]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/mips/pci/msi-octeon.c
Merge tag 'nfs-rdma-for-4.3-2' of git://git.linux-nfs.org/projects/anna/nfs-rdma
[mirror_ubuntu-bionic-kernel.git] / arch / mips / pci / msi-octeon.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2005-2009, 2010 Cavium Networks
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/msi.h>
11 #include <linux/spinlock.h>
12 #include <linux/interrupt.h>
13
14 #include <asm/octeon/octeon.h>
15 #include <asm/octeon/cvmx-npi-defs.h>
16 #include <asm/octeon/cvmx-pci-defs.h>
17 #include <asm/octeon/cvmx-npei-defs.h>
18 #include <asm/octeon/cvmx-sli-defs.h>
19 #include <asm/octeon/cvmx-pexp-defs.h>
20 #include <asm/octeon/pci-octeon.h>
21
22 /*
23 * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
24 * in use.
25 */
26 static u64 msi_free_irq_bitmask[4];
27
28 /*
29 * Each bit in msi_multiple_irq_bitmask tells that the device using
30 * this bit in msi_free_irq_bitmask is also using the next bit. This
31 * is used so we can disable all of the MSI interrupts when a device
32 * uses multiple.
33 */
34 static u64 msi_multiple_irq_bitmask[4];
35
36 /*
37 * This lock controls updates to msi_free_irq_bitmask and
38 * msi_multiple_irq_bitmask.
39 */
40 static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
41
42 /*
43 * Number of MSI IRQs used. This variable is set up in
44 * the module init time.
45 */
46 static int msi_irq_size;
47
48 /**
49 * Called when a driver request MSI interrupts instead of the
50 * legacy INT A-D. This routine will allocate multiple interrupts
51 * for MSI devices that support them. A device can override this by
52 * programming the MSI control bits [6:4] before calling
53 * pci_enable_msi().
54 *
55 * @dev: Device requesting MSI interrupts
56 * @desc: MSI descriptor
57 *
58 * Returns 0 on success.
59 */
60 int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
61 {
62 struct msi_msg msg;
63 u16 control;
64 int configured_private_bits;
65 int request_private_bits;
66 int irq = 0;
67 int irq_step;
68 u64 search_mask;
69 int index;
70
71 /*
72 * Read the MSI config to figure out how many IRQs this device
73 * wants. Most devices only want 1, which will give
74 * configured_private_bits and request_private_bits equal 0.
75 */
76 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
77
78 /*
79 * If the number of private bits has been configured then use
80 * that value instead of the requested number. This gives the
81 * driver the chance to override the number of interrupts
82 * before calling pci_enable_msi().
83 */
84 configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
85 if (configured_private_bits == 0) {
86 /* Nothing is configured, so use the hardware requested size */
87 request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
88 } else {
89 /*
90 * Use the number of configured bits, assuming the
91 * driver wanted to override the hardware request
92 * value.
93 */
94 request_private_bits = configured_private_bits;
95 }
96
97 /*
98 * The PCI 2.3 spec mandates that there are at most 32
99 * interrupts. If this device asks for more, only give it one.
100 */
101 if (request_private_bits > 5)
102 request_private_bits = 0;
103
104 try_only_one:
105 /*
106 * The IRQs have to be aligned on a power of two based on the
107 * number being requested.
108 */
109 irq_step = 1 << request_private_bits;
110
111 /* Mask with one bit for each IRQ */
112 search_mask = (1 << irq_step) - 1;
113
114 /*
115 * We're going to search msi_free_irq_bitmask_lock for zero
116 * bits. This represents an MSI interrupt number that isn't in
117 * use.
118 */
119 spin_lock(&msi_free_irq_bitmask_lock);
120 for (index = 0; index < msi_irq_size/64; index++) {
121 for (irq = 0; irq < 64; irq += irq_step) {
122 if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) {
123 msi_free_irq_bitmask[index] |= search_mask << irq;
124 msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq;
125 goto msi_irq_allocated;
126 }
127 }
128 }
129 msi_irq_allocated:
130 spin_unlock(&msi_free_irq_bitmask_lock);
131
132 /* Make sure the search for available interrupts didn't fail */
133 if (irq >= 64) {
134 if (request_private_bits) {
135 pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one",
136 1 << request_private_bits);
137 request_private_bits = 0;
138 goto try_only_one;
139 } else
140 panic("arch_setup_msi_irq: Unable to find a free MSI interrupt");
141 }
142
143 /* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
144 irq += index*64;
145 irq += OCTEON_IRQ_MSI_BIT0;
146
147 switch (octeon_dma_bar_type) {
148 case OCTEON_DMA_BAR_TYPE_SMALL:
149 /* When not using big bar, Bar 0 is based at 128MB */
150 msg.address_lo =
151 ((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
152 msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
153 break;
154 case OCTEON_DMA_BAR_TYPE_BIG:
155 /* When using big bar, Bar 0 is based at 0 */
156 msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
157 msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
158 break;
159 case OCTEON_DMA_BAR_TYPE_PCIE:
160 /* When using PCIe, Bar 0 is based at 0 */
161 /* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
162 msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
163 msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
164 break;
165 case OCTEON_DMA_BAR_TYPE_PCIE2:
166 /* When using PCIe2, Bar 0 is based at 0 */
167 msg.address_lo = (0 + CVMX_SLI_PCIE_MSI_RCV) & 0xffffffff;
168 msg.address_hi = (0 + CVMX_SLI_PCIE_MSI_RCV) >> 32;
169 break;
170 default:
171 panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type");
172 }
173 msg.data = irq - OCTEON_IRQ_MSI_BIT0;
174
175 /* Update the number of IRQs the device has available to it */
176 control &= ~PCI_MSI_FLAGS_QSIZE;
177 control |= request_private_bits << 4;
178 pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
179
180 irq_set_msi_desc(irq, desc);
181 pci_write_msi_msg(irq, &msg);
182 return 0;
183 }
184
185 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
186 {
187 struct msi_desc *entry;
188 int ret;
189
190 /*
191 * MSI-X is not supported.
192 */
193 if (type == PCI_CAP_ID_MSIX)
194 return -EINVAL;
195
196 /*
197 * If an architecture wants to support multiple MSI, it needs to
198 * override arch_setup_msi_irqs()
199 */
200 if (type == PCI_CAP_ID_MSI && nvec > 1)
201 return 1;
202
203 for_each_pci_msi_entry(entry, dev) {
204 ret = arch_setup_msi_irq(dev, entry);
205 if (ret < 0)
206 return ret;
207 if (ret > 0)
208 return -ENOSPC;
209 }
210
211 return 0;
212 }
213
214 /**
215 * Called when a device no longer needs its MSI interrupts. All
216 * MSI interrupts for the device are freed.
217 *
218 * @irq: The devices first irq number. There may be multple in sequence.
219 */
220 void arch_teardown_msi_irq(unsigned int irq)
221 {
222 int number_irqs;
223 u64 bitmask;
224 int index = 0;
225 int irq0;
226
227 if ((irq < OCTEON_IRQ_MSI_BIT0)
228 || (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0))
229 panic("arch_teardown_msi_irq: Attempted to teardown illegal "
230 "MSI interrupt (%d)", irq);
231
232 irq -= OCTEON_IRQ_MSI_BIT0;
233 index = irq / 64;
234 irq0 = irq % 64;
235
236 /*
237 * Count the number of IRQs we need to free by looking at the
238 * msi_multiple_irq_bitmask. Each bit set means that the next
239 * IRQ is also owned by this device.
240 */
241 number_irqs = 0;
242 while ((irq0 + number_irqs < 64) &&
243 (msi_multiple_irq_bitmask[index]
244 & (1ull << (irq0 + number_irqs))))
245 number_irqs++;
246 number_irqs++;
247 /* Mask with one bit for each IRQ */
248 bitmask = (1 << number_irqs) - 1;
249 /* Shift the mask to the correct bit location */
250 bitmask <<= irq0;
251 if ((msi_free_irq_bitmask[index] & bitmask) != bitmask)
252 panic("arch_teardown_msi_irq: Attempted to teardown MSI "
253 "interrupt (%d) not in use", irq);
254
255 /* Checks are done, update the in use bitmask */
256 spin_lock(&msi_free_irq_bitmask_lock);
257 msi_free_irq_bitmask[index] &= ~bitmask;
258 msi_multiple_irq_bitmask[index] &= ~bitmask;
259 spin_unlock(&msi_free_irq_bitmask_lock);
260 }
261
262 static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock);
263
264 static u64 msi_rcv_reg[4];
265 static u64 mis_ena_reg[4];
266
267 static void octeon_irq_msi_enable_pcie(struct irq_data *data)
268 {
269 u64 en;
270 unsigned long flags;
271 int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
272 int irq_index = msi_number >> 6;
273 int irq_bit = msi_number & 0x3f;
274
275 raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
276 en = cvmx_read_csr(mis_ena_reg[irq_index]);
277 en |= 1ull << irq_bit;
278 cvmx_write_csr(mis_ena_reg[irq_index], en);
279 cvmx_read_csr(mis_ena_reg[irq_index]);
280 raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
281 }
282
283 static void octeon_irq_msi_disable_pcie(struct irq_data *data)
284 {
285 u64 en;
286 unsigned long flags;
287 int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
288 int irq_index = msi_number >> 6;
289 int irq_bit = msi_number & 0x3f;
290
291 raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
292 en = cvmx_read_csr(mis_ena_reg[irq_index]);
293 en &= ~(1ull << irq_bit);
294 cvmx_write_csr(mis_ena_reg[irq_index], en);
295 cvmx_read_csr(mis_ena_reg[irq_index]);
296 raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
297 }
298
299 static struct irq_chip octeon_irq_chip_msi_pcie = {
300 .name = "MSI",
301 .irq_enable = octeon_irq_msi_enable_pcie,
302 .irq_disable = octeon_irq_msi_disable_pcie,
303 };
304
305 static void octeon_irq_msi_enable_pci(struct irq_data *data)
306 {
307 /*
308 * Octeon PCI doesn't have the ability to mask/unmask MSI
309 * interrupts individually. Instead of masking/unmasking them
310 * in groups of 16, we simple assume MSI devices are well
311 * behaved. MSI interrupts are always enable and the ACK is
312 * assumed to be enough
313 */
314 }
315
316 static void octeon_irq_msi_disable_pci(struct irq_data *data)
317 {
318 /* See comment in enable */
319 }
320
321 static struct irq_chip octeon_irq_chip_msi_pci = {
322 .name = "MSI",
323 .irq_enable = octeon_irq_msi_enable_pci,
324 .irq_disable = octeon_irq_msi_disable_pci,
325 };
326
327 /*
328 * Called by the interrupt handling code when an MSI interrupt
329 * occurs.
330 */
331 static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits)
332 {
333 int irq;
334 int bit;
335
336 bit = fls64(msi_bits);
337 if (bit) {
338 bit--;
339 /* Acknowledge it first. */
340 cvmx_write_csr(msi_rcv_reg[index], 1ull << bit);
341
342 irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index;
343 do_IRQ(irq);
344 return IRQ_HANDLED;
345 }
346 return IRQ_NONE;
347 }
348
349 #define OCTEON_MSI_INT_HANDLER_X(x) \
350 static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id) \
351 { \
352 u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]); \
353 return __octeon_msi_do_interrupt((x), msi_bits); \
354 }
355
356 /*
357 * Create octeon_msi_interrupt{0-3} function body
358 */
359 OCTEON_MSI_INT_HANDLER_X(0);
360 OCTEON_MSI_INT_HANDLER_X(1);
361 OCTEON_MSI_INT_HANDLER_X(2);
362 OCTEON_MSI_INT_HANDLER_X(3);
363
364 /*
365 * Initializes the MSI interrupt handling code
366 */
367 int __init octeon_msi_initialize(void)
368 {
369 int irq;
370 struct irq_chip *msi;
371
372 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) {
373 msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0;
374 msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1;
375 msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2;
376 msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3;
377 mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0;
378 mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1;
379 mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2;
380 mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3;
381 msi = &octeon_irq_chip_msi_pcie;
382 } else {
383 msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV;
384 #define INVALID_GENERATE_ADE 0x8700000000000000ULL;
385 msi_rcv_reg[1] = INVALID_GENERATE_ADE;
386 msi_rcv_reg[2] = INVALID_GENERATE_ADE;
387 msi_rcv_reg[3] = INVALID_GENERATE_ADE;
388 mis_ena_reg[0] = INVALID_GENERATE_ADE;
389 mis_ena_reg[1] = INVALID_GENERATE_ADE;
390 mis_ena_reg[2] = INVALID_GENERATE_ADE;
391 mis_ena_reg[3] = INVALID_GENERATE_ADE;
392 msi = &octeon_irq_chip_msi_pci;
393 }
394
395 for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++)
396 irq_set_chip_and_handler(irq, msi, handle_simple_irq);
397
398 if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
399 if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
400 0, "MSI[0:63]", octeon_msi_interrupt0))
401 panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
402
403 if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1,
404 0, "MSI[64:127]", octeon_msi_interrupt1))
405 panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
406
407 if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2,
408 0, "MSI[127:191]", octeon_msi_interrupt2))
409 panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
410
411 if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3,
412 0, "MSI[192:255]", octeon_msi_interrupt3))
413 panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
414
415 msi_irq_size = 256;
416 } else if (octeon_is_pci_host()) {
417 if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
418 0, "MSI[0:15]", octeon_msi_interrupt0))
419 panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
420
421 if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0,
422 0, "MSI[16:31]", octeon_msi_interrupt0))
423 panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
424
425 if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0,
426 0, "MSI[32:47]", octeon_msi_interrupt0))
427 panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
428
429 if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0,
430 0, "MSI[48:63]", octeon_msi_interrupt0))
431 panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
432 msi_irq_size = 64;
433 }
434 return 0;
435 }
436 subsys_initcall(octeon_msi_initialize);