]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/mips/pci/pci-octeon.c
Merge tag 'reset-fixes-for-4.14' of git://git.pengutronix.de/git/pza/linux into fixes
[mirror_ubuntu-bionic-kernel.git] / arch / mips / pci / pci-octeon.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2005-2009 Cavium Networks
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/interrupt.h>
12 #include <linux/time.h>
13 #include <linux/delay.h>
14 #include <linux/platform_device.h>
15 #include <linux/swiotlb.h>
16
17 #include <asm/time.h>
18
19 #include <asm/octeon/octeon.h>
20 #include <asm/octeon/cvmx-npi-defs.h>
21 #include <asm/octeon/cvmx-pci-defs.h>
22 #include <asm/octeon/pci-octeon.h>
23
24 #include <dma-coherence.h>
25
26 #define USE_OCTEON_INTERNAL_ARBITER
27
28 /*
29 * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
30 * addresses. Use PCI endian swapping 1 so no address swapping is
31 * necessary. The Linux io routines will endian swap the data.
32 */
33 #define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull
34 #define OCTEON_PCI_IOSPACE_SIZE (1ull<<32)
35
36 /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
37 #define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull)
38
39 u64 octeon_bar1_pci_phys;
40
41 /**
42 * This is the bit decoding used for the Octeon PCI controller addresses
43 */
44 union octeon_pci_address {
45 uint64_t u64;
46 struct {
47 uint64_t upper:2;
48 uint64_t reserved:13;
49 uint64_t io:1;
50 uint64_t did:5;
51 uint64_t subdid:3;
52 uint64_t reserved2:4;
53 uint64_t endian_swap:2;
54 uint64_t reserved3:10;
55 uint64_t bus:8;
56 uint64_t dev:5;
57 uint64_t func:3;
58 uint64_t reg:8;
59 } s;
60 };
61
62 int (*octeon_pcibios_map_irq)(const struct pci_dev *dev, u8 slot, u8 pin);
63 enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
64
65 /**
66 * Map a PCI device to the appropriate interrupt line
67 *
68 * @dev: The Linux PCI device structure for the device to map
69 * @slot: The slot number for this device on __BUS 0__. Linux
70 * enumerates through all the bridges and figures out the
71 * slot on Bus 0 where this device eventually hooks to.
72 * @pin: The PCI interrupt pin read from the device, then swizzled
73 * as it goes through each bridge.
74 * Returns Interrupt number for the device
75 */
76 int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
77 {
78 if (octeon_pcibios_map_irq)
79 return octeon_pcibios_map_irq(dev, slot, pin);
80 else
81 panic("octeon_pcibios_map_irq not set.");
82 }
83
84
85 /*
86 * Called to perform platform specific PCI setup
87 */
88 int pcibios_plat_dev_init(struct pci_dev *dev)
89 {
90 uint16_t config;
91 uint32_t dconfig;
92 int pos;
93 /*
94 * Force the Cache line setting to 64 bytes. The standard
95 * Linux bus scan doesn't seem to set it. Octeon really has
96 * 128 byte lines, but Intel bridges get really upset if you
97 * try and set values above 64 bytes. Value is specified in
98 * 32bit words.
99 */
100 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
101 /* Set latency timers for all devices */
102 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
103
104 /* Enable reporting System errors and parity errors on all devices */
105 /* Enable parity checking and error reporting */
106 pci_read_config_word(dev, PCI_COMMAND, &config);
107 config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
108 pci_write_config_word(dev, PCI_COMMAND, config);
109
110 if (dev->subordinate) {
111 /* Set latency timers on sub bridges */
112 pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64);
113 /* More bridge error detection */
114 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
115 config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
116 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
117 }
118
119 /* Enable the PCIe normal error reporting */
120 config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */
121 config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */
122 config |= PCI_EXP_DEVCTL_FERE; /* Fatal Error Reporting */
123 config |= PCI_EXP_DEVCTL_URRE; /* Unsupported Request */
124 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config);
125
126 /* Find the Advanced Error Reporting capability */
127 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
128 if (pos) {
129 /* Clear Uncorrectable Error Status */
130 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
131 &dconfig);
132 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
133 dconfig);
134 /* Enable reporting of all uncorrectable errors */
135 /* Uncorrectable Error Mask - turned on bits disable errors */
136 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
137 /*
138 * Leave severity at HW default. This only controls if
139 * errors are reported as uncorrectable or
140 * correctable, not if the error is reported.
141 */
142 /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
143 /* Clear Correctable Error Status */
144 pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
145 pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
146 /* Enable reporting of all correctable errors */
147 /* Correctable Error Mask - turned on bits disable errors */
148 pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
149 /* Advanced Error Capabilities */
150 pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
151 /* ECRC Generation Enable */
152 if (config & PCI_ERR_CAP_ECRC_GENC)
153 config |= PCI_ERR_CAP_ECRC_GENE;
154 /* ECRC Check Enable */
155 if (config & PCI_ERR_CAP_ECRC_CHKC)
156 config |= PCI_ERR_CAP_ECRC_CHKE;
157 pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
158 /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
159 /* Report all errors to the root complex */
160 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
161 PCI_ERR_ROOT_CMD_COR_EN |
162 PCI_ERR_ROOT_CMD_NONFATAL_EN |
163 PCI_ERR_ROOT_CMD_FATAL_EN);
164 /* Clear the Root status register */
165 pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
166 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
167 }
168
169 dev->dev.dma_ops = octeon_pci_dma_map_ops;
170
171 return 0;
172 }
173
174 /**
175 * Return the mapping of PCI device number to IRQ line. Each
176 * character in the return string represents the interrupt
177 * line for the device at that position. Device 1 maps to the
178 * first character, etc. The characters A-D are used for PCI
179 * interrupts.
180 *
181 * Returns PCI interrupt mapping
182 */
183 const char *octeon_get_pci_interrupts(void)
184 {
185 /*
186 * Returning an empty string causes the interrupts to be
187 * routed based on the PCI specification. From the PCI spec:
188 *
189 * INTA# of Device Number 0 is connected to IRQW on the system
190 * board. (Device Number has no significance regarding being
191 * located on the system board or in a connector.) INTA# of
192 * Device Number 1 is connected to IRQX on the system
193 * board. INTA# of Device Number 2 is connected to IRQY on the
194 * system board. INTA# of Device Number 3 is connected to IRQZ
195 * on the system board. The table below describes how each
196 * agent's INTx# lines are connected to the system board
197 * interrupt lines. The following equation can be used to
198 * determine to which INTx# signal on the system board a given
199 * device's INTx# line(s) is connected.
200 *
201 * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
202 * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
203 * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
204 * INTD# = 3)
205 */
206 if (of_machine_is_compatible("dlink,dsr-500n"))
207 return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
208 switch (octeon_bootinfo->board_type) {
209 case CVMX_BOARD_TYPE_NAO38:
210 /* This is really the NAC38 */
211 return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
212 case CVMX_BOARD_TYPE_EBH3100:
213 case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
214 case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
215 return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
216 case CVMX_BOARD_TYPE_BBGW_REF:
217 return "AABCD";
218 case CVMX_BOARD_TYPE_CUST_DSR1000N:
219 return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
220 case CVMX_BOARD_TYPE_THUNDER:
221 case CVMX_BOARD_TYPE_EBH3000:
222 default:
223 return "";
224 }
225 }
226
227 /**
228 * Map a PCI device to the appropriate interrupt line
229 *
230 * @dev: The Linux PCI device structure for the device to map
231 * @slot: The slot number for this device on __BUS 0__. Linux
232 * enumerates through all the bridges and figures out the
233 * slot on Bus 0 where this device eventually hooks to.
234 * @pin: The PCI interrupt pin read from the device, then swizzled
235 * as it goes through each bridge.
236 * Returns Interrupt number for the device
237 */
238 int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
239 u8 slot, u8 pin)
240 {
241 int irq_num;
242 const char *interrupts;
243 int dev_num;
244
245 /* Get the board specific interrupt mapping */
246 interrupts = octeon_get_pci_interrupts();
247
248 dev_num = dev->devfn >> 3;
249 if (dev_num < strlen(interrupts))
250 irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
251 OCTEON_IRQ_PCI_INT0;
252 else
253 irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
254 return irq_num;
255 }
256
257
258 /*
259 * Read a value from configuration space
260 */
261 static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
262 int reg, int size, u32 *val)
263 {
264 union octeon_pci_address pci_addr;
265
266 pci_addr.u64 = 0;
267 pci_addr.s.upper = 2;
268 pci_addr.s.io = 1;
269 pci_addr.s.did = 3;
270 pci_addr.s.subdid = 1;
271 pci_addr.s.endian_swap = 1;
272 pci_addr.s.bus = bus->number;
273 pci_addr.s.dev = devfn >> 3;
274 pci_addr.s.func = devfn & 0x7;
275 pci_addr.s.reg = reg;
276
277 switch (size) {
278 case 4:
279 *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
280 return PCIBIOS_SUCCESSFUL;
281 case 2:
282 *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
283 return PCIBIOS_SUCCESSFUL;
284 case 1:
285 *val = cvmx_read64_uint8(pci_addr.u64);
286 return PCIBIOS_SUCCESSFUL;
287 }
288 return PCIBIOS_FUNC_NOT_SUPPORTED;
289 }
290
291
292 /*
293 * Write a value to PCI configuration space
294 */
295 static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
296 int reg, int size, u32 val)
297 {
298 union octeon_pci_address pci_addr;
299
300 pci_addr.u64 = 0;
301 pci_addr.s.upper = 2;
302 pci_addr.s.io = 1;
303 pci_addr.s.did = 3;
304 pci_addr.s.subdid = 1;
305 pci_addr.s.endian_swap = 1;
306 pci_addr.s.bus = bus->number;
307 pci_addr.s.dev = devfn >> 3;
308 pci_addr.s.func = devfn & 0x7;
309 pci_addr.s.reg = reg;
310
311 switch (size) {
312 case 4:
313 cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
314 return PCIBIOS_SUCCESSFUL;
315 case 2:
316 cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
317 return PCIBIOS_SUCCESSFUL;
318 case 1:
319 cvmx_write64_uint8(pci_addr.u64, val);
320 return PCIBIOS_SUCCESSFUL;
321 }
322 return PCIBIOS_FUNC_NOT_SUPPORTED;
323 }
324
325
326 static struct pci_ops octeon_pci_ops = {
327 .read = octeon_read_config,
328 .write = octeon_write_config,
329 };
330
331 static struct resource octeon_pci_mem_resource = {
332 .start = 0,
333 .end = 0,
334 .name = "Octeon PCI MEM",
335 .flags = IORESOURCE_MEM,
336 };
337
338 /*
339 * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
340 * bridge
341 */
342 static struct resource octeon_pci_io_resource = {
343 .start = 0x4000,
344 .end = OCTEON_PCI_IOSPACE_SIZE - 1,
345 .name = "Octeon PCI IO",
346 .flags = IORESOURCE_IO,
347 };
348
349 static struct pci_controller octeon_pci_controller = {
350 .pci_ops = &octeon_pci_ops,
351 .mem_resource = &octeon_pci_mem_resource,
352 .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
353 .io_resource = &octeon_pci_io_resource,
354 .io_offset = 0,
355 .io_map_base = OCTEON_PCI_IOSPACE_BASE,
356 };
357
358
359 /*
360 * Low level initialize the Octeon PCI controller
361 */
362 static void octeon_pci_initialize(void)
363 {
364 union cvmx_pci_cfg01 cfg01;
365 union cvmx_npi_ctl_status ctl_status;
366 union cvmx_pci_ctl_status_2 ctl_status_2;
367 union cvmx_pci_cfg19 cfg19;
368 union cvmx_pci_cfg16 cfg16;
369 union cvmx_pci_cfg22 cfg22;
370 union cvmx_pci_cfg56 cfg56;
371
372 /* Reset the PCI Bus */
373 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
374 cvmx_read_csr(CVMX_CIU_SOFT_PRST);
375
376 udelay(2000); /* Hold PCI reset for 2 ms */
377
378 ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
379 ctl_status.s.max_word = 1;
380 ctl_status.s.timer = 1;
381 cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
382
383 /* Deassert PCI reset and advertize PCX Host Mode Device Capability
384 (64b) */
385 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
386 cvmx_read_csr(CVMX_CIU_SOFT_PRST);
387
388 udelay(2000); /* Wait 2 ms after deasserting PCI reset */
389
390 ctl_status_2.u32 = 0;
391 ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set
392 before any PCI reads. */
393 ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */
394 ctl_status_2.s.bar2_enb = 1;
395 ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */
396 ctl_status_2.s.bar2_esx = 1;
397 ctl_status_2.s.pmo_amod = 1; /* Round robin priority */
398 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
399 /* BAR1 hole */
400 ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
401 ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */
402 ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */
403 ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */
404 ctl_status_2.s.bb1 = 1; /* BAR1 is big */
405 ctl_status_2.s.bb0 = 1; /* BAR0 is big */
406 }
407
408 octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
409 udelay(2000); /* Wait 2 ms before doing PCI reads */
410
411 ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
412 pr_notice("PCI Status: %s %s-bit\n",
413 ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
414 ctl_status_2.s.ap_64ad ? "64" : "32");
415
416 if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
417 union cvmx_pci_cnt_reg cnt_reg_start;
418 union cvmx_pci_cnt_reg cnt_reg_end;
419 unsigned long cycles, pci_clock;
420
421 cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
422 cycles = read_c0_cvmcount();
423 udelay(1000);
424 cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
425 cycles = read_c0_cvmcount() - cycles;
426 pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
427 (cycles / (mips_hpt_frequency / 1000000));
428 pr_notice("PCI Clock: %lu MHz\n", pci_clock);
429 }
430
431 /*
432 * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
433 * in PCI-X mode to allow four outstanding splits. Otherwise,
434 * should not change from its reset value. Don't write PCI_CFG19
435 * in PCI mode (0x82000001 reset value), write it to 0x82000004
436 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
437 * MRBCM -> must be one.
438 */
439 if (ctl_status_2.s.ap_pcix) {
440 cfg19.u32 = 0;
441 /*
442 * Target Delayed/Split request outstanding maximum
443 * count. [1..31] and 0=32. NOTE: If the user
444 * programs these bits beyond the Designed Maximum
445 * outstanding count, then the designed maximum table
446 * depth will be used instead. No additional
447 * Deferred/Split transactions will be accepted if
448 * this outstanding maximum count is
449 * reached. Furthermore, no additional deferred/split
450 * transactions will be accepted if the I/O delay/ I/O
451 * Split Request outstanding maximum is reached.
452 */
453 cfg19.s.tdomc = 4;
454 /*
455 * Master Deferred Read Request Outstanding Max Count
456 * (PCI only). CR4C[26:24] Max SAC cycles MAX DAC
457 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
458 * 5 2 110 6 3 111 7 3 For example, if these bits are
459 * programmed to 100, the core can support 2 DAC
460 * cycles, 4 SAC cycles or a combination of 1 DAC and
461 * 2 SAC cycles. NOTE: For the PCI-X maximum
462 * outstanding split transactions, refer to
463 * CRE0[22:20].
464 */
465 cfg19.s.mdrrmc = 2;
466 /*
467 * Master Request (Memory Read) Byte Count/Byte Enable
468 * select. 0 = Byte Enables valid. In PCI mode, a
469 * burst transaction cannot be performed using Memory
470 * Read command=4?h6. 1 = DWORD Byte Count valid
471 * (default). In PCI Mode, the memory read byte
472 * enables are automatically generated by the
473 * core. Note: N3 Master Request transaction sizes are
474 * always determined through the
475 * am_attr[<35:32>|<7:0>] field.
476 */
477 cfg19.s.mrbcm = 1;
478 octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
479 }
480
481
482 cfg01.u32 = 0;
483 cfg01.s.msae = 1; /* Memory Space Access Enable */
484 cfg01.s.me = 1; /* Master Enable */
485 cfg01.s.pee = 1; /* PERR# Enable */
486 cfg01.s.see = 1; /* System Error Enable */
487 cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */
488
489 octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
490
491 #ifdef USE_OCTEON_INTERNAL_ARBITER
492 /*
493 * When OCTEON is a PCI host, most systems will use OCTEON's
494 * internal arbiter, so must enable it before any PCI/PCI-X
495 * traffic can occur.
496 */
497 {
498 union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
499
500 pci_int_arb_cfg.u64 = 0;
501 pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */
502 cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
503 }
504 #endif /* USE_OCTEON_INTERNAL_ARBITER */
505
506 /*
507 * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
508 * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
509 * 1..7.
510 */
511 cfg16.u32 = 0;
512 cfg16.s.mltd = 1; /* Master Latency Timer Disable */
513 octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
514
515 /*
516 * Should be written to 0x4ff00. MTTV -> must be zero.
517 * FLUSH -> must be 1. MRV -> should be 0xFF.
518 */
519 cfg22.u32 = 0;
520 /* Master Retry Value [1..255] and 0=infinite */
521 cfg22.s.mrv = 0xff;
522 /*
523 * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
524 * N3K operation.
525 */
526 cfg22.s.flush = 1;
527 octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
528
529 /*
530 * MOST Indicates the maximum number of outstanding splits (in -1
531 * notation) when OCTEON is in PCI-X mode. PCI-X performance is
532 * affected by the MOST selection. Should generally be written
533 * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
534 * depending on the desired MOST of 3, 2, 1, or 0, respectively.
535 */
536 cfg56.u32 = 0;
537 cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */
538 cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */
539 cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */
540 cfg56.s.roe = 1; /* Relaxed Ordering Enable */
541 cfg56.s.mmbc = 1; /* Maximum Memory Byte Count
542 [0=512B,1=1024B,2=2048B,3=4096B] */
543 cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1
544 .. 7=32] */
545
546 octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
547
548 /*
549 * Affects PCI performance when OCTEON services reads to its
550 * BAR1/BAR2. Refer to Section 10.6.1. The recommended values are
551 * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
552 * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
553 * these values need to be changed so they won't possibly prefetch off
554 * of the end of memory if PCI is DMAing a buffer at the end of
555 * memory. Note that these values differ from their reset values.
556 */
557 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
558 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
559 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
560 }
561
562
563 /*
564 * Initialize the Octeon PCI controller
565 */
566 static int __init octeon_pci_setup(void)
567 {
568 union cvmx_npi_mem_access_subidx mem_access;
569 int index;
570
571 /* Only these chips have PCI */
572 if (octeon_has_feature(OCTEON_FEATURE_PCIE))
573 return 0;
574
575 /* Point pcibios_map_irq() to the PCI version of it */
576 octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
577
578 /* Only use the big bars on chips that support it */
579 if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
580 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
581 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
582 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
583 else
584 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
585
586 if (!octeon_is_pci_host()) {
587 pr_notice("Not in host mode, PCI Controller not initialized\n");
588 return 0;
589 }
590
591 /* PCI I/O and PCI MEM values */
592 set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
593 ioport_resource.start = 0;
594 ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
595
596 pr_notice("%s Octeon big bar support\n",
597 (octeon_dma_bar_type ==
598 OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
599
600 octeon_pci_initialize();
601
602 mem_access.u64 = 0;
603 mem_access.s.esr = 1; /* Endian-Swap on read. */
604 mem_access.s.esw = 1; /* Endian-Swap on write. */
605 mem_access.s.nsr = 0; /* No-Snoop on read. */
606 mem_access.s.nsw = 0; /* No-Snoop on write. */
607 mem_access.s.ror = 0; /* Relax Read on read. */
608 mem_access.s.row = 0; /* Relax Order on write. */
609 mem_access.s.ba = 0; /* PCI Address bits [63:36]. */
610 cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
611
612 /*
613 * Remap the Octeon BAR 2 above all 32 bit devices
614 * (0x8000000000ul). This is done here so it is remapped
615 * before the readl()'s below. We don't want BAR2 overlapping
616 * with BAR0/BAR1 during these reads.
617 */
618 octeon_npi_write32(CVMX_NPI_PCI_CFG08,
619 (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
620 octeon_npi_write32(CVMX_NPI_PCI_CFG09,
621 (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
622
623 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
624 /* Remap the Octeon BAR 0 to 0-2GB */
625 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
626 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
627
628 /*
629 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
630 * BAR 1 hole).
631 */
632 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
633 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
634
635 /* BAR1 movable mappings set for identity mapping */
636 octeon_bar1_pci_phys = 0x80000000ull;
637 for (index = 0; index < 32; index++) {
638 union cvmx_pci_bar1_indexx bar1_index;
639
640 bar1_index.u32 = 0;
641 /* Address bits[35:22] sent to L2C */
642 bar1_index.s.addr_idx =
643 (octeon_bar1_pci_phys >> 22) + index;
644 /* Don't put PCI accesses in L2. */
645 bar1_index.s.ca = 1;
646 /* Endian Swap Mode */
647 bar1_index.s.end_swp = 1;
648 /* Set '1' when the selected address range is valid. */
649 bar1_index.s.addr_v = 1;
650 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
651 bar1_index.u32);
652 }
653
654 /* Devices go after BAR1 */
655 octeon_pci_mem_resource.start =
656 OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
657 (OCTEON_PCI_BAR1_HOLE_SIZE << 20);
658 octeon_pci_mem_resource.end =
659 octeon_pci_mem_resource.start + (1ul << 30);
660 } else {
661 /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
662 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
663 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
664
665 /* Remap the Octeon BAR 1 to map 0-128MB */
666 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
667 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
668
669 /* BAR1 movable regions contiguous to cover the swiotlb */
670 octeon_bar1_pci_phys =
671 virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
672
673 for (index = 0; index < 32; index++) {
674 union cvmx_pci_bar1_indexx bar1_index;
675
676 bar1_index.u32 = 0;
677 /* Address bits[35:22] sent to L2C */
678 bar1_index.s.addr_idx =
679 (octeon_bar1_pci_phys >> 22) + index;
680 /* Don't put PCI accesses in L2. */
681 bar1_index.s.ca = 1;
682 /* Endian Swap Mode */
683 bar1_index.s.end_swp = 1;
684 /* Set '1' when the selected address range is valid. */
685 bar1_index.s.addr_v = 1;
686 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
687 bar1_index.u32);
688 }
689
690 /* Devices go after BAR0 */
691 octeon_pci_mem_resource.start =
692 OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
693 (4ul << 10);
694 octeon_pci_mem_resource.end =
695 octeon_pci_mem_resource.start + (1ul << 30);
696 }
697
698 register_pci_controller(&octeon_pci_controller);
699
700 /*
701 * Clear any errors that might be pending from before the bus
702 * was setup properly.
703 */
704 cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
705
706 if (IS_ERR(platform_device_register_simple("octeon_pci_edac",
707 -1, NULL, 0)))
708 pr_err("Registration of co_pci_edac failed!\n");
709
710 octeon_pci_dma_init();
711
712 return 0;
713 }
714
715 arch_initcall(octeon_pci_setup);