]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/mips/pci/msi-octeon.c
Merge tag 'regmap-v3.15-nodev' of git://git.kernel.org/pub/scm/linux/kernel/git/broon...
[mirror_ubuntu-bionic-kernel.git] / arch / mips / pci / msi-octeon.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2005-2009, 2010 Cavium Networks
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/msi.h>
11 #include <linux/spinlock.h>
12 #include <linux/interrupt.h>
13
14 #include <asm/octeon/octeon.h>
15 #include <asm/octeon/cvmx-npi-defs.h>
16 #include <asm/octeon/cvmx-pci-defs.h>
17 #include <asm/octeon/cvmx-npei-defs.h>
18 #include <asm/octeon/cvmx-pexp-defs.h>
19 #include <asm/octeon/pci-octeon.h>
20
21 /*
22 * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
23 * in use.
24 */
25 static u64 msi_free_irq_bitmask[4];
26
27 /*
28 * Each bit in msi_multiple_irq_bitmask tells that the device using
29 * this bit in msi_free_irq_bitmask is also using the next bit. This
30 * is used so we can disable all of the MSI interrupts when a device
31 * uses multiple.
32 */
33 static u64 msi_multiple_irq_bitmask[4];
34
35 /*
36 * This lock controls updates to msi_free_irq_bitmask and
37 * msi_multiple_irq_bitmask.
38 */
39 static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
40
41 /*
42 * Number of MSI IRQs used. This variable is set up in
43 * the module init time.
44 */
45 static int msi_irq_size;
46
47 /**
48 * Called when a driver request MSI interrupts instead of the
49 * legacy INT A-D. This routine will allocate multiple interrupts
50 * for MSI devices that support them. A device can override this by
51 * programming the MSI control bits [6:4] before calling
52 * pci_enable_msi().
53 *
54 * @dev: Device requesting MSI interrupts
55 * @desc: MSI descriptor
56 *
57 * Returns 0 on success.
58 */
59 int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
60 {
61 struct msi_msg msg;
62 u16 control;
63 int configured_private_bits;
64 int request_private_bits;
65 int irq = 0;
66 int irq_step;
67 u64 search_mask;
68 int index;
69
70 /*
71 * Read the MSI config to figure out how many IRQs this device
72 * wants. Most devices only want 1, which will give
73 * configured_private_bits and request_private_bits equal 0.
74 */
75 pci_read_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
76 &control);
77
78 /*
79 * If the number of private bits has been configured then use
80 * that value instead of the requested number. This gives the
81 * driver the chance to override the number of interrupts
82 * before calling pci_enable_msi().
83 */
84 configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
85 if (configured_private_bits == 0) {
86 /* Nothing is configured, so use the hardware requested size */
87 request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
88 } else {
89 /*
90 * Use the number of configured bits, assuming the
91 * driver wanted to override the hardware request
92 * value.
93 */
94 request_private_bits = configured_private_bits;
95 }
96
97 /*
98 * The PCI 2.3 spec mandates that there are at most 32
99 * interrupts. If this device asks for more, only give it one.
100 */
101 if (request_private_bits > 5)
102 request_private_bits = 0;
103
104 try_only_one:
105 /*
106 * The IRQs have to be aligned on a power of two based on the
107 * number being requested.
108 */
109 irq_step = 1 << request_private_bits;
110
111 /* Mask with one bit for each IRQ */
112 search_mask = (1 << irq_step) - 1;
113
114 /*
115 * We're going to search msi_free_irq_bitmask_lock for zero
116 * bits. This represents an MSI interrupt number that isn't in
117 * use.
118 */
119 spin_lock(&msi_free_irq_bitmask_lock);
120 for (index = 0; index < msi_irq_size/64; index++) {
121 for (irq = 0; irq < 64; irq += irq_step) {
122 if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) {
123 msi_free_irq_bitmask[index] |= search_mask << irq;
124 msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq;
125 goto msi_irq_allocated;
126 }
127 }
128 }
129 msi_irq_allocated:
130 spin_unlock(&msi_free_irq_bitmask_lock);
131
132 /* Make sure the search for available interrupts didn't fail */
133 if (irq >= 64) {
134 if (request_private_bits) {
135 pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one",
136 1 << request_private_bits);
137 request_private_bits = 0;
138 goto try_only_one;
139 } else
140 panic("arch_setup_msi_irq: Unable to find a free MSI interrupt");
141 }
142
143 /* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
144 irq += index*64;
145 irq += OCTEON_IRQ_MSI_BIT0;
146
147 switch (octeon_dma_bar_type) {
148 case OCTEON_DMA_BAR_TYPE_SMALL:
149 /* When not using big bar, Bar 0 is based at 128MB */
150 msg.address_lo =
151 ((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
152 msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
153 break;
154 case OCTEON_DMA_BAR_TYPE_BIG:
155 /* When using big bar, Bar 0 is based at 0 */
156 msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
157 msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
158 break;
159 case OCTEON_DMA_BAR_TYPE_PCIE:
160 /* When using PCIe, Bar 0 is based at 0 */
161 /* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
162 msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
163 msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
164 break;
165 default:
166 panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type");
167 }
168 msg.data = irq - OCTEON_IRQ_MSI_BIT0;
169
170 /* Update the number of IRQs the device has available to it */
171 control &= ~PCI_MSI_FLAGS_QSIZE;
172 control |= request_private_bits << 4;
173 pci_write_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
174 control);
175
176 irq_set_msi_desc(irq, desc);
177 write_msi_msg(irq, &msg);
178 return 0;
179 }
180
181 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
182 {
183 struct msi_desc *entry;
184 int ret;
185
186 /*
187 * MSI-X is not supported.
188 */
189 if (type == PCI_CAP_ID_MSIX)
190 return -EINVAL;
191
192 /*
193 * If an architecture wants to support multiple MSI, it needs to
194 * override arch_setup_msi_irqs()
195 */
196 if (type == PCI_CAP_ID_MSI && nvec > 1)
197 return 1;
198
199 list_for_each_entry(entry, &dev->msi_list, list) {
200 ret = arch_setup_msi_irq(dev, entry);
201 if (ret < 0)
202 return ret;
203 if (ret > 0)
204 return -ENOSPC;
205 }
206
207 return 0;
208 }
209
210 /**
211 * Called when a device no longer needs its MSI interrupts. All
212 * MSI interrupts for the device are freed.
213 *
214 * @irq: The devices first irq number. There may be multple in sequence.
215 */
216 void arch_teardown_msi_irq(unsigned int irq)
217 {
218 int number_irqs;
219 u64 bitmask;
220 int index = 0;
221 int irq0;
222
223 if ((irq < OCTEON_IRQ_MSI_BIT0)
224 || (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0))
225 panic("arch_teardown_msi_irq: Attempted to teardown illegal "
226 "MSI interrupt (%d)", irq);
227
228 irq -= OCTEON_IRQ_MSI_BIT0;
229 index = irq / 64;
230 irq0 = irq % 64;
231
232 /*
233 * Count the number of IRQs we need to free by looking at the
234 * msi_multiple_irq_bitmask. Each bit set means that the next
235 * IRQ is also owned by this device.
236 */
237 number_irqs = 0;
238 while ((irq0 + number_irqs < 64) &&
239 (msi_multiple_irq_bitmask[index]
240 & (1ull << (irq0 + number_irqs))))
241 number_irqs++;
242 number_irqs++;
243 /* Mask with one bit for each IRQ */
244 bitmask = (1 << number_irqs) - 1;
245 /* Shift the mask to the correct bit location */
246 bitmask <<= irq0;
247 if ((msi_free_irq_bitmask[index] & bitmask) != bitmask)
248 panic("arch_teardown_msi_irq: Attempted to teardown MSI "
249 "interrupt (%d) not in use", irq);
250
251 /* Checks are done, update the in use bitmask */
252 spin_lock(&msi_free_irq_bitmask_lock);
253 msi_free_irq_bitmask[index] &= ~bitmask;
254 msi_multiple_irq_bitmask[index] &= ~bitmask;
255 spin_unlock(&msi_free_irq_bitmask_lock);
256 }
257
258 static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock);
259
260 static u64 msi_rcv_reg[4];
261 static u64 mis_ena_reg[4];
262
263 static void octeon_irq_msi_enable_pcie(struct irq_data *data)
264 {
265 u64 en;
266 unsigned long flags;
267 int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
268 int irq_index = msi_number >> 6;
269 int irq_bit = msi_number & 0x3f;
270
271 raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
272 en = cvmx_read_csr(mis_ena_reg[irq_index]);
273 en |= 1ull << irq_bit;
274 cvmx_write_csr(mis_ena_reg[irq_index], en);
275 cvmx_read_csr(mis_ena_reg[irq_index]);
276 raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
277 }
278
279 static void octeon_irq_msi_disable_pcie(struct irq_data *data)
280 {
281 u64 en;
282 unsigned long flags;
283 int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
284 int irq_index = msi_number >> 6;
285 int irq_bit = msi_number & 0x3f;
286
287 raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
288 en = cvmx_read_csr(mis_ena_reg[irq_index]);
289 en &= ~(1ull << irq_bit);
290 cvmx_write_csr(mis_ena_reg[irq_index], en);
291 cvmx_read_csr(mis_ena_reg[irq_index]);
292 raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
293 }
294
295 static struct irq_chip octeon_irq_chip_msi_pcie = {
296 .name = "MSI",
297 .irq_enable = octeon_irq_msi_enable_pcie,
298 .irq_disable = octeon_irq_msi_disable_pcie,
299 };
300
301 static void octeon_irq_msi_enable_pci(struct irq_data *data)
302 {
303 /*
304 * Octeon PCI doesn't have the ability to mask/unmask MSI
305 * interrupts individually. Instead of masking/unmasking them
306 * in groups of 16, we simple assume MSI devices are well
307 * behaved. MSI interrupts are always enable and the ACK is
308 * assumed to be enough
309 */
310 }
311
312 static void octeon_irq_msi_disable_pci(struct irq_data *data)
313 {
314 /* See comment in enable */
315 }
316
317 static struct irq_chip octeon_irq_chip_msi_pci = {
318 .name = "MSI",
319 .irq_enable = octeon_irq_msi_enable_pci,
320 .irq_disable = octeon_irq_msi_disable_pci,
321 };
322
323 /*
324 * Called by the interrupt handling code when an MSI interrupt
325 * occurs.
326 */
327 static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits)
328 {
329 int irq;
330 int bit;
331
332 bit = fls64(msi_bits);
333 if (bit) {
334 bit--;
335 /* Acknowledge it first. */
336 cvmx_write_csr(msi_rcv_reg[index], 1ull << bit);
337
338 irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index;
339 do_IRQ(irq);
340 return IRQ_HANDLED;
341 }
342 return IRQ_NONE;
343 }
344
345 #define OCTEON_MSI_INT_HANDLER_X(x) \
346 static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id) \
347 { \
348 u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]); \
349 return __octeon_msi_do_interrupt((x), msi_bits); \
350 }
351
352 /*
353 * Create octeon_msi_interrupt{0-3} function body
354 */
355 OCTEON_MSI_INT_HANDLER_X(0);
356 OCTEON_MSI_INT_HANDLER_X(1);
357 OCTEON_MSI_INT_HANDLER_X(2);
358 OCTEON_MSI_INT_HANDLER_X(3);
359
360 /*
361 * Initializes the MSI interrupt handling code
362 */
363 int __init octeon_msi_initialize(void)
364 {
365 int irq;
366 struct irq_chip *msi;
367
368 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) {
369 msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0;
370 msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1;
371 msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2;
372 msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3;
373 mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0;
374 mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1;
375 mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2;
376 mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3;
377 msi = &octeon_irq_chip_msi_pcie;
378 } else {
379 msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV;
380 #define INVALID_GENERATE_ADE 0x8700000000000000ULL;
381 msi_rcv_reg[1] = INVALID_GENERATE_ADE;
382 msi_rcv_reg[2] = INVALID_GENERATE_ADE;
383 msi_rcv_reg[3] = INVALID_GENERATE_ADE;
384 mis_ena_reg[0] = INVALID_GENERATE_ADE;
385 mis_ena_reg[1] = INVALID_GENERATE_ADE;
386 mis_ena_reg[2] = INVALID_GENERATE_ADE;
387 mis_ena_reg[3] = INVALID_GENERATE_ADE;
388 msi = &octeon_irq_chip_msi_pci;
389 }
390
391 for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++)
392 irq_set_chip_and_handler(irq, msi, handle_simple_irq);
393
394 if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
395 if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
396 0, "MSI[0:63]", octeon_msi_interrupt0))
397 panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
398
399 if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1,
400 0, "MSI[64:127]", octeon_msi_interrupt1))
401 panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
402
403 if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2,
404 0, "MSI[127:191]", octeon_msi_interrupt2))
405 panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
406
407 if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3,
408 0, "MSI[192:255]", octeon_msi_interrupt3))
409 panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
410
411 msi_irq_size = 256;
412 } else if (octeon_is_pci_host()) {
413 if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
414 0, "MSI[0:15]", octeon_msi_interrupt0))
415 panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
416
417 if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0,
418 0, "MSI[16:31]", octeon_msi_interrupt0))
419 panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
420
421 if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0,
422 0, "MSI[32:47]", octeon_msi_interrupt0))
423 panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
424
425 if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0,
426 0, "MSI[48:63]", octeon_msi_interrupt0))
427 panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
428 msi_irq_size = 64;
429 }
430 return 0;
431 }
432 subsys_initcall(octeon_msi_initialize);