]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/mips/netlogic/xlp/nlm_hal.c
7e0d22419e9ba34509d5831ee7c8f9643339d887
[mirror_ubuntu-artful-kernel.git] / arch / mips / netlogic / xlp / nlm_hal.c
1 /*
2 * Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights
3 * reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the NetLogic
9 * license below:
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 *
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in
19 * the documentation and/or other materials provided with the
20 * distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
31 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
32 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <linux/types.h>
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/delay.h>
39
40 #include <asm/mipsregs.h>
41 #include <asm/time.h>
42
43 #include <asm/netlogic/common.h>
44 #include <asm/netlogic/haldefs.h>
45 #include <asm/netlogic/xlp-hal/iomap.h>
46 #include <asm/netlogic/xlp-hal/xlp.h>
47 #include <asm/netlogic/xlp-hal/bridge.h>
48 #include <asm/netlogic/xlp-hal/pic.h>
49 #include <asm/netlogic/xlp-hal/sys.h>
50
51 /* Main initialization */
52 void nlm_node_init(int node)
53 {
54 struct nlm_soc_info *nodep;
55
56 nodep = nlm_get_node(node);
57 if (node == 0)
58 nodep->coremask = 1; /* node 0, boot cpu */
59 nodep->sysbase = nlm_get_sys_regbase(node);
60 nodep->picbase = nlm_get_pic_regbase(node);
61 nodep->ebase = read_c0_ebase() & (~((1 << 12) - 1));
62 if (cpu_is_xlp9xx())
63 nodep->socbus = xlp9xx_get_socbus(node);
64 else
65 nodep->socbus = 0;
66 spin_lock_init(&nodep->piclock);
67 }
68
69 static int xlp9xx_irq_to_irt(int irq)
70 {
71 switch (irq) {
72 case PIC_GPIO_IRQ:
73 return 12;
74 case PIC_9XX_XHCI_0_IRQ:
75 return 114;
76 case PIC_9XX_XHCI_1_IRQ:
77 return 115;
78 case PIC_UART_0_IRQ:
79 return 133;
80 case PIC_UART_1_IRQ:
81 return 134;
82 case PIC_SATA_IRQ:
83 return 143;
84 case PIC_SPI_IRQ:
85 return 152;
86 case PIC_MMC_IRQ:
87 return 153;
88 case PIC_PCIE_LINK_LEGACY_IRQ(0):
89 case PIC_PCIE_LINK_LEGACY_IRQ(1):
90 case PIC_PCIE_LINK_LEGACY_IRQ(2):
91 case PIC_PCIE_LINK_LEGACY_IRQ(3):
92 return 191 + irq - PIC_PCIE_LINK_LEGACY_IRQ_BASE;
93 }
94 return -1;
95 }
96
97 static int xlp_irq_to_irt(int irq)
98 {
99 uint64_t pcibase;
100 int devoff, irt;
101
102 devoff = 0;
103 switch (irq) {
104 case PIC_UART_0_IRQ:
105 devoff = XLP_IO_UART0_OFFSET(0);
106 break;
107 case PIC_UART_1_IRQ:
108 devoff = XLP_IO_UART1_OFFSET(0);
109 break;
110 case PIC_MMC_IRQ:
111 devoff = XLP_IO_MMC_OFFSET(0);
112 break;
113 case PIC_I2C_0_IRQ: /* I2C will be fixed up */
114 case PIC_I2C_1_IRQ:
115 case PIC_I2C_2_IRQ:
116 case PIC_I2C_3_IRQ:
117 if (cpu_is_xlpii())
118 devoff = XLP2XX_IO_I2C_OFFSET(0);
119 else
120 devoff = XLP_IO_I2C0_OFFSET(0);
121 break;
122 case PIC_SATA_IRQ:
123 devoff = XLP_IO_SATA_OFFSET(0);
124 break;
125 case PIC_GPIO_IRQ:
126 devoff = XLP_IO_GPIO_OFFSET(0);
127 break;
128 case PIC_NAND_IRQ:
129 devoff = XLP_IO_NAND_OFFSET(0);
130 break;
131 case PIC_SPI_IRQ:
132 devoff = XLP_IO_SPI_OFFSET(0);
133 break;
134 default:
135 if (cpu_is_xlpii()) {
136 switch (irq) {
137 /* XLP2XX has three XHCI USB controller */
138 case PIC_2XX_XHCI_0_IRQ:
139 devoff = XLP2XX_IO_USB_XHCI0_OFFSET(0);
140 break;
141 case PIC_2XX_XHCI_1_IRQ:
142 devoff = XLP2XX_IO_USB_XHCI1_OFFSET(0);
143 break;
144 case PIC_2XX_XHCI_2_IRQ:
145 devoff = XLP2XX_IO_USB_XHCI2_OFFSET(0);
146 break;
147 }
148 } else {
149 switch (irq) {
150 case PIC_EHCI_0_IRQ:
151 devoff = XLP_IO_USB_EHCI0_OFFSET(0);
152 break;
153 case PIC_EHCI_1_IRQ:
154 devoff = XLP_IO_USB_EHCI1_OFFSET(0);
155 break;
156 case PIC_OHCI_0_IRQ:
157 devoff = XLP_IO_USB_OHCI0_OFFSET(0);
158 break;
159 case PIC_OHCI_1_IRQ:
160 devoff = XLP_IO_USB_OHCI1_OFFSET(0);
161 break;
162 case PIC_OHCI_2_IRQ:
163 devoff = XLP_IO_USB_OHCI2_OFFSET(0);
164 break;
165 case PIC_OHCI_3_IRQ:
166 devoff = XLP_IO_USB_OHCI3_OFFSET(0);
167 break;
168 }
169 }
170 }
171
172 if (devoff != 0) {
173 pcibase = nlm_pcicfg_base(devoff);
174 irt = nlm_read_reg(pcibase, XLP_PCI_IRTINFO_REG) & 0xffff;
175 /* HW weirdness, I2C IRT entry has to be fixed up */
176 switch (irq) {
177 case PIC_I2C_1_IRQ:
178 irt = irt + 1; break;
179 case PIC_I2C_2_IRQ:
180 irt = irt + 2; break;
181 case PIC_I2C_3_IRQ:
182 irt = irt + 3; break;
183 }
184 } else if (irq >= PIC_PCIE_LINK_LEGACY_IRQ(0) &&
185 irq <= PIC_PCIE_LINK_LEGACY_IRQ(3)) {
186 /* HW bug, PCI IRT entries are bad on early silicon, fix */
187 irt = PIC_IRT_PCIE_LINK_INDEX(irq -
188 PIC_PCIE_LINK_LEGACY_IRQ_BASE);
189 } else {
190 irt = -1;
191 }
192 return irt;
193 }
194
195 int nlm_irq_to_irt(int irq)
196 {
197 /* return -2 for irqs without 1-1 mapping */
198 if (irq >= PIC_PCIE_LINK_MSI_IRQ(0) && irq <= PIC_PCIE_LINK_MSI_IRQ(3))
199 return -2;
200 if (irq >= PIC_PCIE_MSIX_IRQ(0) && irq <= PIC_PCIE_MSIX_IRQ(3))
201 return -2;
202
203 if (cpu_is_xlp9xx())
204 return xlp9xx_irq_to_irt(irq);
205 else
206 return xlp_irq_to_irt(irq);
207 }
208
209 static unsigned int nlm_xlp2_get_core_frequency(int node, int core)
210 {
211 unsigned int pll_post_div, ctrl_val0, ctrl_val1, denom;
212 uint64_t num, sysbase, clockbase;
213
214 if (cpu_is_xlp9xx()) {
215 clockbase = nlm_get_clock_regbase(node);
216 ctrl_val0 = nlm_read_sys_reg(clockbase,
217 SYS_9XX_CPU_PLL_CTRL0(core));
218 ctrl_val1 = nlm_read_sys_reg(clockbase,
219 SYS_9XX_CPU_PLL_CTRL1(core));
220 } else {
221 sysbase = nlm_get_node(node)->sysbase;
222 ctrl_val0 = nlm_read_sys_reg(sysbase,
223 SYS_CPU_PLL_CTRL0(core));
224 ctrl_val1 = nlm_read_sys_reg(sysbase,
225 SYS_CPU_PLL_CTRL1(core));
226 }
227
228 /* Find PLL post divider value */
229 switch ((ctrl_val0 >> 24) & 0x7) {
230 case 1:
231 pll_post_div = 2;
232 break;
233 case 3:
234 pll_post_div = 4;
235 break;
236 case 7:
237 pll_post_div = 8;
238 break;
239 case 6:
240 pll_post_div = 16;
241 break;
242 case 0:
243 default:
244 pll_post_div = 1;
245 break;
246 }
247
248 num = 1000000ULL * (400 * 3 + 100 * (ctrl_val1 & 0x3f));
249 denom = 3 * pll_post_div;
250 do_div(num, denom);
251
252 return (unsigned int)num;
253 }
254
255 static unsigned int nlm_xlp_get_core_frequency(int node, int core)
256 {
257 unsigned int pll_divf, pll_divr, dfs_div, ext_div;
258 unsigned int rstval, dfsval, denom;
259 uint64_t num, sysbase;
260
261 sysbase = nlm_get_node(node)->sysbase;
262 rstval = nlm_read_sys_reg(sysbase, SYS_POWER_ON_RESET_CFG);
263 dfsval = nlm_read_sys_reg(sysbase, SYS_CORE_DFS_DIV_VALUE);
264 pll_divf = ((rstval >> 10) & 0x7f) + 1;
265 pll_divr = ((rstval >> 8) & 0x3) + 1;
266 ext_div = ((rstval >> 30) & 0x3) + 1;
267 dfs_div = ((dfsval >> (core * 4)) & 0xf) + 1;
268
269 num = 800000000ULL * pll_divf;
270 denom = 3 * pll_divr * ext_div * dfs_div;
271 do_div(num, denom);
272
273 return (unsigned int)num;
274 }
275
276 unsigned int nlm_get_core_frequency(int node, int core)
277 {
278 if (cpu_is_xlpii())
279 return nlm_xlp2_get_core_frequency(node, core);
280 else
281 return nlm_xlp_get_core_frequency(node, core);
282 }
283
284 /*
285 * Calculate PIC frequency from PLL registers.
286 * freq_out = (ref_freq/2 * (6 + ctrl2[7:0]) + ctrl2[20:8]/2^13) /
287 * ((2^ctrl0[7:5]) * Table(ctrl0[26:24]))
288 */
289 static unsigned int nlm_xlp2_get_pic_frequency(int node)
290 {
291 u32 ctrl_val0, ctrl_val2, vco_post_div, pll_post_div, cpu_xlp9xx;
292 u32 mdiv, fdiv, pll_out_freq_den, reg_select, ref_div, pic_div;
293 u64 sysbase, pll_out_freq_num, ref_clk_select, clockbase, ref_clk;
294
295 sysbase = nlm_get_node(node)->sysbase;
296 clockbase = nlm_get_clock_regbase(node);
297 cpu_xlp9xx = cpu_is_xlp9xx();
298
299 /* Find ref_clk_base */
300 if (cpu_xlp9xx)
301 ref_clk_select = (nlm_read_sys_reg(sysbase,
302 SYS_9XX_POWER_ON_RESET_CFG) >> 18) & 0x3;
303 else
304 ref_clk_select = (nlm_read_sys_reg(sysbase,
305 SYS_POWER_ON_RESET_CFG) >> 18) & 0x3;
306 switch (ref_clk_select) {
307 case 0:
308 ref_clk = 200000000ULL;
309 ref_div = 3;
310 break;
311 case 1:
312 ref_clk = 100000000ULL;
313 ref_div = 1;
314 break;
315 case 2:
316 ref_clk = 125000000ULL;
317 ref_div = 1;
318 break;
319 case 3:
320 ref_clk = 400000000ULL;
321 ref_div = 3;
322 break;
323 }
324
325 /* Find the clock source PLL device for PIC */
326 if (cpu_xlp9xx) {
327 reg_select = nlm_read_sys_reg(clockbase,
328 SYS_9XX_CLK_DEV_SEL) & 0x3;
329 switch (reg_select) {
330 case 0:
331 ctrl_val0 = nlm_read_sys_reg(clockbase,
332 SYS_9XX_PLL_CTRL0);
333 ctrl_val2 = nlm_read_sys_reg(clockbase,
334 SYS_9XX_PLL_CTRL2);
335 break;
336 case 1:
337 ctrl_val0 = nlm_read_sys_reg(clockbase,
338 SYS_9XX_PLL_CTRL0_DEVX(0));
339 ctrl_val2 = nlm_read_sys_reg(clockbase,
340 SYS_9XX_PLL_CTRL2_DEVX(0));
341 break;
342 case 2:
343 ctrl_val0 = nlm_read_sys_reg(clockbase,
344 SYS_9XX_PLL_CTRL0_DEVX(1));
345 ctrl_val2 = nlm_read_sys_reg(clockbase,
346 SYS_9XX_PLL_CTRL2_DEVX(1));
347 break;
348 case 3:
349 ctrl_val0 = nlm_read_sys_reg(clockbase,
350 SYS_9XX_PLL_CTRL0_DEVX(2));
351 ctrl_val2 = nlm_read_sys_reg(clockbase,
352 SYS_9XX_PLL_CTRL2_DEVX(2));
353 break;
354 }
355 } else {
356 reg_select = (nlm_read_sys_reg(sysbase,
357 SYS_CLK_DEV_SEL) >> 22) & 0x3;
358 switch (reg_select) {
359 case 0:
360 ctrl_val0 = nlm_read_sys_reg(sysbase,
361 SYS_PLL_CTRL0);
362 ctrl_val2 = nlm_read_sys_reg(sysbase,
363 SYS_PLL_CTRL2);
364 break;
365 case 1:
366 ctrl_val0 = nlm_read_sys_reg(sysbase,
367 SYS_PLL_CTRL0_DEVX(0));
368 ctrl_val2 = nlm_read_sys_reg(sysbase,
369 SYS_PLL_CTRL2_DEVX(0));
370 break;
371 case 2:
372 ctrl_val0 = nlm_read_sys_reg(sysbase,
373 SYS_PLL_CTRL0_DEVX(1));
374 ctrl_val2 = nlm_read_sys_reg(sysbase,
375 SYS_PLL_CTRL2_DEVX(1));
376 break;
377 case 3:
378 ctrl_val0 = nlm_read_sys_reg(sysbase,
379 SYS_PLL_CTRL0_DEVX(2));
380 ctrl_val2 = nlm_read_sys_reg(sysbase,
381 SYS_PLL_CTRL2_DEVX(2));
382 break;
383 }
384 }
385
386 vco_post_div = (ctrl_val0 >> 5) & 0x7;
387 pll_post_div = (ctrl_val0 >> 24) & 0x7;
388 mdiv = ctrl_val2 & 0xff;
389 fdiv = (ctrl_val2 >> 8) & 0x1fff;
390
391 /* Find PLL post divider value */
392 switch (pll_post_div) {
393 case 1:
394 pll_post_div = 2;
395 break;
396 case 3:
397 pll_post_div = 4;
398 break;
399 case 7:
400 pll_post_div = 8;
401 break;
402 case 6:
403 pll_post_div = 16;
404 break;
405 case 0:
406 default:
407 pll_post_div = 1;
408 break;
409 }
410
411 fdiv = fdiv/(1 << 13);
412 pll_out_freq_num = ((ref_clk >> 1) * (6 + mdiv)) + fdiv;
413 pll_out_freq_den = (1 << vco_post_div) * pll_post_div * ref_div;
414
415 if (pll_out_freq_den > 0)
416 do_div(pll_out_freq_num, pll_out_freq_den);
417
418 /* PIC post divider, which happens after PLL */
419 if (cpu_xlp9xx)
420 pic_div = nlm_read_sys_reg(clockbase,
421 SYS_9XX_CLK_DEV_DIV) & 0x3;
422 else
423 pic_div = (nlm_read_sys_reg(sysbase,
424 SYS_CLK_DEV_DIV) >> 22) & 0x3;
425 do_div(pll_out_freq_num, 1 << pic_div);
426
427 return pll_out_freq_num;
428 }
429
430 unsigned int nlm_get_pic_frequency(int node)
431 {
432 if (cpu_is_xlpii())
433 return nlm_xlp2_get_pic_frequency(node);
434 else
435 return 133333333;
436 }
437
438 unsigned int nlm_get_cpu_frequency(void)
439 {
440 return nlm_get_core_frequency(0, 0);
441 }
442
443 /*
444 * Fills upto 8 pairs of entries containing the DRAM map of a node
445 * if n < 0, get dram map for all nodes
446 */
447 int xlp_get_dram_map(int n, uint64_t *dram_map)
448 {
449 uint64_t bridgebase, base, lim;
450 uint32_t val;
451 unsigned int barreg, limreg, xlatreg;
452 int i, node, rv;
453
454 /* Look only at mapping on Node 0, we don't handle crazy configs */
455 bridgebase = nlm_get_bridge_regbase(0);
456 rv = 0;
457 for (i = 0; i < 8; i++) {
458 if (cpu_is_xlp9xx()) {
459 barreg = BRIDGE_9XX_DRAM_BAR(i);
460 limreg = BRIDGE_9XX_DRAM_LIMIT(i);
461 xlatreg = BRIDGE_9XX_DRAM_NODE_TRANSLN(i);
462 } else {
463 barreg = BRIDGE_DRAM_BAR(i);
464 limreg = BRIDGE_DRAM_LIMIT(i);
465 xlatreg = BRIDGE_DRAM_NODE_TRANSLN(i);
466 }
467 if (n >= 0) {
468 /* node specified, get node mapping of BAR */
469 val = nlm_read_bridge_reg(bridgebase, xlatreg);
470 node = (val >> 1) & 0x3;
471 if (n != node)
472 continue;
473 }
474 val = nlm_read_bridge_reg(bridgebase, barreg);
475 val = (val >> 12) & 0xfffff;
476 base = (uint64_t) val << 20;
477 val = nlm_read_bridge_reg(bridgebase, limreg);
478 val = (val >> 12) & 0xfffff;
479 if (val == 0) /* BAR not used */
480 continue;
481 lim = ((uint64_t)val + 1) << 20;
482 dram_map[rv] = base;
483 dram_map[rv + 1] = lim;
484 rv += 2;
485 }
486 return rv;
487 }