]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/mips/mm/tlbex.c
Merge branches 'turbostat' and 'x86_energy_perf_policy' into tools
[mirror_ubuntu-bionic-kernel.git] / arch / mips / mm / tlbex.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 *
13 * ... and the days got worse and worse and now you see
14 * I've gone completly out of my mind.
15 *
16 * They're coming to take me a away haha
17 * they're coming to take me a away hoho hihi haha
18 * to the funny farm where code is beautiful all the time ...
19 *
20 * (Condolences to Napoleon XIV)
21 */
22
23 #include <linux/bug.h>
24 #include <linux/kernel.h>
25 #include <linux/types.h>
26 #include <linux/smp.h>
27 #include <linux/string.h>
28 #include <linux/init.h>
29
30 #include <asm/mmu_context.h>
31 #include <asm/war.h>
32 #include <asm/uasm.h>
33
34 /*
35 * TLB load/store/modify handlers.
36 *
37 * Only the fastpath gets synthesized at runtime, the slowpath for
38 * do_page_fault remains normal asm.
39 */
40 extern void tlb_do_page_fault_0(void);
41 extern void tlb_do_page_fault_1(void);
42
43
44 static inline int r45k_bvahwbug(void)
45 {
46 /* XXX: We should probe for the presence of this bug, but we don't. */
47 return 0;
48 }
49
50 static inline int r4k_250MHZhwbug(void)
51 {
52 /* XXX: We should probe for the presence of this bug, but we don't. */
53 return 0;
54 }
55
56 static inline int __maybe_unused bcm1250_m3_war(void)
57 {
58 return BCM1250_M3_WAR;
59 }
60
61 static inline int __maybe_unused r10000_llsc_war(void)
62 {
63 return R10000_LLSC_WAR;
64 }
65
66 /*
67 * Found by experiment: At least some revisions of the 4kc throw under
68 * some circumstances a machine check exception, triggered by invalid
69 * values in the index register. Delaying the tlbp instruction until
70 * after the next branch, plus adding an additional nop in front of
71 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
72 * why; it's not an issue caused by the core RTL.
73 *
74 */
75 static int __cpuinit m4kc_tlbp_war(void)
76 {
77 return (current_cpu_data.processor_id & 0xffff00) ==
78 (PRID_COMP_MIPS | PRID_IMP_4KC);
79 }
80
81 /* Handle labels (which must be positive integers). */
82 enum label_id {
83 label_second_part = 1,
84 label_leave,
85 label_vmalloc,
86 label_vmalloc_done,
87 label_tlbw_hazard,
88 label_split,
89 label_tlbl_goaround1,
90 label_tlbl_goaround2,
91 label_nopage_tlbl,
92 label_nopage_tlbs,
93 label_nopage_tlbm,
94 label_smp_pgtable_change,
95 label_r3000_write_probe_fail,
96 label_large_segbits_fault,
97 #ifdef CONFIG_HUGETLB_PAGE
98 label_tlb_huge_update,
99 #endif
100 };
101
102 UASM_L_LA(_second_part)
103 UASM_L_LA(_leave)
104 UASM_L_LA(_vmalloc)
105 UASM_L_LA(_vmalloc_done)
106 UASM_L_LA(_tlbw_hazard)
107 UASM_L_LA(_split)
108 UASM_L_LA(_tlbl_goaround1)
109 UASM_L_LA(_tlbl_goaround2)
110 UASM_L_LA(_nopage_tlbl)
111 UASM_L_LA(_nopage_tlbs)
112 UASM_L_LA(_nopage_tlbm)
113 UASM_L_LA(_smp_pgtable_change)
114 UASM_L_LA(_r3000_write_probe_fail)
115 UASM_L_LA(_large_segbits_fault)
116 #ifdef CONFIG_HUGETLB_PAGE
117 UASM_L_LA(_tlb_huge_update)
118 #endif
119
120 /*
121 * For debug purposes.
122 */
123 static inline void dump_handler(const u32 *handler, int count)
124 {
125 int i;
126
127 pr_debug("\t.set push\n");
128 pr_debug("\t.set noreorder\n");
129
130 for (i = 0; i < count; i++)
131 pr_debug("\t%p\t.word 0x%08x\n", &handler[i], handler[i]);
132
133 pr_debug("\t.set pop\n");
134 }
135
136 /* The only general purpose registers allowed in TLB handlers. */
137 #define K0 26
138 #define K1 27
139
140 /* Some CP0 registers */
141 #define C0_INDEX 0, 0
142 #define C0_ENTRYLO0 2, 0
143 #define C0_TCBIND 2, 2
144 #define C0_ENTRYLO1 3, 0
145 #define C0_CONTEXT 4, 0
146 #define C0_PAGEMASK 5, 0
147 #define C0_BADVADDR 8, 0
148 #define C0_ENTRYHI 10, 0
149 #define C0_EPC 14, 0
150 #define C0_XCONTEXT 20, 0
151
152 #ifdef CONFIG_64BIT
153 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
154 #else
155 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
156 #endif
157
158 /* The worst case length of the handler is around 18 instructions for
159 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
160 * Maximum space available is 32 instructions for R3000 and 64
161 * instructions for R4000.
162 *
163 * We deliberately chose a buffer size of 128, so we won't scribble
164 * over anything important on overflow before we panic.
165 */
166 static u32 tlb_handler[128] __cpuinitdata;
167
168 /* simply assume worst case size for labels and relocs */
169 static struct uasm_label labels[128] __cpuinitdata;
170 static struct uasm_reloc relocs[128] __cpuinitdata;
171
172 #ifdef CONFIG_64BIT
173 static int check_for_high_segbits __cpuinitdata;
174 #endif
175
176 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
177 /*
178 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
179 * we cannot do r3000 under these circumstances.
180 */
181
182 /*
183 * The R3000 TLB handler is simple.
184 */
185 static void __cpuinit build_r3000_tlb_refill_handler(void)
186 {
187 long pgdc = (long)pgd_current;
188 u32 *p;
189
190 memset(tlb_handler, 0, sizeof(tlb_handler));
191 p = tlb_handler;
192
193 uasm_i_mfc0(&p, K0, C0_BADVADDR);
194 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
195 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
196 uasm_i_srl(&p, K0, K0, 22); /* load delay */
197 uasm_i_sll(&p, K0, K0, 2);
198 uasm_i_addu(&p, K1, K1, K0);
199 uasm_i_mfc0(&p, K0, C0_CONTEXT);
200 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
201 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
202 uasm_i_addu(&p, K1, K1, K0);
203 uasm_i_lw(&p, K0, 0, K1);
204 uasm_i_nop(&p); /* load delay */
205 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
206 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
207 uasm_i_tlbwr(&p); /* cp0 delay */
208 uasm_i_jr(&p, K1);
209 uasm_i_rfe(&p); /* branch delay */
210
211 if (p > tlb_handler + 32)
212 panic("TLB refill handler space exceeded");
213
214 pr_debug("Wrote TLB refill handler (%u instructions).\n",
215 (unsigned int)(p - tlb_handler));
216
217 memcpy((void *)ebase, tlb_handler, 0x80);
218
219 dump_handler((u32 *)ebase, 32);
220 }
221 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
222
223 /*
224 * The R4000 TLB handler is much more complicated. We have two
225 * consecutive handler areas with 32 instructions space each.
226 * Since they aren't used at the same time, we can overflow in the
227 * other one.To keep things simple, we first assume linear space,
228 * then we relocate it to the final handler layout as needed.
229 */
230 static u32 final_handler[64] __cpuinitdata;
231
232 /*
233 * Hazards
234 *
235 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
236 * 2. A timing hazard exists for the TLBP instruction.
237 *
238 * stalling_instruction
239 * TLBP
240 *
241 * The JTLB is being read for the TLBP throughout the stall generated by the
242 * previous instruction. This is not really correct as the stalling instruction
243 * can modify the address used to access the JTLB. The failure symptom is that
244 * the TLBP instruction will use an address created for the stalling instruction
245 * and not the address held in C0_ENHI and thus report the wrong results.
246 *
247 * The software work-around is to not allow the instruction preceding the TLBP
248 * to stall - make it an NOP or some other instruction guaranteed not to stall.
249 *
250 * Errata 2 will not be fixed. This errata is also on the R5000.
251 *
252 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
253 */
254 static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
255 {
256 switch (current_cpu_type()) {
257 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
258 case CPU_R4600:
259 case CPU_R4700:
260 case CPU_R5000:
261 case CPU_R5000A:
262 case CPU_NEVADA:
263 uasm_i_nop(p);
264 uasm_i_tlbp(p);
265 break;
266
267 default:
268 uasm_i_tlbp(p);
269 break;
270 }
271 }
272
273 /*
274 * Write random or indexed TLB entry, and care about the hazards from
275 * the preceeding mtc0 and for the following eret.
276 */
277 enum tlb_write_entry { tlb_random, tlb_indexed };
278
279 static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
280 struct uasm_reloc **r,
281 enum tlb_write_entry wmode)
282 {
283 void(*tlbw)(u32 **) = NULL;
284
285 switch (wmode) {
286 case tlb_random: tlbw = uasm_i_tlbwr; break;
287 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
288 }
289
290 if (cpu_has_mips_r2) {
291 if (cpu_has_mips_r2_exec_hazard)
292 uasm_i_ehb(p);
293 tlbw(p);
294 return;
295 }
296
297 switch (current_cpu_type()) {
298 case CPU_R4000PC:
299 case CPU_R4000SC:
300 case CPU_R4000MC:
301 case CPU_R4400PC:
302 case CPU_R4400SC:
303 case CPU_R4400MC:
304 /*
305 * This branch uses up a mtc0 hazard nop slot and saves
306 * two nops after the tlbw instruction.
307 */
308 uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
309 tlbw(p);
310 uasm_l_tlbw_hazard(l, *p);
311 uasm_i_nop(p);
312 break;
313
314 case CPU_R4600:
315 case CPU_R4700:
316 case CPU_R5000:
317 case CPU_R5000A:
318 uasm_i_nop(p);
319 tlbw(p);
320 uasm_i_nop(p);
321 break;
322
323 case CPU_R4300:
324 case CPU_5KC:
325 case CPU_TX49XX:
326 case CPU_PR4450:
327 uasm_i_nop(p);
328 tlbw(p);
329 break;
330
331 case CPU_R10000:
332 case CPU_R12000:
333 case CPU_R14000:
334 case CPU_4KC:
335 case CPU_4KEC:
336 case CPU_SB1:
337 case CPU_SB1A:
338 case CPU_4KSC:
339 case CPU_20KC:
340 case CPU_25KF:
341 case CPU_BMIPS32:
342 case CPU_BMIPS3300:
343 case CPU_BMIPS4350:
344 case CPU_BMIPS4380:
345 case CPU_BMIPS5000:
346 case CPU_LOONGSON2:
347 case CPU_R5500:
348 if (m4kc_tlbp_war())
349 uasm_i_nop(p);
350 case CPU_ALCHEMY:
351 tlbw(p);
352 break;
353
354 case CPU_NEVADA:
355 uasm_i_nop(p); /* QED specifies 2 nops hazard */
356 /*
357 * This branch uses up a mtc0 hazard nop slot and saves
358 * a nop after the tlbw instruction.
359 */
360 uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
361 tlbw(p);
362 uasm_l_tlbw_hazard(l, *p);
363 break;
364
365 case CPU_RM7000:
366 uasm_i_nop(p);
367 uasm_i_nop(p);
368 uasm_i_nop(p);
369 uasm_i_nop(p);
370 tlbw(p);
371 break;
372
373 case CPU_RM9000:
374 /*
375 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
376 * use of the JTLB for instructions should not occur for 4
377 * cpu cycles and use for data translations should not occur
378 * for 3 cpu cycles.
379 */
380 uasm_i_ssnop(p);
381 uasm_i_ssnop(p);
382 uasm_i_ssnop(p);
383 uasm_i_ssnop(p);
384 tlbw(p);
385 uasm_i_ssnop(p);
386 uasm_i_ssnop(p);
387 uasm_i_ssnop(p);
388 uasm_i_ssnop(p);
389 break;
390
391 case CPU_VR4111:
392 case CPU_VR4121:
393 case CPU_VR4122:
394 case CPU_VR4181:
395 case CPU_VR4181A:
396 uasm_i_nop(p);
397 uasm_i_nop(p);
398 tlbw(p);
399 uasm_i_nop(p);
400 uasm_i_nop(p);
401 break;
402
403 case CPU_VR4131:
404 case CPU_VR4133:
405 case CPU_R5432:
406 uasm_i_nop(p);
407 uasm_i_nop(p);
408 tlbw(p);
409 break;
410
411 case CPU_JZRISC:
412 tlbw(p);
413 uasm_i_nop(p);
414 break;
415
416 default:
417 panic("No TLB refill handler yet (CPU type: %d)",
418 current_cpu_data.cputype);
419 break;
420 }
421 }
422
423 static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
424 unsigned int reg)
425 {
426 if (kernel_uses_smartmips_rixi) {
427 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
428 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
429 } else {
430 #ifdef CONFIG_64BIT_PHYS_ADDR
431 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
432 #else
433 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
434 #endif
435 }
436 }
437
438 #ifdef CONFIG_HUGETLB_PAGE
439
440 static __cpuinit void build_restore_pagemask(u32 **p,
441 struct uasm_reloc **r,
442 unsigned int tmp,
443 enum label_id lid)
444 {
445 /* Reset default page size */
446 if (PM_DEFAULT_MASK >> 16) {
447 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
448 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
449 uasm_il_b(p, r, lid);
450 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
451 } else if (PM_DEFAULT_MASK) {
452 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
453 uasm_il_b(p, r, lid);
454 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
455 } else {
456 uasm_il_b(p, r, lid);
457 uasm_i_mtc0(p, 0, C0_PAGEMASK);
458 }
459 }
460
461 static __cpuinit void build_huge_tlb_write_entry(u32 **p,
462 struct uasm_label **l,
463 struct uasm_reloc **r,
464 unsigned int tmp,
465 enum tlb_write_entry wmode)
466 {
467 /* Set huge page tlb entry size */
468 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
469 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
470 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
471
472 build_tlb_write_entry(p, l, r, wmode);
473
474 build_restore_pagemask(p, r, tmp, label_leave);
475 }
476
477 /*
478 * Check if Huge PTE is present, if so then jump to LABEL.
479 */
480 static void __cpuinit
481 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
482 unsigned int pmd, int lid)
483 {
484 UASM_i_LW(p, tmp, 0, pmd);
485 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
486 uasm_il_bnez(p, r, tmp, lid);
487 }
488
489 static __cpuinit void build_huge_update_entries(u32 **p,
490 unsigned int pte,
491 unsigned int tmp)
492 {
493 int small_sequence;
494
495 /*
496 * A huge PTE describes an area the size of the
497 * configured huge page size. This is twice the
498 * of the large TLB entry size we intend to use.
499 * A TLB entry half the size of the configured
500 * huge page size is configured into entrylo0
501 * and entrylo1 to cover the contiguous huge PTE
502 * address space.
503 */
504 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
505
506 /* We can clobber tmp. It isn't used after this.*/
507 if (!small_sequence)
508 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
509
510 build_convert_pte_to_entrylo(p, pte);
511 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
512 /* convert to entrylo1 */
513 if (small_sequence)
514 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
515 else
516 UASM_i_ADDU(p, pte, pte, tmp);
517
518 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
519 }
520
521 static __cpuinit void build_huge_handler_tail(u32 **p,
522 struct uasm_reloc **r,
523 struct uasm_label **l,
524 unsigned int pte,
525 unsigned int ptr)
526 {
527 #ifdef CONFIG_SMP
528 UASM_i_SC(p, pte, 0, ptr);
529 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
530 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
531 #else
532 UASM_i_SW(p, pte, 0, ptr);
533 #endif
534 build_huge_update_entries(p, pte, ptr);
535 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed);
536 }
537 #endif /* CONFIG_HUGETLB_PAGE */
538
539 #ifdef CONFIG_64BIT
540 /*
541 * TMP and PTR are scratch.
542 * TMP will be clobbered, PTR will hold the pmd entry.
543 */
544 static void __cpuinit
545 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
546 unsigned int tmp, unsigned int ptr)
547 {
548 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
549 long pgdc = (long)pgd_current;
550 #endif
551 /*
552 * The vmalloc handling is not in the hotpath.
553 */
554 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
555
556 if (check_for_high_segbits) {
557 /*
558 * The kernel currently implicitely assumes that the
559 * MIPS SEGBITS parameter for the processor is
560 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
561 * allocate virtual addresses outside the maximum
562 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
563 * that doesn't prevent user code from accessing the
564 * higher xuseg addresses. Here, we make sure that
565 * everything but the lower xuseg addresses goes down
566 * the module_alloc/vmalloc path.
567 */
568 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
569 uasm_il_bnez(p, r, ptr, label_vmalloc);
570 } else {
571 uasm_il_bltz(p, r, tmp, label_vmalloc);
572 }
573 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
574
575 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
576 /*
577 * &pgd << 11 stored in CONTEXT [23..63].
578 */
579 UASM_i_MFC0(p, ptr, C0_CONTEXT);
580 uasm_i_dins(p, ptr, 0, 0, 23); /* Clear lower 23 bits of context. */
581 uasm_i_ori(p, ptr, ptr, 0x540); /* 1 0 1 0 1 << 6 xkphys cached */
582 uasm_i_drotr(p, ptr, ptr, 11);
583 #elif defined(CONFIG_SMP)
584 # ifdef CONFIG_MIPS_MT_SMTC
585 /*
586 * SMTC uses TCBind value as "CPU" index
587 */
588 uasm_i_mfc0(p, ptr, C0_TCBIND);
589 uasm_i_dsrl_safe(p, ptr, ptr, 19);
590 # else
591 /*
592 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
593 * stored in CONTEXT.
594 */
595 uasm_i_dmfc0(p, ptr, C0_CONTEXT);
596 uasm_i_dsrl_safe(p, ptr, ptr, 23);
597 # endif
598 UASM_i_LA_mostly(p, tmp, pgdc);
599 uasm_i_daddu(p, ptr, ptr, tmp);
600 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
601 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
602 #else
603 UASM_i_LA_mostly(p, ptr, pgdc);
604 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
605 #endif
606
607 uasm_l_vmalloc_done(l, *p);
608
609 /* get pgd offset in bytes */
610 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
611
612 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
613 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
614 #ifndef __PAGETABLE_PMD_FOLDED
615 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
616 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
617 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
618 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
619 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
620 #endif
621 }
622
623 enum vmalloc64_mode {not_refill, refill};
624 /*
625 * BVADDR is the faulting address, PTR is scratch.
626 * PTR will hold the pgd for vmalloc.
627 */
628 static void __cpuinit
629 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
630 unsigned int bvaddr, unsigned int ptr,
631 enum vmalloc64_mode mode)
632 {
633 long swpd = (long)swapper_pg_dir;
634 int single_insn_swpd;
635 int did_vmalloc_branch = 0;
636
637 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
638
639 uasm_l_vmalloc(l, *p);
640
641 if (mode == refill && check_for_high_segbits) {
642 if (single_insn_swpd) {
643 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
644 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
645 did_vmalloc_branch = 1;
646 /* fall through */
647 } else {
648 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
649 }
650 }
651 if (!did_vmalloc_branch) {
652 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
653 uasm_il_b(p, r, label_vmalloc_done);
654 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
655 } else {
656 UASM_i_LA_mostly(p, ptr, swpd);
657 uasm_il_b(p, r, label_vmalloc_done);
658 if (uasm_in_compat_space_p(swpd))
659 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
660 else
661 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
662 }
663 }
664 if (mode == refill && check_for_high_segbits) {
665 uasm_l_large_segbits_fault(l, *p);
666 /*
667 * We get here if we are an xsseg address, or if we are
668 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
669 *
670 * Ignoring xsseg (assume disabled so would generate
671 * (address errors?), the only remaining possibility
672 * is the upper xuseg addresses. On processors with
673 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
674 * addresses would have taken an address error. We try
675 * to mimic that here by taking a load/istream page
676 * fault.
677 */
678 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
679 uasm_i_jr(p, ptr);
680 uasm_i_nop(p);
681 }
682 }
683
684 #else /* !CONFIG_64BIT */
685
686 /*
687 * TMP and PTR are scratch.
688 * TMP will be clobbered, PTR will hold the pgd entry.
689 */
690 static void __cpuinit __maybe_unused
691 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
692 {
693 long pgdc = (long)pgd_current;
694
695 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
696 #ifdef CONFIG_SMP
697 #ifdef CONFIG_MIPS_MT_SMTC
698 /*
699 * SMTC uses TCBind value as "CPU" index
700 */
701 uasm_i_mfc0(p, ptr, C0_TCBIND);
702 UASM_i_LA_mostly(p, tmp, pgdc);
703 uasm_i_srl(p, ptr, ptr, 19);
704 #else
705 /*
706 * smp_processor_id() << 3 is stored in CONTEXT.
707 */
708 uasm_i_mfc0(p, ptr, C0_CONTEXT);
709 UASM_i_LA_mostly(p, tmp, pgdc);
710 uasm_i_srl(p, ptr, ptr, 23);
711 #endif
712 uasm_i_addu(p, ptr, tmp, ptr);
713 #else
714 UASM_i_LA_mostly(p, ptr, pgdc);
715 #endif
716 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
717 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
718 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
719 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
720 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
721 }
722
723 #endif /* !CONFIG_64BIT */
724
725 static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
726 {
727 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
728 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
729
730 switch (current_cpu_type()) {
731 case CPU_VR41XX:
732 case CPU_VR4111:
733 case CPU_VR4121:
734 case CPU_VR4122:
735 case CPU_VR4131:
736 case CPU_VR4181:
737 case CPU_VR4181A:
738 case CPU_VR4133:
739 shift += 2;
740 break;
741
742 default:
743 break;
744 }
745
746 if (shift)
747 UASM_i_SRL(p, ctx, ctx, shift);
748 uasm_i_andi(p, ctx, ctx, mask);
749 }
750
751 static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
752 {
753 /*
754 * Bug workaround for the Nevada. It seems as if under certain
755 * circumstances the move from cp0_context might produce a
756 * bogus result when the mfc0 instruction and its consumer are
757 * in a different cacheline or a load instruction, probably any
758 * memory reference, is between them.
759 */
760 switch (current_cpu_type()) {
761 case CPU_NEVADA:
762 UASM_i_LW(p, ptr, 0, ptr);
763 GET_CONTEXT(p, tmp); /* get context reg */
764 break;
765
766 default:
767 GET_CONTEXT(p, tmp); /* get context reg */
768 UASM_i_LW(p, ptr, 0, ptr);
769 break;
770 }
771
772 build_adjust_context(p, tmp);
773 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
774 }
775
776 static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
777 unsigned int ptep)
778 {
779 /*
780 * 64bit address support (36bit on a 32bit CPU) in a 32bit
781 * Kernel is a special case. Only a few CPUs use it.
782 */
783 #ifdef CONFIG_64BIT_PHYS_ADDR
784 if (cpu_has_64bits) {
785 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
786 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
787 if (kernel_uses_smartmips_rixi) {
788 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
789 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
790 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
791 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
792 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
793 } else {
794 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
795 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
796 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
797 }
798 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
799 } else {
800 int pte_off_even = sizeof(pte_t) / 2;
801 int pte_off_odd = pte_off_even + sizeof(pte_t);
802
803 /* The pte entries are pre-shifted */
804 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
805 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
806 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
807 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
808 }
809 #else
810 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
811 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
812 if (r45k_bvahwbug())
813 build_tlb_probe_entry(p);
814 if (kernel_uses_smartmips_rixi) {
815 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
816 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
817 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
818 if (r4k_250MHZhwbug())
819 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
820 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
821 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
822 } else {
823 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
824 if (r4k_250MHZhwbug())
825 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
826 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
827 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
828 if (r45k_bvahwbug())
829 uasm_i_mfc0(p, tmp, C0_INDEX);
830 }
831 if (r4k_250MHZhwbug())
832 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
833 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
834 #endif
835 }
836
837 /*
838 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
839 * because EXL == 0. If we wrap, we can also use the 32 instruction
840 * slots before the XTLB refill exception handler which belong to the
841 * unused TLB refill exception.
842 */
843 #define MIPS64_REFILL_INSNS 32
844
845 static void __cpuinit build_r4000_tlb_refill_handler(void)
846 {
847 u32 *p = tlb_handler;
848 struct uasm_label *l = labels;
849 struct uasm_reloc *r = relocs;
850 u32 *f;
851 unsigned int final_len;
852
853 memset(tlb_handler, 0, sizeof(tlb_handler));
854 memset(labels, 0, sizeof(labels));
855 memset(relocs, 0, sizeof(relocs));
856 memset(final_handler, 0, sizeof(final_handler));
857
858 /*
859 * create the plain linear handler
860 */
861 if (bcm1250_m3_war()) {
862 unsigned int segbits = 44;
863
864 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
865 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
866 uasm_i_xor(&p, K0, K0, K1);
867 uasm_i_dsrl_safe(&p, K1, K0, 62);
868 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
869 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
870 uasm_i_or(&p, K0, K0, K1);
871 uasm_il_bnez(&p, &r, K0, label_leave);
872 /* No need for uasm_i_nop */
873 }
874
875 #ifdef CONFIG_64BIT
876 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
877 #else
878 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
879 #endif
880
881 #ifdef CONFIG_HUGETLB_PAGE
882 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
883 #endif
884
885 build_get_ptep(&p, K0, K1);
886 build_update_entries(&p, K0, K1);
887 build_tlb_write_entry(&p, &l, &r, tlb_random);
888 uasm_l_leave(&l, p);
889 uasm_i_eret(&p); /* return from trap */
890
891 #ifdef CONFIG_HUGETLB_PAGE
892 uasm_l_tlb_huge_update(&l, p);
893 UASM_i_LW(&p, K0, 0, K1);
894 build_huge_update_entries(&p, K0, K1);
895 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random);
896 #endif
897
898 #ifdef CONFIG_64BIT
899 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, refill);
900 #endif
901
902 /*
903 * Overflow check: For the 64bit handler, we need at least one
904 * free instruction slot for the wrap-around branch. In worst
905 * case, if the intended insertion point is a delay slot, we
906 * need three, with the second nop'ed and the third being
907 * unused.
908 */
909 /* Loongson2 ebase is different than r4k, we have more space */
910 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
911 if ((p - tlb_handler) > 64)
912 panic("TLB refill handler space exceeded");
913 #else
914 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
915 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
916 && uasm_insn_has_bdelay(relocs,
917 tlb_handler + MIPS64_REFILL_INSNS - 3)))
918 panic("TLB refill handler space exceeded");
919 #endif
920
921 /*
922 * Now fold the handler in the TLB refill handler space.
923 */
924 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
925 f = final_handler;
926 /* Simplest case, just copy the handler. */
927 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
928 final_len = p - tlb_handler;
929 #else /* CONFIG_64BIT */
930 f = final_handler + MIPS64_REFILL_INSNS;
931 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
932 /* Just copy the handler. */
933 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
934 final_len = p - tlb_handler;
935 } else {
936 #if defined(CONFIG_HUGETLB_PAGE)
937 const enum label_id ls = label_tlb_huge_update;
938 #else
939 const enum label_id ls = label_vmalloc;
940 #endif
941 u32 *split;
942 int ov = 0;
943 int i;
944
945 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
946 ;
947 BUG_ON(i == ARRAY_SIZE(labels));
948 split = labels[i].addr;
949
950 /*
951 * See if we have overflown one way or the other.
952 */
953 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
954 split < p - MIPS64_REFILL_INSNS)
955 ov = 1;
956
957 if (ov) {
958 /*
959 * Split two instructions before the end. One
960 * for the branch and one for the instruction
961 * in the delay slot.
962 */
963 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
964
965 /*
966 * If the branch would fall in a delay slot,
967 * we must back up an additional instruction
968 * so that it is no longer in a delay slot.
969 */
970 if (uasm_insn_has_bdelay(relocs, split - 1))
971 split--;
972 }
973 /* Copy first part of the handler. */
974 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
975 f += split - tlb_handler;
976
977 if (ov) {
978 /* Insert branch. */
979 uasm_l_split(&l, final_handler);
980 uasm_il_b(&f, &r, label_split);
981 if (uasm_insn_has_bdelay(relocs, split))
982 uasm_i_nop(&f);
983 else {
984 uasm_copy_handler(relocs, labels,
985 split, split + 1, f);
986 uasm_move_labels(labels, f, f + 1, -1);
987 f++;
988 split++;
989 }
990 }
991
992 /* Copy the rest of the handler. */
993 uasm_copy_handler(relocs, labels, split, p, final_handler);
994 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
995 (p - split);
996 }
997 #endif /* CONFIG_64BIT */
998
999 uasm_resolve_relocs(relocs, labels);
1000 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1001 final_len);
1002
1003 memcpy((void *)ebase, final_handler, 0x100);
1004
1005 dump_handler((u32 *)ebase, 64);
1006 }
1007
1008 /*
1009 * 128 instructions for the fastpath handler is generous and should
1010 * never be exceeded.
1011 */
1012 #define FASTPATH_SIZE 128
1013
1014 u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
1015 u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
1016 u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
1017
1018 static void __cpuinit
1019 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1020 {
1021 #ifdef CONFIG_SMP
1022 # ifdef CONFIG_64BIT_PHYS_ADDR
1023 if (cpu_has_64bits)
1024 uasm_i_lld(p, pte, 0, ptr);
1025 else
1026 # endif
1027 UASM_i_LL(p, pte, 0, ptr);
1028 #else
1029 # ifdef CONFIG_64BIT_PHYS_ADDR
1030 if (cpu_has_64bits)
1031 uasm_i_ld(p, pte, 0, ptr);
1032 else
1033 # endif
1034 UASM_i_LW(p, pte, 0, ptr);
1035 #endif
1036 }
1037
1038 static void __cpuinit
1039 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1040 unsigned int mode)
1041 {
1042 #ifdef CONFIG_64BIT_PHYS_ADDR
1043 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1044 #endif
1045
1046 uasm_i_ori(p, pte, pte, mode);
1047 #ifdef CONFIG_SMP
1048 # ifdef CONFIG_64BIT_PHYS_ADDR
1049 if (cpu_has_64bits)
1050 uasm_i_scd(p, pte, 0, ptr);
1051 else
1052 # endif
1053 UASM_i_SC(p, pte, 0, ptr);
1054
1055 if (r10000_llsc_war())
1056 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1057 else
1058 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1059
1060 # ifdef CONFIG_64BIT_PHYS_ADDR
1061 if (!cpu_has_64bits) {
1062 /* no uasm_i_nop needed */
1063 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1064 uasm_i_ori(p, pte, pte, hwmode);
1065 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1066 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1067 /* no uasm_i_nop needed */
1068 uasm_i_lw(p, pte, 0, ptr);
1069 } else
1070 uasm_i_nop(p);
1071 # else
1072 uasm_i_nop(p);
1073 # endif
1074 #else
1075 # ifdef CONFIG_64BIT_PHYS_ADDR
1076 if (cpu_has_64bits)
1077 uasm_i_sd(p, pte, 0, ptr);
1078 else
1079 # endif
1080 UASM_i_SW(p, pte, 0, ptr);
1081
1082 # ifdef CONFIG_64BIT_PHYS_ADDR
1083 if (!cpu_has_64bits) {
1084 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1085 uasm_i_ori(p, pte, pte, hwmode);
1086 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1087 uasm_i_lw(p, pte, 0, ptr);
1088 }
1089 # endif
1090 #endif
1091 }
1092
1093 /*
1094 * Check if PTE is present, if not then jump to LABEL. PTR points to
1095 * the page table where this PTE is located, PTE will be re-loaded
1096 * with it's original value.
1097 */
1098 static void __cpuinit
1099 build_pte_present(u32 **p, struct uasm_reloc **r,
1100 unsigned int pte, unsigned int ptr, enum label_id lid)
1101 {
1102 if (kernel_uses_smartmips_rixi) {
1103 uasm_i_andi(p, pte, pte, _PAGE_PRESENT);
1104 uasm_il_beqz(p, r, pte, lid);
1105 } else {
1106 uasm_i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1107 uasm_i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1108 uasm_il_bnez(p, r, pte, lid);
1109 }
1110 iPTE_LW(p, pte, ptr);
1111 }
1112
1113 /* Make PTE valid, store result in PTR. */
1114 static void __cpuinit
1115 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1116 unsigned int ptr)
1117 {
1118 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1119
1120 iPTE_SW(p, r, pte, ptr, mode);
1121 }
1122
1123 /*
1124 * Check if PTE can be written to, if not branch to LABEL. Regardless
1125 * restore PTE with value from PTR when done.
1126 */
1127 static void __cpuinit
1128 build_pte_writable(u32 **p, struct uasm_reloc **r,
1129 unsigned int pte, unsigned int ptr, enum label_id lid)
1130 {
1131 uasm_i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1132 uasm_i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1133 uasm_il_bnez(p, r, pte, lid);
1134 iPTE_LW(p, pte, ptr);
1135 }
1136
1137 /* Make PTE writable, update software status bits as well, then store
1138 * at PTR.
1139 */
1140 static void __cpuinit
1141 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1142 unsigned int ptr)
1143 {
1144 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1145 | _PAGE_DIRTY);
1146
1147 iPTE_SW(p, r, pte, ptr, mode);
1148 }
1149
1150 /*
1151 * Check if PTE can be modified, if not branch to LABEL. Regardless
1152 * restore PTE with value from PTR when done.
1153 */
1154 static void __cpuinit
1155 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1156 unsigned int pte, unsigned int ptr, enum label_id lid)
1157 {
1158 uasm_i_andi(p, pte, pte, _PAGE_WRITE);
1159 uasm_il_beqz(p, r, pte, lid);
1160 iPTE_LW(p, pte, ptr);
1161 }
1162
1163 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1164 /*
1165 * R3000 style TLB load/store/modify handlers.
1166 */
1167
1168 /*
1169 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1170 * Then it returns.
1171 */
1172 static void __cpuinit
1173 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1174 {
1175 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1176 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1177 uasm_i_tlbwi(p);
1178 uasm_i_jr(p, tmp);
1179 uasm_i_rfe(p); /* branch delay */
1180 }
1181
1182 /*
1183 * This places the pte into ENTRYLO0 and writes it with tlbwi
1184 * or tlbwr as appropriate. This is because the index register
1185 * may have the probe fail bit set as a result of a trap on a
1186 * kseg2 access, i.e. without refill. Then it returns.
1187 */
1188 static void __cpuinit
1189 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1190 struct uasm_reloc **r, unsigned int pte,
1191 unsigned int tmp)
1192 {
1193 uasm_i_mfc0(p, tmp, C0_INDEX);
1194 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1195 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1196 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1197 uasm_i_tlbwi(p); /* cp0 delay */
1198 uasm_i_jr(p, tmp);
1199 uasm_i_rfe(p); /* branch delay */
1200 uasm_l_r3000_write_probe_fail(l, *p);
1201 uasm_i_tlbwr(p); /* cp0 delay */
1202 uasm_i_jr(p, tmp);
1203 uasm_i_rfe(p); /* branch delay */
1204 }
1205
1206 static void __cpuinit
1207 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1208 unsigned int ptr)
1209 {
1210 long pgdc = (long)pgd_current;
1211
1212 uasm_i_mfc0(p, pte, C0_BADVADDR);
1213 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1214 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1215 uasm_i_srl(p, pte, pte, 22); /* load delay */
1216 uasm_i_sll(p, pte, pte, 2);
1217 uasm_i_addu(p, ptr, ptr, pte);
1218 uasm_i_mfc0(p, pte, C0_CONTEXT);
1219 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1220 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1221 uasm_i_addu(p, ptr, ptr, pte);
1222 uasm_i_lw(p, pte, 0, ptr);
1223 uasm_i_tlbp(p); /* load delay */
1224 }
1225
1226 static void __cpuinit build_r3000_tlb_load_handler(void)
1227 {
1228 u32 *p = handle_tlbl;
1229 struct uasm_label *l = labels;
1230 struct uasm_reloc *r = relocs;
1231
1232 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1233 memset(labels, 0, sizeof(labels));
1234 memset(relocs, 0, sizeof(relocs));
1235
1236 build_r3000_tlbchange_handler_head(&p, K0, K1);
1237 build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
1238 uasm_i_nop(&p); /* load delay */
1239 build_make_valid(&p, &r, K0, K1);
1240 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1241
1242 uasm_l_nopage_tlbl(&l, p);
1243 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1244 uasm_i_nop(&p);
1245
1246 if ((p - handle_tlbl) > FASTPATH_SIZE)
1247 panic("TLB load handler fastpath space exceeded");
1248
1249 uasm_resolve_relocs(relocs, labels);
1250 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1251 (unsigned int)(p - handle_tlbl));
1252
1253 dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1254 }
1255
1256 static void __cpuinit build_r3000_tlb_store_handler(void)
1257 {
1258 u32 *p = handle_tlbs;
1259 struct uasm_label *l = labels;
1260 struct uasm_reloc *r = relocs;
1261
1262 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1263 memset(labels, 0, sizeof(labels));
1264 memset(relocs, 0, sizeof(relocs));
1265
1266 build_r3000_tlbchange_handler_head(&p, K0, K1);
1267 build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
1268 uasm_i_nop(&p); /* load delay */
1269 build_make_write(&p, &r, K0, K1);
1270 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1271
1272 uasm_l_nopage_tlbs(&l, p);
1273 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1274 uasm_i_nop(&p);
1275
1276 if ((p - handle_tlbs) > FASTPATH_SIZE)
1277 panic("TLB store handler fastpath space exceeded");
1278
1279 uasm_resolve_relocs(relocs, labels);
1280 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1281 (unsigned int)(p - handle_tlbs));
1282
1283 dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
1284 }
1285
1286 static void __cpuinit build_r3000_tlb_modify_handler(void)
1287 {
1288 u32 *p = handle_tlbm;
1289 struct uasm_label *l = labels;
1290 struct uasm_reloc *r = relocs;
1291
1292 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1293 memset(labels, 0, sizeof(labels));
1294 memset(relocs, 0, sizeof(relocs));
1295
1296 build_r3000_tlbchange_handler_head(&p, K0, K1);
1297 build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
1298 uasm_i_nop(&p); /* load delay */
1299 build_make_write(&p, &r, K0, K1);
1300 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1301
1302 uasm_l_nopage_tlbm(&l, p);
1303 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1304 uasm_i_nop(&p);
1305
1306 if ((p - handle_tlbm) > FASTPATH_SIZE)
1307 panic("TLB modify handler fastpath space exceeded");
1308
1309 uasm_resolve_relocs(relocs, labels);
1310 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1311 (unsigned int)(p - handle_tlbm));
1312
1313 dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
1314 }
1315 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1316
1317 /*
1318 * R4000 style TLB load/store/modify handlers.
1319 */
1320 static void __cpuinit
1321 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1322 struct uasm_reloc **r, unsigned int pte,
1323 unsigned int ptr)
1324 {
1325 #ifdef CONFIG_64BIT
1326 build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
1327 #else
1328 build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
1329 #endif
1330
1331 #ifdef CONFIG_HUGETLB_PAGE
1332 /*
1333 * For huge tlb entries, pmd doesn't contain an address but
1334 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1335 * see if we need to jump to huge tlb processing.
1336 */
1337 build_is_huge_pte(p, r, pte, ptr, label_tlb_huge_update);
1338 #endif
1339
1340 UASM_i_MFC0(p, pte, C0_BADVADDR);
1341 UASM_i_LW(p, ptr, 0, ptr);
1342 UASM_i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1343 uasm_i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1344 UASM_i_ADDU(p, ptr, ptr, pte);
1345
1346 #ifdef CONFIG_SMP
1347 uasm_l_smp_pgtable_change(l, *p);
1348 #endif
1349 iPTE_LW(p, pte, ptr); /* get even pte */
1350 if (!m4kc_tlbp_war())
1351 build_tlb_probe_entry(p);
1352 }
1353
1354 static void __cpuinit
1355 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1356 struct uasm_reloc **r, unsigned int tmp,
1357 unsigned int ptr)
1358 {
1359 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1360 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1361 build_update_entries(p, tmp, ptr);
1362 build_tlb_write_entry(p, l, r, tlb_indexed);
1363 uasm_l_leave(l, *p);
1364 uasm_i_eret(p); /* return from trap */
1365
1366 #ifdef CONFIG_64BIT
1367 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1368 #endif
1369 }
1370
1371 static void __cpuinit build_r4000_tlb_load_handler(void)
1372 {
1373 u32 *p = handle_tlbl;
1374 struct uasm_label *l = labels;
1375 struct uasm_reloc *r = relocs;
1376
1377 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1378 memset(labels, 0, sizeof(labels));
1379 memset(relocs, 0, sizeof(relocs));
1380
1381 if (bcm1250_m3_war()) {
1382 unsigned int segbits = 44;
1383
1384 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1385 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1386 uasm_i_xor(&p, K0, K0, K1);
1387 uasm_i_dsrl_safe(&p, K1, K0, 62);
1388 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1389 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1390 uasm_i_or(&p, K0, K0, K1);
1391 uasm_il_bnez(&p, &r, K0, label_leave);
1392 /* No need for uasm_i_nop */
1393 }
1394
1395 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1396 build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
1397 if (m4kc_tlbp_war())
1398 build_tlb_probe_entry(&p);
1399
1400 if (kernel_uses_smartmips_rixi) {
1401 /*
1402 * If the page is not _PAGE_VALID, RI or XI could not
1403 * have triggered it. Skip the expensive test..
1404 */
1405 uasm_i_andi(&p, K0, K0, _PAGE_VALID);
1406 uasm_il_beqz(&p, &r, K0, label_tlbl_goaround1);
1407 uasm_i_nop(&p);
1408
1409 uasm_i_tlbr(&p);
1410 /* Examine entrylo 0 or 1 based on ptr. */
1411 uasm_i_andi(&p, K0, K1, sizeof(pte_t));
1412 uasm_i_beqz(&p, K0, 8);
1413
1414 UASM_i_MFC0(&p, K0, C0_ENTRYLO0); /* load it in the delay slot*/
1415 UASM_i_MFC0(&p, K0, C0_ENTRYLO1); /* load it if ptr is odd */
1416 /*
1417 * If the entryLo (now in K0) is valid (bit 1), RI or
1418 * XI must have triggered it.
1419 */
1420 uasm_i_andi(&p, K0, K0, 2);
1421 uasm_il_bnez(&p, &r, K0, label_nopage_tlbl);
1422
1423 uasm_l_tlbl_goaround1(&l, p);
1424 /* Reload the PTE value */
1425 iPTE_LW(&p, K0, K1);
1426 }
1427 build_make_valid(&p, &r, K0, K1);
1428 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1429
1430 #ifdef CONFIG_HUGETLB_PAGE
1431 /*
1432 * This is the entry point when build_r4000_tlbchange_handler_head
1433 * spots a huge page.
1434 */
1435 uasm_l_tlb_huge_update(&l, p);
1436 iPTE_LW(&p, K0, K1);
1437 build_pte_present(&p, &r, K0, K1, label_nopage_tlbl);
1438 build_tlb_probe_entry(&p);
1439
1440 if (kernel_uses_smartmips_rixi) {
1441 /*
1442 * If the page is not _PAGE_VALID, RI or XI could not
1443 * have triggered it. Skip the expensive test..
1444 */
1445 uasm_i_andi(&p, K0, K0, _PAGE_VALID);
1446 uasm_il_beqz(&p, &r, K0, label_tlbl_goaround2);
1447 uasm_i_nop(&p);
1448
1449 uasm_i_tlbr(&p);
1450 /* Examine entrylo 0 or 1 based on ptr. */
1451 uasm_i_andi(&p, K0, K1, sizeof(pte_t));
1452 uasm_i_beqz(&p, K0, 8);
1453
1454 UASM_i_MFC0(&p, K0, C0_ENTRYLO0); /* load it in the delay slot*/
1455 UASM_i_MFC0(&p, K0, C0_ENTRYLO1); /* load it if ptr is odd */
1456 /*
1457 * If the entryLo (now in K0) is valid (bit 1), RI or
1458 * XI must have triggered it.
1459 */
1460 uasm_i_andi(&p, K0, K0, 2);
1461 uasm_il_beqz(&p, &r, K0, label_tlbl_goaround2);
1462 /* Reload the PTE value */
1463 iPTE_LW(&p, K0, K1);
1464
1465 /*
1466 * We clobbered C0_PAGEMASK, restore it. On the other branch
1467 * it is restored in build_huge_tlb_write_entry.
1468 */
1469 build_restore_pagemask(&p, &r, K0, label_nopage_tlbl);
1470
1471 uasm_l_tlbl_goaround2(&l, p);
1472 }
1473 uasm_i_ori(&p, K0, K0, (_PAGE_ACCESSED | _PAGE_VALID));
1474 build_huge_handler_tail(&p, &r, &l, K0, K1);
1475 #endif
1476
1477 uasm_l_nopage_tlbl(&l, p);
1478 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1479 uasm_i_nop(&p);
1480
1481 if ((p - handle_tlbl) > FASTPATH_SIZE)
1482 panic("TLB load handler fastpath space exceeded");
1483
1484 uasm_resolve_relocs(relocs, labels);
1485 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1486 (unsigned int)(p - handle_tlbl));
1487
1488 dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1489 }
1490
1491 static void __cpuinit build_r4000_tlb_store_handler(void)
1492 {
1493 u32 *p = handle_tlbs;
1494 struct uasm_label *l = labels;
1495 struct uasm_reloc *r = relocs;
1496
1497 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1498 memset(labels, 0, sizeof(labels));
1499 memset(relocs, 0, sizeof(relocs));
1500
1501 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1502 build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
1503 if (m4kc_tlbp_war())
1504 build_tlb_probe_entry(&p);
1505 build_make_write(&p, &r, K0, K1);
1506 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1507
1508 #ifdef CONFIG_HUGETLB_PAGE
1509 /*
1510 * This is the entry point when
1511 * build_r4000_tlbchange_handler_head spots a huge page.
1512 */
1513 uasm_l_tlb_huge_update(&l, p);
1514 iPTE_LW(&p, K0, K1);
1515 build_pte_writable(&p, &r, K0, K1, label_nopage_tlbs);
1516 build_tlb_probe_entry(&p);
1517 uasm_i_ori(&p, K0, K0,
1518 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
1519 build_huge_handler_tail(&p, &r, &l, K0, K1);
1520 #endif
1521
1522 uasm_l_nopage_tlbs(&l, p);
1523 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1524 uasm_i_nop(&p);
1525
1526 if ((p - handle_tlbs) > FASTPATH_SIZE)
1527 panic("TLB store handler fastpath space exceeded");
1528
1529 uasm_resolve_relocs(relocs, labels);
1530 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1531 (unsigned int)(p - handle_tlbs));
1532
1533 dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
1534 }
1535
1536 static void __cpuinit build_r4000_tlb_modify_handler(void)
1537 {
1538 u32 *p = handle_tlbm;
1539 struct uasm_label *l = labels;
1540 struct uasm_reloc *r = relocs;
1541
1542 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1543 memset(labels, 0, sizeof(labels));
1544 memset(relocs, 0, sizeof(relocs));
1545
1546 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1547 build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
1548 if (m4kc_tlbp_war())
1549 build_tlb_probe_entry(&p);
1550 /* Present and writable bits set, set accessed and dirty bits. */
1551 build_make_write(&p, &r, K0, K1);
1552 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1553
1554 #ifdef CONFIG_HUGETLB_PAGE
1555 /*
1556 * This is the entry point when
1557 * build_r4000_tlbchange_handler_head spots a huge page.
1558 */
1559 uasm_l_tlb_huge_update(&l, p);
1560 iPTE_LW(&p, K0, K1);
1561 build_pte_modifiable(&p, &r, K0, K1, label_nopage_tlbm);
1562 build_tlb_probe_entry(&p);
1563 uasm_i_ori(&p, K0, K0,
1564 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
1565 build_huge_handler_tail(&p, &r, &l, K0, K1);
1566 #endif
1567
1568 uasm_l_nopage_tlbm(&l, p);
1569 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1570 uasm_i_nop(&p);
1571
1572 if ((p - handle_tlbm) > FASTPATH_SIZE)
1573 panic("TLB modify handler fastpath space exceeded");
1574
1575 uasm_resolve_relocs(relocs, labels);
1576 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1577 (unsigned int)(p - handle_tlbm));
1578
1579 dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
1580 }
1581
1582 void __cpuinit build_tlb_refill_handler(void)
1583 {
1584 /*
1585 * The refill handler is generated per-CPU, multi-node systems
1586 * may have local storage for it. The other handlers are only
1587 * needed once.
1588 */
1589 static int run_once = 0;
1590
1591 #ifdef CONFIG_64BIT
1592 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1593 #endif
1594
1595 switch (current_cpu_type()) {
1596 case CPU_R2000:
1597 case CPU_R3000:
1598 case CPU_R3000A:
1599 case CPU_R3081E:
1600 case CPU_TX3912:
1601 case CPU_TX3922:
1602 case CPU_TX3927:
1603 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1604 build_r3000_tlb_refill_handler();
1605 if (!run_once) {
1606 build_r3000_tlb_load_handler();
1607 build_r3000_tlb_store_handler();
1608 build_r3000_tlb_modify_handler();
1609 run_once++;
1610 }
1611 #else
1612 panic("No R3000 TLB refill handler");
1613 #endif
1614 break;
1615
1616 case CPU_R6000:
1617 case CPU_R6000A:
1618 panic("No R6000 TLB refill handler yet");
1619 break;
1620
1621 case CPU_R8000:
1622 panic("No R8000 TLB refill handler yet");
1623 break;
1624
1625 default:
1626 build_r4000_tlb_refill_handler();
1627 if (!run_once) {
1628 build_r4000_tlb_load_handler();
1629 build_r4000_tlb_store_handler();
1630 build_r4000_tlb_modify_handler();
1631 run_once++;
1632 }
1633 }
1634 }
1635
1636 void __cpuinit flush_tlb_handlers(void)
1637 {
1638 local_flush_icache_range((unsigned long)handle_tlbl,
1639 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
1640 local_flush_icache_range((unsigned long)handle_tlbs,
1641 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
1642 local_flush_icache_range((unsigned long)handle_tlbm,
1643 (unsigned long)handle_tlbm + sizeof(handle_tlbm));
1644 }