the stalling instruction
458 * can modify the address used to access the JTLB. The failure symptom is that
459 * the TLBP instruction will use an address created for the stalling instruction
460 * and not the address held in C0_ENHI and thus report the wrong results.
461 *
462 * The software work-around is to not allow the instruction preceding the TLBP
463 * to stall - make it an NOP or some other instruction guaranteed not to stall.
464 *
465 * Errata 2 will not be fixed. This errata is also on the R5000.
466 *
467 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
468 */
469 static void __maybe_unused build_tlb_probe_entry(u32 **p)
470 {
471 switch (current_cpu_type()) {
472 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
473 case CPU_R4600:
474 case CPU_R4700:
475 case CPU_R5000:
476 case CPU_NEVADA:
477 uasm_i_nop(p);
478 uasm_i_tlbp(p);
479 break;
480
481 default:
482 uasm_i_tlbp(p);
483 break;
484 }
485 }
486
487 /*
488 * Write random or indexed TLB entry, and care about the hazards from
489 * the preceding mtc0 and for the following eret.
490 */
491 enum tlb_write_entry { tlb_random, tlb_indexed };
492
493 static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
494 struct uasm_reloc **r,
495 enum tlb_write_entry wmode)
496 {
497 void(*tlbw)(u32 **) = NULL;
498
499 switch (wmode) {
500 case tlb_random: tlbw = uasm_i_tlbwr; break;
501 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
502 }
503
504 if (cpu_has_mips_r2) {
505 /*
506 * The architecture spec says an ehb is required here,
507 * but a number of cores do not have the hazard and
508 * using an ehb causes an expensive pipeline stall.
509 */
510 switch (current_cpu_type()) {
511 case CPU_M14KC:
512 case CPU_74K:
513 break;
514
515 default:
516 uasm_i_ehb(p);
517 break;
518 }
519 tlbw(p);
520 return;
521 }
522
523 switch (current_cpu_type()) {
524 case CPU_R4000PC:
525 case CPU_R4000SC:
526 case CPU_R4000MC:
527 case CPU_R4400PC:
528 case CPU_R4400SC:
529 case CPU_R4400MC:
530 /*
531 * This branch uses up a mtc0 hazard nop slot and saves
532 * two nops after the tlbw instruction.
533 */
534 uasm_bgezl_hazard(p, r, hazard_instance);
535 tlbw(p);
536 uasm_bgezl_label(l, p, hazard_instance);
537 hazard_instance++;
538 uasm_i_nop(p);
539 break;
540
541 case CPU_R4600:
542 case CPU_R4700:
543 uasm_i_nop(p);
544 tlbw(p);
545 uasm_i_nop(p);
546 break;
547
548 case CPU_R5000:
549 case CPU_NEVADA:
550 uasm_i_nop(p); /* QED specifies 2 nops hazard */
551 uasm_i_nop(p); /* QED specifies 2 nops hazard */
552 tlbw(p);
553 break;
554
555 case CPU_R4300:
556 case CPU_5KC:
557 case CPU_TX49XX:
558 case CPU_PR4450:
559 case CPU_XLR:
560 uasm_i_nop(p);
561 tlbw(p);
562 break;
563
564 case CPU_R10000:
565 case CPU_R12000:
566 case CPU_R14000:
567 case CPU_4KC:
568 case CPU_4KEC:
569 case CPU_M14KC:
570 case CPU_M14KEC:
571 case CPU_SB1:
572 case CPU_SB1A:
573 case CPU_4KSC:
574 case CPU_20KC:
575 case CPU_25KF:
576 case CPU_BMIPS32:
577 case CPU_BMIPS3300:
578 case CPU_BMIPS4350:
579 case CPU_BMIPS4380:
580 case CPU_BMIPS5000:
581 case CPU_LOONGSON2:
582 case CPU_R5500:
583 if (m4kc_tlbp_war())
584 uasm_i_nop(p);
585 case CPU_ALCHEMY:
586 tlbw(p);
587 break;
588
589 case CPU_RM7000:
590 uasm_i_nop(p);
591 uasm_i_nop(p);
592 uasm_i_nop(p);
593 uasm_i_nop(p);
594 tlbw(p);
595 break;
596
597 case CPU_VR4111:
598 case CPU_VR4121:
599 case CPU_VR4122:
600 case CPU_VR4181:
601 case CPU_VR4181A:
602 uasm_i_nop(p);
603 uasm_i_nop(p);
604 tlbw(p);
605 uasm_i_nop(p);
606 uasm_i_nop(p);
607 break;
608
609 case CPU_VR4131:
610 case CPU_VR4133:
611 case CPU_R5432:
612 uasm_i_nop(p);
613 uasm_i_nop(p);
614 tlbw(p);
615 break;
616
617 case CPU_JZRISC:
618 tlbw(p);
619 uasm_i_nop(p);
620 break;
621
622 default:
623 panic("No TLB refill handler yet (CPU type: %d)",
624 current_cpu_data.cputype);
625 break;
626 }
627 }
628
629 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
630 unsigned int reg)
631 {
632 if (cpu_has_rixi) {
633 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
634 } else {
635 #ifdef CONFIG_64BIT_PHYS_ADDR
636 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
637 #else
638 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
639 #endif
640 }
641 }
642
643 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
644
645 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
646 unsigned int tmp, enum label_id lid,
647 int restore_scratch)
648 {
649 if (restore_scratch) {
650 /* Reset default page size */
651 if (PM_DEFAULT_MASK >> 16) {
652 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
653 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
654 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
655 uasm_il_b(p, r, lid);
656 } else if (PM_DEFAULT_MASK) {
657 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
658 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
659 uasm_il_b(p, r, lid);
660 } else {
661 uasm_i_mtc0(p, 0, C0_PAGEMASK);
662 uasm_il_b(p, r, lid);
663 }
664 if (scratch_reg >= 0)
665 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
666 else
667 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
668 } else {
669 /* Reset default page size */
670 if (PM_DEFAULT_MASK >> 16) {
671 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
672 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
673 uasm_il_b(p, r, lid);
674 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
675 } else if (PM_DEFAULT_MASK) {
676 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
677 uasm_il_b(p, r, lid);
678 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
679 } else {
680 uasm_il_b(p, r, lid);
681 uasm_i_mtc0(p, 0, C0_PAGEMASK);
682 }
683 }
684 }
685
686 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
687 struct uasm_reloc **r,
688 unsigned int tmp,
689 enum tlb_write_entry wmode,
690 int restore_scratch)
691 {
692 /* Set huge page tlb entry size */
693 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
694 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
695 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
696
697 build_tlb_write_entry(p, l, r, wmode);
698
699 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
700 }
701
702 /*
703 * Check if Huge PTE is present, if so then jump to LABEL.
704 */
705 static void
706 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
707 unsigned int pmd, int lid)
708 {
709 UASM_i_LW(p, tmp, 0, pmd);
710 if (use_bbit_insns()) {
711 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
712 } else {
713 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
714 uasm_il_bnez(p, r, tmp, lid);
715 }
716 }
717
718 static void build_huge_update_entries(u32 **p, unsigned int pte,
719 unsigned int tmp)
720 {
721 int small_sequence;
722
723 /*
724 * A huge PTE describes an area the size of the
725 * configured huge page size. This is twice the
726 * of the large TLB entry size we intend to use.
727 * A TLB entry half the size of the configured
728 * huge page size is configured into entrylo0
729 * and entrylo1 to cover the contiguous huge PTE
730 * address space.
731 */
732 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
733
734 /* We can clobber tmp. It isn't used after this.*/
735 if (!small_sequence)
736 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
737
738 build_convert_pte_to_entrylo(p, pte);
739 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
740 /* convert to entrylo1 */
741 if (small_sequence)
742 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
743 else
744 UASM_i_ADDU(p, pte, pte, tmp);
745
746 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
747 }
748
749 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
750 struct uasm_label **l,
751 unsigned int pte,
752 unsigned int ptr)
753 {
754 #ifdef CONFIG_SMP
755 UASM_i_SC(p, pte, 0, ptr);
756 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
757 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
758 #else
759 UASM_i_SW(p, pte, 0, ptr);
760 #endif
761 build_huge_update_entries(p, pte, ptr);
762 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
763 }
764 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
765
766 #ifdef CONFIG_64BIT
767 /*
768 * TMP and PTR are scratch.
769 * TMP will be clobbered, PTR will hold the pmd entry.
770 */
771 static void
772 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
773 unsigned int tmp, unsigned int ptr)
774 {
775 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
776 long pgdc = (long)pgd_current;
777 #endif
778 /*
779 * The vmalloc handling is not in the hotpath.
780 */
781 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
782
783 if (check_for_high_segbits) {
784 /*
785 * The kernel currently implicitely assumes that the
786 * MIPS SEGBITS parameter for the processor is
787 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
788 * allocate virtual addresses outside the maximum
789 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
790 * that doesn't prevent user code from accessing the
791 * higher xuseg addresses. Here, we make sure that
792 * everything but the lower xuseg addresses goes down
793 * the module_alloc/vmalloc path.
794 */
795 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
796 uasm_il_bnez(p, r, ptr, label_vmalloc);
797 } else {
798 uasm_il_bltz(p, r, tmp, label_vmalloc);
799 }
800 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
801
802 if (pgd_reg != -1) {
803 /* pgd is in pgd_reg */
804 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
805 } else {
806 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
807 /*
808 * &pgd << 11 stored in CONTEXT [23..63].
809 */
810 UASM_i_MFC0(p, ptr, C0_CONTEXT);
811
812 /* Clear lower 23 bits of context. */
813 uasm_i_dins(p, ptr, 0, 0, 23);
814
815 /* 1 0 1 0 1 << 6 xkphys cached */
816 uasm_i_ori(p, ptr, ptr, 0x540);
817 uasm_i_drotr(p, ptr, ptr, 11);
818 #elif defined(CONFIG_SMP)
819 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
820 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
821 UASM_i_LA_mostly(p, tmp, pgdc);
822 uasm_i_daddu(p, ptr, ptr, tmp);
823 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
824 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
825 #else
826 UASM_i_LA_mostly(p, ptr, pgdc);
827 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
828 #endif
829 }
830
831 uasm_l_vmalloc_done(l, *p);
832
833 /* get pgd offset in bytes */
834 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
835
836 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
837 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
838 #ifndef __PAGETABLE_PMD_FOLDED
839 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
840 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
841 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
842 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
843 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
844 #endif
845 }
846
847 /*
848 * BVADDR is the faulting address, PTR is scratch.
849 * PTR will hold the pgd for vmalloc.
850 */
851 static void
852 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
853 unsigned int bvaddr, unsigned int ptr,
854 enum vmalloc64_mode mode)
855 {
856 long swpd = (long)swapper_pg_dir;
857 int single_insn_swpd;
858 int did_vmalloc_branch = 0;
859
860 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
861
862 uasm_l_vmalloc(l, *p);
863
864 if (mode != not_refill && check_for_high_segbits) {
865 if (single_insn_swpd) {
866 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
867 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
868 did_vmalloc_branch = 1;
869 /* fall through */
870 } else {
871 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
872 }
873 }
874 if (!did_vmalloc_branch) {
875 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
876 uasm_il_b(p, r, label_vmalloc_done);
877 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
878 } else {
879 UASM_i_LA_mostly(p, ptr, swpd);
880 uasm_il_b(p, r, label_vmalloc_done);
881 if (uasm_in_compat_space_p(swpd))
882 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
883 else
884 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
885 }
886 }
887 if (mode != not_refill && check_for_high_segbits) {
888 uasm_l_large_segbits_fault(l, *p);
889 /*
890 * We get here if we are an xsseg address, or if we are
891 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
892 *
893 * Ignoring xsseg (assume disabled so would generate
894 * (address errors?), the only remaining possibility
895 * is the upper xuseg addresses. On processors with
896 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
897 * addresses would have taken an address error. We try
898 * to mimic that here by taking a load/istream page
899 * fault.
900 */
901 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
902 uasm_i_jr(p, ptr);
903
904 if (mode == refill_scratch) {
905 if (scratch_reg >= 0)
906 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
907 else
908 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
909 } else {
910 uasm_i_nop(p);
911 }
912 }
913 }
914
915 #else /* !CONFIG_64BIT */
916
917 /*
918 * TMP and PTR are scratch.
919 * TMP will be clobbered, PTR will hold the pgd entry.
920 */
921 static void __maybe_unused
922 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
923 {
924 if (pgd_reg != -1) {
925 /* pgd is in pgd_reg */
926 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
927 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
928 } else {
929 long pgdc = (long)pgd_current;
930
931 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
932 #ifdef CONFIG_SMP
933 uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
934 UASM_i_LA_mostly(p, tmp, pgdc);
935 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
936 uasm_i_addu(p, ptr, tmp, ptr);
937 #else
938 UASM_i_LA_mostly(p, ptr, pgdc);
939 #endif
940 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
941 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
942 }
943 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
944 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
945 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
946 }
947
948 #endif /* !CONFIG_64BIT */
949
950 static void build_adjust_context(u32 **p, unsigned int ctx)
951 {
952 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
953 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
954
955 switch (current_cpu_type()) {
956 case CPU_VR41XX:
957 case CPU_VR4111:
958 case CPU_VR4121:
959 case CPU_VR4122:
960 case CPU_VR4131:
961 case CPU_VR4181:
962 case CPU_VR4181A:
963 case CPU_VR4133:
964 shift += 2;
965 break;
966
967 default:
968 break;
969 }
970
971 if (shift)
972 UASM_i_SRL(p, ctx, ctx, shift);
973 uasm_i_andi(p, ctx, ctx, mask);
974 }
975
976 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
977 {
978 /*
979 * Bug workaround for the Nevada. It seems as if under certain
980 * circumstances the move from cp0_context might produce a
981 * bogus result when the mfc0 instruction and its consumer are
982 * in a different cacheline or a load instruction, probably any
983 * memory reference, is between them.
984 */
985 switch (current_cpu_type()) {
986 case CPU_NEVADA:
987 UASM_i_LW(p, ptr, 0, ptr);
988 GET_CONTEXT(p, tmp); /* get context reg */
989 break;
990
991 default:
992 GET_CONTEXT(p, tmp); /* get context reg */
993 UASM_i_LW(p, ptr, 0, ptr);
994 break;
995 }
996
997 build_adjust_context(p, tmp);
998 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
999 }
1000
1001 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1002 {
1003 /*
1004 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1005 * Kernel is a special case. Only a few CPUs use it.
1006 */
1007 #ifdef CONFIG_64BIT_PHYS_ADDR
1008 if (cpu_has_64bits) {
1009 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1010 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1011 if (cpu_has_rixi) {
1012 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1013 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1014 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1015 } else {
1016 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1017 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1018 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1019 }
1020 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1021 } else {
1022 int pte_off_even = sizeof(pte_t) / 2;
1023 int pte_off_odd = pte_off_even + sizeof(pte_t);
1024
1025 /* The pte entries are pre-shifted */
1026 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1027 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1028 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1029 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1030 }
1031 #else
1032 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1033 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1034 if (r45k_bvahwbug())
1035 build_tlb_probe_entry(p);
1036 if (cpu_has_rixi) {
1037 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1038 if (r4k_250MHZhwbug())
1039 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1040 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1041 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1042 } else {
1043 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1044 if (r4k_250MHZhwbug())
1045 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1046 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1047 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1048 if (r45k_bvahwbug())
1049 uasm_i_mfc0(p, tmp, C0_INDEX);
1050 }
1051 if (r4k_250MHZhwbug())
1052 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1053 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1054 #endif
1055 }
1056
1057 struct mips_huge_tlb_info {
1058 int huge_pte;
1059 int restore_scratch;
1060 };
1061
1062 static struct mips_huge_tlb_info
1063 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1064 struct uasm_reloc **r, unsigned int tmp,
1065 unsigned int ptr, int c0_scratch_reg)
1066 {
1067 struct mips_huge_tlb_info rv;
1068 unsigned int even, odd;
1069 int vmalloc_branch_delay_filled = 0;
1070 const int scratch = 1; /* Our extra working register */
1071
1072 rv.huge_pte = scratch;
1073 rv.restore_scratch = 0;
1074
1075 if (check_for_high_segbits) {
1076 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1077
1078 if (pgd_reg != -1)
1079 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1080 else
1081 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1082
1083 if (c0_scratch_reg >= 0)
1084 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1085 else
1086 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1087
1088 uasm_i_dsrl_safe(p, scratch, tmp,
1089 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1090 uasm_il_bnez(p, r, scratch, label_vmalloc);
1091
1092 if (pgd_reg == -1) {
1093 vmalloc_branch_delay_filled = 1;
1094 /* Clear lower 23 bits of context. */
1095 uasm_i_dins(p, ptr, 0, 0, 23);
1096 }
1097 } else {
1098 if (pgd_reg != -1)
1099 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1100 else
1101 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1102
1103 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1104
1105 if (c0_scratch_reg >= 0)
1106 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1107 else
1108 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1109
1110 if (pgd_reg == -1)
1111 /* Clear lower 23 bits of context. */
1112 uasm_i_dins(p, ptr, 0, 0, 23);
1113
1114 uasm_il_bltz(p, r, tmp, label_vmalloc);
1115 }
1116
1117 if (pgd_reg == -1) {
1118 vmalloc_branch_delay_filled = 1;
1119 /* 1 0 1 0 1 << 6 xkphys cached */
1120 uasm_i_ori(p, ptr, ptr, 0x540);
1121 uasm_i_drotr(p, ptr, ptr, 11);
1122 }
1123
1124 #ifdef __PAGETABLE_PMD_FOLDED
1125 #define LOC_PTEP scratch
1126 #else
1127 #define LOC_PTEP ptr
1128 #endif
1129
1130 if (!vmalloc_branch_delay_filled)
1131 /* get pgd offset in bytes */
1132 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1133
1134 uasm_l_vmalloc_done(l, *p);
1135
1136 /*
1137 * tmp ptr
1138 * fall-through case = badvaddr *pgd_current
1139 * vmalloc case = badvaddr swapper_pg_dir
1140 */
1141
1142 if (vmalloc_branch_delay_filled)
1143 /* get pgd offset in bytes */
1144 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1145
1146 #ifdef __PAGETABLE_PMD_FOLDED
1147 GET_CONTEXT(p, tmp); /* get context reg */
1148 #endif
1149 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1150
1151 if (use_lwx_insns()) {
1152 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1153 } else {
1154 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1155 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1156 }
1157
1158 #ifndef __PAGETABLE_PMD_FOLDED
1159 /* get pmd offset in bytes */
1160 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1161 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1162 GET_CONTEXT(p, tmp); /* get context reg */
1163
1164 if (use_lwx_insns()) {
1165 UASM_i_LWX(p, scratch, scratch, ptr);
1166 } else {
1167 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1168 UASM_i_LW(p, scratch, 0, ptr);
1169 }
1170 #endif
1171 /* Adjust the context during the load latency. */
1172 build_adjust_context(p, tmp);
1173
1174 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1175 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1176 /*
1177 * The in the LWX case we don't want to do the load in the
1178 * delay slot. It cannot issue in the same cycle and may be
1179 * speculative and unneeded.
1180 */
1181 if (use_lwx_insns())
1182 uasm_i_nop(p);
1183 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1184
1185
1186 /* build_update_entries */
1187 if (use_lwx_insns()) {
1188 even = ptr;
1189 odd = tmp;
1190 UASM_i_LWX(p, even, scratch, tmp);
1191 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1192 UASM_i_LWX(p, odd, scratch, tmp);
1193 } else {
1194 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1195 even = tmp;
1196 odd = ptr;
1197 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1198 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1199 }
1200 if (cpu_has_rixi) {
1201 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1202 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1203 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1204 } else {
1205 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1206 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1207 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1208 }
1209 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1210
1211 if (c0_scratch_reg >= 0) {
1212 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1213 build_tlb_write_entry(p, l, r, tlb_random);
1214 uasm_l_leave(l, *p);
1215 rv.restore_scratch = 1;
1216 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1217 build_tlb_write_entry(p, l, r, tlb_random);
1218 uasm_l_leave(l, *p);
1219 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1220 } else {
1221 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1222 build_tlb_write_entry(p, l, r, tlb_random);
1223 uasm_l_leave(l, *p);
1224 rv.restore_scratch = 1;
1225 }
1226
1227 uasm_i_eret(p); /* return from trap */
1228
1229 return rv;
1230 }
1231
1232 /*
1233 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1234 * because EXL == 0. If we wrap, we can also use the 32 instruction
1235 * slots before the XTLB refill exception handler which belong to the
1236 * unused TLB refill exception.
1237 */
1238 #define MIPS64_REFILL_INSNS 32
1239
1240 static void build_r4000_tlb_refill_handler(void)
1241 {
1242 u32 *p = tlb_handler;
1243 struct uasm_label *l = labels;
1244 struct uasm_reloc *r = relocs;
1245 u32 *f;
1246 unsigned int final_len;
1247 struct mips_huge_tlb_info htlb_info __maybe_unused;
1248 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1249
1250 memset(tlb_handler, 0, sizeof(tlb_handler));
1251 memset(labels, 0, sizeof(labels));
1252 memset(relocs, 0, sizeof(relocs));
1253 memset(final_handler, 0, sizeof(final_handler));
1254
1255 if ((scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1256 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1257 scratch_reg);
1258 vmalloc_mode = refill_scratch;
1259 } else {
1260 htlb_info.huge_pte = K0;
1261 htlb_info.restore_scratch = 0;
1262 vmalloc_mode = refill_noscratch;
1263 /*
1264 * create the plain linear handler
1265 */
1266 if (bcm1250_m3_war()) {
1267 unsigned int segbits = 44;
1268
1269 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1270 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1271 uasm_i_xor(&p, K0, K0, K1);
1272 uasm_i_dsrl_safe(&p, K1, K0, 62);
1273 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1274 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1275 uasm_i_or(&p, K0, K0, K1);
1276 uasm_il_bnez(&p, &r, K0, label_leave);
1277 /* No need for uasm_i_nop */
1278 }
1279
1280 #ifdef CONFIG_64BIT
1281 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1282 #else
1283 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1284 #endif
1285
1286 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1287 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1288 #endif
1289
1290 build_get_ptep(&p, K0, K1);
1291 build_update_entries(&p, K0, K1);
1292 build_tlb_write_entry(&p, &l, &r, tlb_random);
1293 uasm_l_leave(&l, p);
1294 uasm_i_eret(&p); /* return from trap */
1295 }
1296 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1297 uasm_l_tlb_huge_update(&l, p);
1298 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1299 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1300 htlb_info.restore_scratch);
1301 #endif
1302
1303 #ifdef CONFIG_64BIT
1304 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1305 #endif
1306
1307 /*
1308 * Overflow check: For the 64bit handler, we need at least one
1309 * free instruction slot for the wrap-around branch. In worst
1310 * case, if the intended insertion point is a delay slot, we
1311 * need three, with the second nop'ed and the third being
1312 * unused.
1313 */
1314 /* Loongson2 ebase is different than r4k, we have more space */
1315 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1316 if ((p - tlb_handler) > 64)
1317 panic("TLB refill handler space exceeded");
1318 #else
1319 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1320 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1321 && uasm_insn_has_bdelay(relocs,
1322 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1323 panic("TLB refill handler space exceeded");
1324 #endif
1325
1326 /*
1327 * Now fold the handler in the TLB refill handler space.
1328 */
1329 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1330 f = final_handler;
1331 /* Simplest case, just copy the handler. */
1332 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1333 final_len = p - tlb_handler;
1334 #else /* CONFIG_64BIT */
1335 f = final_handler + MIPS64_REFILL_INSNS;
1336 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1337 /* Just copy the handler. */
1338 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1339 final_len = p - tlb_handler;
1340 } else {
1341 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1342 const enum label_id ls = label_tlb_huge_update;
1343 #else
1344 const enum label_id ls = label_vmalloc;
1345 #endif
1346 u32 *split;
1347 int ov = 0;
1348 int i;
1349
1350 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1351 ;
1352 BUG_ON(i == ARRAY_SIZE(labels));
1353 split = labels[i].addr;
1354
1355 /*
1356 * See if we have overflown one way or the other.
1357 */
1358 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1359 split < p - MIPS64_REFILL_INSNS)
1360 ov = 1;
1361
1362 if (ov) {
1363 /*
1364 * Split two instructions before the end. One
1365 * for the branch and one for the instruction
1366 * in the delay slot.
1367 */
1368 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1369
1370 /*
1371 * If the branch would fall in a delay slot,
1372 * we must back up an additional instruction
1373 * so that it is no longer in a delay slot.
1374 */
1375 if (uasm_insn_has_bdelay(relocs, split - 1))
1376 split--;
1377 }
1378 /* Copy first part of the handler. */
1379 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1380 f += split - tlb_handler;
1381
1382 if (ov) {
1383 /* Insert branch. */
1384 uasm_l_split(&l, final_handler);
1385 uasm_il_b(&f, &r, label_split);
1386 if (uasm_insn_has_bdelay(relocs, split))
1387 uasm_i_nop(&f);
1388 else {
1389 uasm_copy_handler(relocs, labels,
1390 split, split + 1, f);
1391 uasm_move_labels(labels, f, f + 1, -1);
1392 f++;
1393 split++;
1394 }
1395 }
1396
1397 /* Copy the rest of the handler. */
1398 uasm_copy_handler(relocs, labels, split, p, final_handler);
1399 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1400 (p - split);
1401 }
1402 #endif /* CONFIG_64BIT */
1403
1404 uasm_resolve_relocs(relocs, labels);
1405 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1406 final_len);
1407
1408 memcpy((void *)ebase, final_handler, 0x100);
1409
1410 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1411 }
1412
1413 extern u32 handle_tlbl[], handle_tlbl_end[];
1414 extern u32 handle_tlbs[], handle_tlbs_end[];
1415 extern u32 handle_tlbm[], handle_tlbm_end[];
1416 extern u32 tlbmiss_handler_setup_pgd[], tlbmiss_handler_setup_pgd_end[];
1417
1418 static void build_setup_pgd(void)
1419 {
1420 const int a0 = 4;
1421 const int __maybe_unused a1 = 5;
1422 const int __maybe_unused a2 = 6;
1423 u32 *p = tlbmiss_handler_setup_pgd;
1424 const int tlbmiss_handler_setup_pgd_size =
1425 tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd;
1426 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1427 long pgdc = (long)pgd_current;
1428 #endif
1429
1430 memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1431 sizeof(tlbmiss_handler_setup_pgd[0]));
1432 memset(labels, 0, sizeof(labels));
1433 memset(relocs, 0, sizeof(relocs));
1434 pgd_reg = allocate_kscratch();
1435 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1436 if (pgd_reg == -1) {
1437 struct uasm_label *l = labels;
1438 struct uasm_reloc *r = relocs;
1439
1440 /* PGD << 11 in c0_Context */
1441 /*
1442 * If it is a ckseg0 address, convert to a physical
1443 * address. Shifting right by 29 and adding 4 will
1444 * result in zero for these addresses.
1445 *
1446 */
1447 UASM_i_SRA(&p, a1, a0, 29);
1448 UASM_i_ADDIU(&p, a1, a1, 4);
1449 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1450 uasm_i_nop(&p);
1451 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1452 uasm_l_tlbl_goaround1(&l, p);
1453 UASM_i_SLL(&p, a0, a0, 11);
1454 uasm_i_jr(&p, 31);
1455 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1456 } else {
1457 /* PGD in c0_KScratch */
1458 uasm_i_jr(&p, 31);
1459 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1460 }
1461 #else
1462 #ifdef CONFIG_SMP
1463 /* Save PGD to pgd_current[smp_processor_id()] */
1464 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1465 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1466 UASM_i_LA_mostly(&p, a2, pgdc);
1467 UASM_i_ADDU(&p, a2, a2, a1);
1468 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1469 #else
1470 UASM_i_LA_mostly(&p, a2, pgdc);
1471 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1472 #endif /* SMP */
1473 uasm_i_jr(&p, 31);
1474
1475 /* if pgd_reg is allocated, save PGD also to scratch register */
1476 if (pgd_reg != -1)
1477 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1478 else
1479 uasm_i_nop(&p);
1480 #endif
1481 if (p >= tlbmiss_handler_setup_pgd_end)
1482 panic("tlbmiss_handler_setup_pgd space exceeded");
1483
1484 uasm_resolve_relocs(relocs, labels);
1485 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1486 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1487
1488 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1489 tlbmiss_handler_setup_pgd_size);
1490 }
1491
1492 static void
1493 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1494 {
1495 #ifdef CONFIG_SMP
1496 # ifdef CONFIG_64BIT_PHYS_ADDR
1497 if (cpu_has_64bits)
1498 uasm_i_lld(p, pte, 0, ptr);
1499 else
1500 # endif
1501 UASM_i_LL(p, pte, 0, ptr);
1502 #else
1503 # ifdef CONFIG_64BIT_PHYS_ADDR
1504 if (cpu_has_64bits)
1505 uasm_i_ld(p, pte, 0, ptr);
1506 else
1507 # endif
1508 UASM_i_LW(p, pte, 0, ptr);
1509 #endif
1510 }
1511
1512 static void
1513 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1514 unsigned int mode)
1515 {
1516 #ifdef CONFIG_64BIT_PHYS_ADDR
1517 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1518 #endif
1519
1520 uasm_i_ori(p, pte, pte, mode);
1521 #ifdef CONFIG_SMP
1522 # ifdef CONFIG_64BIT_PHYS_ADDR
1523 if (cpu_has_64bits)
1524 uasm_i_scd(p, pte, 0, ptr);
1525 else
1526 # endif
1527 UASM_i_SC(p, pte, 0, ptr);
1528
1529 if (r10000_llsc_war())
1530 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1531 else
1532 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1533
1534 # ifdef CONFIG_64BIT_PHYS_ADDR
1535 if (!cpu_has_64bits) {
1536 /* no uasm_i_nop needed */
1537 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1538 uasm_i_ori(p, pte, pte, hwmode);
1539 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1540 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1541 /* no uasm_i_nop needed */
1542 uasm_i_lw(p, pte, 0, ptr);
1543 } else
1544 uasm_i_nop(p);
1545 # else
1546 uasm_i_nop(p);
1547 # endif
1548 #else
1549 # ifdef CONFIG_64BIT_PHYS_ADDR
1550 if (cpu_has_64bits)
1551 uasm_i_sd(p, pte, 0, ptr);
1552 else
1553 # endif
1554 UASM_i_SW(p, pte, 0, ptr);
1555
1556 # ifdef CONFIG_64BIT_PHYS_ADDR
1557 if (!cpu_has_64bits) {
1558 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1559 uasm_i_ori(p, pte, pte, hwmode);
1560 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1561 uasm_i_lw(p, pte, 0, ptr);
1562 }
1563 # endif
1564 #endif
1565 }
1566
1567 /*
1568 * Check if PTE is present, if not then jump to LABEL. PTR points to
1569 * the page table where this PTE is located, PTE will be re-loaded
1570 * with it's original value.
1571 */
1572 static void
1573 build_pte_present(u32 **p, struct uasm_reloc **r,
1574 int pte, int ptr, int scratch, enum label_id lid)
1575 {
1576 int t = scratch >= 0 ? scratch : pte;
1577
1578 if (cpu_has_rixi) {
1579 if (use_bbit_insns()) {
1580 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1581 uasm_i_nop(p);
1582 } else {
1583 uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1584 uasm_il_beqz(p, r, t, lid);
1585 if (pte == t)
1586 /* You lose the SMP race :-(*/
1587 iPTE_LW(p, pte, ptr);
1588 }
1589 } else {
1590 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1591 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1592 uasm_il_bnez(p, r, t, lid);
1593 if (pte == t)
1594 /* You lose the SMP race :-(*/
1595 iPTE_LW(p, pte, ptr);
1596 }
1597 }
1598
1599 /* Make PTE valid, store result in PTR. */
1600 static void
1601 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1602 unsigned int ptr)
1603 {
1604 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1605
1606 iPTE_SW(p, r, pte, ptr, mode);
1607 }
1608
1609 /*
1610 * Check if PTE can be written to, if not branch to LABEL. Regardless
1611 * restore PTE with value from PTR when done.
1612 */
1613 static void
1614 build_pte_writable(u32 **p, struct uasm_reloc **r,
1615 unsigned int pte, unsigned int ptr, int scratch,
1616 enum label_id lid)
1617 {
1618 int t = scratch >= 0 ? scratch : pte;
1619
1620 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1621 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1622 uasm_il_bnez(p, r, t, lid);
1623 if (pte == t)
1624 /* You lose the SMP race :-(*/
1625 iPTE_LW(p, pte, ptr);
1626 else
1627 uasm_i_nop(p);
1628 }
1629
1630 /* Make PTE writable, update software status bits as well, then store
1631 * at PTR.
1632 */
1633 static void
1634 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1635 unsigned int ptr)
1636 {
1637 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1638 | _PAGE_DIRTY);
1639
1640 iPTE_SW(p, r, pte, ptr, mode);
1641 }
1642
1643 /*
1644 * Check if PTE can be modified, if not branch to LABEL. Regardless
1645 * restore PTE with value from PTR when done.
1646 */
1647 static void
1648 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1649 unsigned int pte, unsigned int ptr, int scratch,
1650 enum label_id lid)
1651 {
1652 if (use_bbit_insns()) {
1653 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1654 uasm_i_nop(p);
1655 } else {
1656 int t = scratch >= 0 ? scratch : pte;
1657 uasm_i_andi(p, t, pte, _PAGE_WRITE);
1658 uasm_il_beqz(p, r, t, lid);
1659 if (pte == t)
1660 /* You lose the SMP race :-(*/
1661 iPTE_LW(p, pte, ptr);
1662 }
1663 }
1664
1665 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1666
1667
1668 /*
1669 * R3000 style TLB load/store/modify handlers.
1670 */
1671
1672 /*
1673 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1674 * Then it returns.
1675 */
1676 static void
1677 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1678 {
1679 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1680 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1681 uasm_i_tlbwi(p);
1682 uasm_i_jr(p, tmp);
1683 uasm_i_rfe(p); /* branch delay */
1684 }
1685
1686 /*
1687 * This places the pte into ENTRYLO0 and writes it with tlbwi
1688 * or tlbwr as appropriate. This is because the index register
1689 * may have the probe fail bit set as a result of a trap on a
1690 * kseg2 access, i.e. without refill. Then it returns.
1691 */
1692 static void
1693 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1694 struct uasm_reloc **r, unsigned int pte,
1695 unsigned int tmp)
1696 {
1697 uasm_i_mfc0(p, tmp, C0_INDEX);
1698 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1699 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1700 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1701 uasm_i_tlbwi(p); /* cp0 delay */
1702 uasm_i_jr(p, tmp);
1703 uasm_i_rfe(p); /* branch delay */
1704 uasm_l_r3000_write_probe_fail(l, *p);
1705 uasm_i_tlbwr(p); /* cp0 delay */
1706 uasm_i_jr(p, tmp);
1707 uasm_i_rfe(p); /* branch delay */
1708 }
1709
1710 static void
1711 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1712 unsigned int ptr)
1713 {
1714 long pgdc = (long)pgd_current;
1715
1716 uasm_i_mfc0(p, pte, C0_BADVADDR);
1717 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1718 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1719 uasm_i_srl(p, pte, pte, 22); /* load delay */
1720 uasm_i_sll(p, pte, pte, 2);
1721 uasm_i_addu(p, ptr, ptr, pte);
1722 uasm_i_mfc0(p, pte, C0_CONTEXT);
1723 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1724 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1725 uasm_i_addu(p, ptr, ptr, pte);
1726 uasm_i_lw(p, pte, 0, ptr);
1727 uasm_i_tlbp(p); /* load delay */
1728 }
1729
1730 static void build_r3000_tlb_load_handler(void)
1731 {
1732 u32 *p = handle_tlbl;
1733 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1734 struct uasm_label *l = labels;
1735 struct uasm_reloc *r = relocs;
1736
1737 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1738 memset(labels, 0, sizeof(labels));
1739 memset(relocs, 0, sizeof(relocs));
1740
1741 build_r3000_tlbchange_handler_head(&p, K0, K1);
1742 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1743 uasm_i_nop(&p); /* load delay */
1744 build_make_valid(&p, &r, K0, K1);
1745 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1746
1747 uasm_l_nopage_tlbl(&l, p);
1748 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1749 uasm_i_nop(&p);
1750
1751 if (p >= handle_tlbl_end)
1752 panic("TLB load handler fastpath space exceeded");
1753
1754 uasm_resolve_relocs(relocs, labels);
1755 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1756 (unsigned int)(p - handle_tlbl));
1757
1758 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1759 }
1760
1761 static void build_r3000_tlb_store_handler(void)
1762 {
1763 u32 *p = handle_tlbs;
1764 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1765 struct uasm_label *l = labels;
1766 struct uasm_reloc *r = relocs;
1767
1768 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1769 memset(labels, 0, sizeof(labels));
1770 memset(relocs, 0, sizeof(relocs));
1771
1772 build_r3000_tlbchange_handler_head(&p, K0, K1);
1773 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1774 uasm_i_nop(&p); /* load delay */
1775 build_make_write(&p, &r, K0, K1);
1776 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1777
1778 uasm_l_nopage_tlbs(&l, p);
1779 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1780 uasm_i_nop(&p);
1781
1782 if (p >= handle_tlbs_end)
1783 panic("TLB store handler fastpath space exceeded");
1784
1785 uasm_resolve_relocs(relocs, labels);
1786 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1787 (unsigned int)(p - handle_tlbs));
1788
1789 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1790 }
1791
1792 static void build_r3000_tlb_modify_handler(void)
1793 {
1794 u32 *p = handle_tlbm;
1795 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1796 struct uasm_label *l = labels;
1797 struct uasm_reloc *r = relocs;
1798
1799 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1800 memset(labels, 0, sizeof(labels));
1801 memset(relocs, 0, sizeof(relocs));
1802
1803 build_r3000_tlbchange_handler_head(&p, K0, K1);
1804 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1805 uasm_i_nop(&p); /* load delay */
1806 build_make_write(&p, &r, K0, K1);
1807 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1808
1809 uasm_l_nopage_tlbm(&l, p);
1810 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1811 uasm_i_nop(&p);
1812
1813 if (p >= handle_tlbm_end)
1814 panic("TLB modify handler fastpath space exceeded");
1815
1816 uasm_resolve_relocs(relocs, labels);
1817 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1818 (unsigned int)(p - handle_tlbm));
1819
1820 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1821 }
1822 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1823
1824 /*
1825 * R4000 style TLB load/store/modify handlers.
1826 */
1827 static struct work_registers
1828 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1829 struct uasm_reloc **r)
1830 {
1831 struct work_registers wr = build_get_work_registers(p);
1832
1833 #ifdef CONFIG_64BIT
1834 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1835 #else
1836 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1837 #endif
1838
1839 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1840 /*
1841 * For huge tlb entries, pmd doesn't contain an address but
1842 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1843 * see if we need to jump to huge tlb processing.
1844 */
1845 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1846 #endif
1847
1848 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1849 UASM_i_LW(p, wr.r2, 0, wr.r2);
1850 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1851 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1852 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1853
1854 #ifdef CONFIG_SMP
1855 uasm_l_smp_pgtable_change(l, *p);
1856 #endif
1857 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1858 if (!m4kc_tlbp_war())
1859 build_tlb_probe_entry(p);
1860 return wr;
1861 }
1862
1863 static void
1864 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1865 struct uasm_reloc **r, unsigned int tmp,
1866 unsigned int ptr)
1867 {
1868 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1869 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1870 build_update_entries(p, tmp, ptr);
1871 build_tlb_write_entry(p, l, r, tlb_indexed);
1872 uasm_l_leave(l, *p);
1873 build_restore_work_registers(p);
1874 uasm_i_eret(p); /* return from trap */
1875
1876 #ifdef CONFIG_64BIT
1877 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1878 #endif
1879 }
1880
1881 static void build_r4000_tlb_load_handler(void)
1882 {
1883 u32 *p = handle_tlbl;
1884 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1885 struct uasm_label *l = labels;
1886 struct uasm_reloc *r = relocs;
1887 struct work_registers wr;
1888
1889 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1890 memset(labels, 0, sizeof(labels));
1891 memset(relocs, 0, sizeof(relocs));
1892
1893 if (bcm1250_m3_war()) {
1894 unsigned int segbits = 44;
1895
1896 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1897 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1898 uasm_i_xor(&p, K0, K0, K1);
1899 uasm_i_dsrl_safe(&p, K1, K0, 62);
1900 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1901 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1902 uasm_i_or(&p, K0, K0, K1);
1903 uasm_il_bnez(&p, &r, K0, label_leave);
1904 /* No need for uasm_i_nop */
1905 }
1906
1907 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1908 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1909 if (m4kc_tlbp_war())
1910 build_tlb_probe_entry(&p);
1911
1912 if (cpu_has_rixi) {
1913 /*
1914 * If the page is not _PAGE_VALID, RI or XI could not
1915 * have triggered it. Skip the expensive test..
1916 */
1917 if (use_bbit_insns()) {
1918 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1919 label_tlbl_goaround1);
1920 } else {
1921 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1922 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1923 }
1924 uasm_i_nop(&p);
1925
1926 uasm_i_tlbr(&p);
1927
1928 switch (current_cpu_type()) {
1929 default:
1930 if (cpu_has_mips_r2) {
1931 uasm_i_ehb(&p);
1932
1933 case CPU_CAVIUM_OCTEON:
1934 case CPU_CAVIUM_OCTEON_PLUS:
1935 case CPU_CAVIUM_OCTEON2:
1936 break;
1937 }
1938 }
1939
1940 /* Examine entrylo 0 or 1 based on ptr. */
1941 if (use_bbit_insns()) {
1942 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1943 } else {
1944 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1945 uasm_i_beqz(&p, wr.r3, 8);
1946 }
1947 /* load it in the delay slot*/
1948 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1949 /* load it if ptr is odd */
1950 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1951 /*
1952 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1953 * XI must have triggered it.
1954 */
1955 if (use_bbit_insns()) {
1956 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1957 uasm_i_nop(&p);
1958 uasm_l_tlbl_goaround1(&l, p);
1959 } else {
1960 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1961 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1962 uasm_i_nop(&p);
1963 }
1964 uasm_l_tlbl_goaround1(&l, p);
1965 }
1966 build_make_valid(&p, &r, wr.r1, wr.r2);
1967 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1968
1969 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1970 /*
1971 * This is the entry point when build_r4000_tlbchange_handler_head
1972 * spots a huge page.
1973 */
1974 uasm_l_tlb_huge_update(&l, p);
1975 iPTE_LW(&p, wr.r1, wr.r2);
1976 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1977 build_tlb_probe_entry(&p);
1978
1979 if (cpu_has_rixi) {
1980 /*
1981 * If the page is not _PAGE_VALID, RI or XI could not
1982 * have triggered it. Skip the expensive test..
1983 */
1984 if (use_bbit_insns()) {
1985 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1986 label_tlbl_goaround2);
1987 } else {
1988 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1989 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1990 }
1991 uasm_i_nop(&p);
1992
1993 uasm_i_tlbr(&p);
1994
1995 switch (current_cpu_type()) {
1996 default:
1997 if (cpu_has_mips_r2) {
1998 uasm_i_ehb(&p);
1999
2000 case CPU_CAVIUM_OCTEON:
2001 case CPU_CAVIUM_OCTEON_PLUS:
2002 case CPU_CAVIUM_OCTEON2:
2003 break;
2004 }
2005 }
2006
2007 /* Examine entrylo 0 or 1 based on ptr. */
2008 if (use_bbit_insns()) {
2009 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2010 } else {
2011 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2012 uasm_i_beqz(&p, wr.r3, 8);
2013 }
2014 /* load it in the delay slot*/
2015 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2016 /* load it if ptr is odd */
2017 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2018 /*
2019 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2020 * XI must have triggered it.
2021 */
2022 if (use_bbit_insns()) {
2023 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2024 } else {
2025 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2026 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2027 }
2028 if (PM_DEFAULT_MASK == 0)
2029 uasm_i_nop(&p);
2030 /*
2031 * We clobbered C0_PAGEMASK, restore it. On the other branch
2032 * it is restored in build_huge_tlb_write_entry.
2033 */
2034 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2035
2036 uasm_l_tlbl_goaround2(&l, p);
2037 }
2038 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2039 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2040 #endif
2041
2042 uasm_l_nopage_tlbl(&l, p);
2043 build_restore_work_registers(&p);
2044 #ifdef CONFIG_CPU_MICROMIPS
2045 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2046 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2047 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2048 uasm_i_jr(&p, K0);
2049 } else
2050 #endif
2051 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2052 uasm_i_nop(&p);
2053
2054 if (p >= handle_tlbl_end)
2055 panic("TLB load handler fastpath space exceeded");
2056
2057 uasm_resolve_relocs(relocs, labels);
2058 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2059 (unsigned int)(p - handle_tlbl));
2060
2061 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2062 }
2063
2064 static void build_r4000_tlb_store_handler(void)
2065 {
2066 u32 *p = handle_tlbs;
2067 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2068 struct uasm_label *l = labels;
2069 struct uasm_reloc *r = relocs;
2070 struct work_registers wr;
2071
2072 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2073 memset(labels, 0, sizeof(labels));
2074 memset(relocs, 0, sizeof(relocs));
2075
2076 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2077 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2078 if (m4kc_tlbp_war())
2079 build_tlb_probe_entry(&p);
2080 build_make_write(&p, &r, wr.r1, wr.r2);
2081 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2082
2083 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2084 /*
2085 * This is the entry point when
2086 * build_r4000_tlbchange_handler_head spots a huge page.
2087 */
2088 uasm_l_tlb_huge_update(&l, p);
2089 iPTE_LW(&p, wr.r1, wr.r2);
2090 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2091 build_tlb_probe_entry(&p);
2092 uasm_i_ori(&p, wr.r1, wr.r1,
2093 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2094 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2095 #endif
2096
2097 uasm_l_nopage_tlbs(&l, p);
2098 build_restore_work_registers(&p);
2099 #ifdef CONFIG_CPU_MICROMIPS
2100 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2101 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2102 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2103 uasm_i_jr(&p, K0);
2104 } else
2105 #endif
2106 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2107 uasm_i_nop(&p);
2108
2109 if (p >= handle_tlbs_end)
2110 panic("TLB store handler fastpath space exceeded");
2111
2112 uasm_resolve_relocs(relocs, labels);
2113 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2114 (unsigned int)(p - handle_tlbs));
2115
2116 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2117 }
2118
2119 static void build_r4000_tlb_modify_handler(void)
2120 {
2121 u32 *p = handle_tlbm;
2122 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2123 struct uasm_label *l = labels;
2124 struct uasm_reloc *r = relocs;
2125 struct work_registers wr;
2126
2127 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2128 memset(labels, 0, sizeof(labels));
2129 memset(relocs, 0, sizeof(relocs));
2130
2131 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2132 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2133 if (m4kc_tlbp_war())
2134 build_tlb_probe_entry(&p);
2135 /* Present and writable bits set, set accessed and dirty bits. */
2136 build_make_write(&p, &r, wr.r1, wr.r2);
2137 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2138
2139 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2140 /*
2141 * This is the entry point when
2142 * build_r4000_tlbchange_handler_head spots a huge page.
2143 */
2144 uasm_l_tlb_huge_update(&l, p);
2145 iPTE_LW(&p, wr.r1, wr.r2);
2146 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2147 build_tlb_probe_entry(&p);
2148 uasm_i_ori(&p, wr.r1, wr.r1,
2149 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2150 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2151 #endif
2152
2153 uasm_l_nopage_tlbm(&l, p);
2154 build_restore_work_registers(&p);
2155 #ifdef CONFIG_CPU_MICROMIPS
2156 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2157 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2158 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2159 uasm_i_jr(&p, K0);
2160 } else
2161 #endif
2162 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2163 uasm_i_nop(&p);
2164
2165 if (p >= handle_tlbm_end)
2166 panic("TLB modify handler fastpath space exceeded");
2167
2168 uasm_resolve_relocs(relocs, labels);
2169 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2170 (unsigned int)(p - handle_tlbm));
2171
2172 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2173 }
2174
2175 static void flush_tlb_handlers(void)
2176 {
2177 local_flush_icache_range((unsigned long)handle_tlbl,
2178 (unsigned long)handle_tlbl_end);
2179 local_flush_icache_range((unsigned long)handle_tlbs,
2180 (unsigned long)handle_tlbs_end);
2181 local_flush_icache_range((unsigned long)handle_tlbm,
2182 (unsigned long)handle_tlbm_end);
2183 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2184 (unsigned long)tlbmiss_handler_setup_pgd_end);
2185 }
2186
2187 void build_tlb_refill_handler(void)
2188 {
2189 /*
2190 * The refill handler is generated per-CPU, multi-node systems
2191 * may have local storage for it. The other handlers are only
2192 * needed once.
2193 */
2194 static int run_once = 0;
2195
2196 output_pgtable_bits_defines();
2197
2198 #ifdef CONFIG_64BIT
2199 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2200 #endif
2201
2202 switch (current_cpu_type()) {
2203 case CPU_R2000:
2204 case CPU_R3000:
2205 case CPU_R3000A:
2206 case CPU_R3081E:
2207 case CPU_TX3912:
2208 case CPU_TX3922:
2209 case CPU_TX3927:
2210 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2211 if (cpu_has_local_ebase)
2212 build_r3000_tlb_refill_handler();
2213 if (!run_once) {
2214 if (!cpu_has_local_ebase)
2215 build_r3000_tlb_refill_handler();
2216 build_setup_pgd();
2217 build_r3000_tlb_load_handler();
2218 build_r3000_tlb_store_handler();
2219 build_r3000_tlb_modify_handler();
2220 flush_tlb_handlers();
2221 run_once++;
2222 }
2223 #else
2224 panic("No R3000 TLB refill handler");
2225 #endif
2226 break;
2227
2228 case CPU_R6000:
2229 case CPU_R6000A:
2230 panic("No R6000 TLB refill handler yet");
2231 break;
2232
2233 case CPU_R8000:
2234 panic("No R8000 TLB refill handler yet");
2235 break;
2236
2237 default:
2238 if (!run_once) {
2239 scratch_reg = allocate_kscratch();
2240 build_setup_pgd();
2241 build_r4000_tlb_load_handler();
2242 build_r4000_tlb_store_handler();
2243 build_r4000_tlb_modify_handler();
2244 if (!cpu_has_local_ebase)
2245 build_r4000_tlb_refill_handler();
2246 flush_tlb_handlers();
2247 run_once++;
2248 }
2249 if (cpu_has_local_ebase)
2250 build_r4000_tlb_refill_handler();
2251 }
2252 }