]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/mm/uasm-mips.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / arch / mips / mm / uasm-mips.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * A small micro-assembler. It is intentionally kept simple, does only
7 * support a subset of instructions, and does not try to hide pipeline
8 * effects like branch delay slots.
9 *
10 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
11 * Copyright (C) 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
13 * Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18
19 #include <asm/inst.h>
20 #include <asm/elf.h>
21 #include <asm/bugs.h>
22 #define UASM_ISA _UASM_ISA_CLASSIC
23 #include <asm/uasm.h>
24
25 #define RS_MASK 0x1f
26 #define RS_SH 21
27 #define RT_MASK 0x1f
28 #define RT_SH 16
29 #define SCIMM_MASK 0xfffff
30 #define SCIMM_SH 6
31
32 /* This macro sets the non-variable bits of an instruction. */
33 #define M(a, b, c, d, e, f) \
34 ((a) << OP_SH \
35 | (b) << RS_SH \
36 | (c) << RT_SH \
37 | (d) << RD_SH \
38 | (e) << RE_SH \
39 | (f) << FUNC_SH)
40
41 /* This macro sets the non-variable bits of an R6 instruction. */
42 #define M6(a, b, c, d, e) \
43 ((a) << OP_SH \
44 | (b) << RS_SH \
45 | (c) << RT_SH \
46 | (d) << SIMM9_SH \
47 | (e) << FUNC_SH)
48
49 #include "uasm.c"
50
51 static const struct insn insn_table[insn_invalid] = {
52 [insn_addiu] = {M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
53 [insn_addu] = {M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD},
54 [insn_and] = {M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD},
55 [insn_andi] = {M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
56 [insn_bbit0] = {M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
57 [insn_bbit1] = {M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
58 [insn_beq] = {M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
59 [insn_beql] = {M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
60 [insn_bgez] = {M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM},
61 [insn_bgezl] = {M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM},
62 [insn_bgtz] = {M(bgtz_op, 0, 0, 0, 0, 0), RS | BIMM},
63 [insn_blez] = {M(blez_op, 0, 0, 0, 0, 0), RS | BIMM},
64 [insn_bltz] = {M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM},
65 [insn_bltzl] = {M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM},
66 [insn_bne] = {M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
67 [insn_break] = {M(spec_op, 0, 0, 0, 0, break_op), SCIMM},
68 #ifndef CONFIG_CPU_MIPSR6
69 [insn_cache] = {M(cache_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
70 #else
71 [insn_cache] = {M6(spec3_op, 0, 0, 0, cache6_op), RS | RT | SIMM9},
72 #endif
73 [insn_cfc1] = {M(cop1_op, cfc_op, 0, 0, 0, 0), RT | RD},
74 [insn_cfcmsa] = {M(msa_op, 0, msa_cfc_op, 0, 0, msa_elm_op), RD | RE},
75 [insn_ctc1] = {M(cop1_op, ctc_op, 0, 0, 0, 0), RT | RD},
76 [insn_ctcmsa] = {M(msa_op, 0, msa_ctc_op, 0, 0, msa_elm_op), RD | RE},
77 [insn_daddiu] = {M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
78 [insn_daddu] = {M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD},
79 [insn_ddivu] = {M(spec_op, 0, 0, 0, 0, ddivu_op), RS | RT},
80 [insn_di] = {M(cop0_op, mfmc0_op, 0, 12, 0, 0), RT},
81 [insn_dins] = {M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE},
82 [insn_dinsm] = {M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE},
83 [insn_dinsu] = {M(spec3_op, 0, 0, 0, 0, dinsu_op), RS | RT | RD | RE},
84 [insn_divu] = {M(spec_op, 0, 0, 0, 0, divu_op), RS | RT},
85 [insn_dmfc0] = {M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
86 [insn_dmtc0] = {M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
87 [insn_dmultu] = {M(spec_op, 0, 0, 0, 0, dmultu_op), RS | RT},
88 [insn_drotr] = {M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE},
89 [insn_drotr32] = {M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE},
90 [insn_dsbh] = {M(spec3_op, 0, 0, 0, dsbh_op, dbshfl_op), RT | RD},
91 [insn_dshd] = {M(spec3_op, 0, 0, 0, dshd_op, dbshfl_op), RT | RD},
92 [insn_dsll] = {M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE},
93 [insn_dsll32] = {M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE},
94 [insn_dsllv] = {M(spec_op, 0, 0, 0, 0, dsllv_op), RS | RT | RD},
95 [insn_dsra] = {M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE},
96 [insn_dsra32] = {M(spec_op, 0, 0, 0, 0, dsra32_op), RT | RD | RE},
97 [insn_dsrav] = {M(spec_op, 0, 0, 0, 0, dsrav_op), RS | RT | RD},
98 [insn_dsrl] = {M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE},
99 [insn_dsrl32] = {M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE},
100 [insn_dsrlv] = {M(spec_op, 0, 0, 0, 0, dsrlv_op), RS | RT | RD},
101 [insn_dsubu] = {M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD},
102 [insn_eret] = {M(cop0_op, cop_op, 0, 0, 0, eret_op), 0},
103 [insn_ext] = {M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE},
104 [insn_ins] = {M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE},
105 [insn_j] = {M(j_op, 0, 0, 0, 0, 0), JIMM},
106 [insn_jal] = {M(jal_op, 0, 0, 0, 0, 0), JIMM},
107 [insn_jalr] = {M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD},
108 #ifndef CONFIG_CPU_MIPSR6
109 [insn_jr] = {M(spec_op, 0, 0, 0, 0, jr_op), RS},
110 #else
111 [insn_jr] = {M(spec_op, 0, 0, 0, 0, jalr_op), RS},
112 #endif
113 [insn_lb] = {M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
114 [insn_lbu] = {M(lbu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
115 [insn_ld] = {M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
116 [insn_lddir] = {M(lwc2_op, 0, 0, 0, lddir_op, mult_op), RS | RT | RD},
117 [insn_ldpte] = {M(lwc2_op, 0, 0, 0, ldpte_op, mult_op), RS | RD},
118 [insn_ldx] = {M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD},
119 [insn_lh] = {M(lh_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
120 [insn_lhu] = {M(lhu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
121 #ifndef CONFIG_CPU_MIPSR6
122 [insn_ll] = {M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
123 [insn_lld] = {M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
124 #else
125 [insn_ll] = {M6(spec3_op, 0, 0, 0, ll6_op), RS | RT | SIMM9},
126 [insn_lld] = {M6(spec3_op, 0, 0, 0, lld6_op), RS | RT | SIMM9},
127 #endif
128 [insn_lui] = {M(lui_op, 0, 0, 0, 0, 0), RT | SIMM},
129 [insn_lw] = {M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
130 [insn_lwu] = {M(lwu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
131 [insn_lwx] = {M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD},
132 [insn_mfc0] = {M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET},
133 [insn_mfhc0] = {M(cop0_op, mfhc0_op, 0, 0, 0, 0), RT | RD | SET},
134 [insn_mfhi] = {M(spec_op, 0, 0, 0, 0, mfhi_op), RD},
135 [insn_mflo] = {M(spec_op, 0, 0, 0, 0, mflo_op), RD},
136 [insn_movn] = {M(spec_op, 0, 0, 0, 0, movn_op), RS | RT | RD},
137 [insn_movz] = {M(spec_op, 0, 0, 0, 0, movz_op), RS | RT | RD},
138 [insn_mtc0] = {M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET},
139 [insn_mthc0] = {M(cop0_op, mthc0_op, 0, 0, 0, 0), RT | RD | SET},
140 [insn_mthi] = {M(spec_op, 0, 0, 0, 0, mthi_op), RS},
141 [insn_mtlo] = {M(spec_op, 0, 0, 0, 0, mtlo_op), RS},
142 #ifndef CONFIG_CPU_MIPSR6
143 [insn_mul] = {M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD},
144 #else
145 [insn_mul] = {M(spec_op, 0, 0, 0, mult_mul_op, mult_op), RS | RT | RD},
146 #endif
147 [insn_multu] = {M(spec_op, 0, 0, 0, 0, multu_op), RS | RT},
148 [insn_nor] = {M(spec_op, 0, 0, 0, 0, nor_op), RS | RT | RD},
149 [insn_or] = {M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD},
150 [insn_ori] = {M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
151 #ifndef CONFIG_CPU_MIPSR6
152 [insn_pref] = {M(pref_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
153 #else
154 [insn_pref] = {M6(spec3_op, 0, 0, 0, pref6_op), RS | RT | SIMM9},
155 #endif
156 [insn_rfe] = {M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0},
157 [insn_rotr] = {M(spec_op, 1, 0, 0, 0, srl_op), RT | RD | RE},
158 [insn_sb] = {M(sb_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
159 #ifndef CONFIG_CPU_MIPSR6
160 [insn_sc] = {M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
161 [insn_scd] = {M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
162 #else
163 [insn_sc] = {M6(spec3_op, 0, 0, 0, sc6_op), RS | RT | SIMM9},
164 [insn_scd] = {M6(spec3_op, 0, 0, 0, scd6_op), RS | RT | SIMM9},
165 #endif
166 [insn_sd] = {M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
167 [insn_sh] = {M(sh_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
168 [insn_sll] = {M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE},
169 [insn_sllv] = {M(spec_op, 0, 0, 0, 0, sllv_op), RS | RT | RD},
170 [insn_slt] = {M(spec_op, 0, 0, 0, 0, slt_op), RS | RT | RD},
171 [insn_slti] = {M(slti_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
172 [insn_sltiu] = {M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
173 [insn_sltu] = {M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD},
174 [insn_sra] = {M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE},
175 [insn_srl] = {M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE},
176 [insn_srlv] = {M(spec_op, 0, 0, 0, 0, srlv_op), RS | RT | RD},
177 [insn_subu] = {M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD},
178 [insn_sw] = {M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM},
179 [insn_sync] = {M(spec_op, 0, 0, 0, 0, sync_op), RE},
180 [insn_syscall] = {M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
181 [insn_tlbp] = {M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0},
182 [insn_tlbr] = {M(cop0_op, cop_op, 0, 0, 0, tlbr_op), 0},
183 [insn_tlbwi] = {M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0},
184 [insn_tlbwr] = {M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0},
185 [insn_wait] = {M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM},
186 [insn_wsbh] = {M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD},
187 [insn_xor] = {M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD},
188 [insn_xori] = {M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM},
189 [insn_yield] = {M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD},
190 };
191
192 #undef M
193
194 static inline u32 build_bimm(s32 arg)
195 {
196 WARN(arg > 0x1ffff || arg < -0x20000,
197 KERN_WARNING "Micro-assembler field overflow\n");
198
199 WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
200
201 return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
202 }
203
204 static inline u32 build_jimm(u32 arg)
205 {
206 WARN(arg & ~(JIMM_MASK << 2),
207 KERN_WARNING "Micro-assembler field overflow\n");
208
209 return (arg >> 2) & JIMM_MASK;
210 }
211
212 /*
213 * The order of opcode arguments is implicitly left to right,
214 * starting with RS and ending with FUNC or IMM.
215 */
216 static void build_insn(u32 **buf, enum opcode opc, ...)
217 {
218 const struct insn *ip;
219 va_list ap;
220 u32 op;
221
222 if (opc < 0 || opc >= insn_invalid ||
223 (opc == insn_daddiu && r4k_daddiu_bug()) ||
224 (insn_table[opc].match == 0 && insn_table[opc].fields == 0))
225 panic("Unsupported Micro-assembler instruction %d", opc);
226
227 ip = &insn_table[opc];
228
229 op = ip->match;
230 va_start(ap, opc);
231 if (ip->fields & RS)
232 op |= build_rs(va_arg(ap, u32));
233 if (ip->fields & RT)
234 op |= build_rt(va_arg(ap, u32));
235 if (ip->fields & RD)
236 op |= build_rd(va_arg(ap, u32));
237 if (ip->fields & RE)
238 op |= build_re(va_arg(ap, u32));
239 if (ip->fields & SIMM)
240 op |= build_simm(va_arg(ap, s32));
241 if (ip->fields & UIMM)
242 op |= build_uimm(va_arg(ap, u32));
243 if (ip->fields & BIMM)
244 op |= build_bimm(va_arg(ap, s32));
245 if (ip->fields & JIMM)
246 op |= build_jimm(va_arg(ap, u32));
247 if (ip->fields & FUNC)
248 op |= build_func(va_arg(ap, u32));
249 if (ip->fields & SET)
250 op |= build_set(va_arg(ap, u32));
251 if (ip->fields & SCIMM)
252 op |= build_scimm(va_arg(ap, u32));
253 if (ip->fields & SIMM9)
254 op |= build_scimm9(va_arg(ap, u32));
255 va_end(ap);
256
257 **buf = op;
258 (*buf)++;
259 }
260
261 static inline void
262 __resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
263 {
264 long laddr = (long)lab->addr;
265 long raddr = (long)rel->addr;
266
267 switch (rel->type) {
268 case R_MIPS_PC16:
269 *rel->addr |= build_bimm(laddr - (raddr + 4));
270 break;
271
272 default:
273 panic("Unsupported Micro-assembler relocation %d",
274 rel->type);
275 }
276 }