]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/mips/sni/time.c
Merge tag 'gfs2-4.15.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2...
[mirror_ubuntu-bionic-kernel.git] / arch / mips / sni / time.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/types.h>
3 #include <linux/i8253.h>
4 #include <linux/interrupt.h>
5 #include <linux/irq.h>
6 #include <linux/smp.h>
7 #include <linux/time.h>
8 #include <linux/clockchips.h>
9
10 #include <asm/sni.h>
11 #include <asm/time.h>
12
13 #define SNI_CLOCK_TICK_RATE 3686400
14 #define SNI_COUNTER2_DIV 64
15 #define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
16
17 static int a20r_set_periodic(struct clock_event_device *evt)
18 {
19 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
20 wmb();
21 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV;
22 wmb();
23 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
24 wmb();
25
26 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
27 wmb();
28 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV;
29 wmb();
30 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
31 wmb();
32 return 0;
33 }
34
35 static struct clock_event_device a20r_clockevent_device = {
36 .name = "a20r-timer",
37 .features = CLOCK_EVT_FEAT_PERIODIC,
38
39 /* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
40
41 .rating = 300,
42 .irq = SNI_A20R_IRQ_TIMER,
43 .set_state_periodic = a20r_set_periodic,
44 };
45
46 static irqreturn_t a20r_interrupt(int irq, void *dev_id)
47 {
48 struct clock_event_device *cd = dev_id;
49
50 *(volatile u8 *)A20R_PT_TIM0_ACK = 0;
51 wmb();
52
53 cd->event_handler(cd);
54
55 return IRQ_HANDLED;
56 }
57
58 static struct irqaction a20r_irqaction = {
59 .handler = a20r_interrupt,
60 .flags = IRQF_PERCPU | IRQF_TIMER,
61 .name = "a20r-timer",
62 };
63
64 /*
65 * a20r platform uses 2 counters to divide the input frequency.
66 * Counter 2 output is connected to Counter 0 & 1 input.
67 */
68 static void __init sni_a20r_timer_setup(void)
69 {
70 struct clock_event_device *cd = &a20r_clockevent_device;
71 struct irqaction *action = &a20r_irqaction;
72 unsigned int cpu = smp_processor_id();
73
74 cd->cpumask = cpumask_of(cpu);
75 clockevents_register_device(cd);
76 action->dev_id = cd;
77 setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
78 }
79
80 #define SNI_8254_TICK_RATE 1193182UL
81
82 #define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255)
83
84 static __init unsigned long dosample(void)
85 {
86 u32 ct0, ct1;
87 volatile u8 msb;
88
89 /* Start the counter. */
90 outb_p(0x34, 0x43);
91 outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
92 outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
93
94 /* Get initial counter invariant */
95 ct0 = read_c0_count();
96
97 /* Latch and spin until top byte of counter0 is zero */
98 do {
99 outb(0x00, 0x43);
100 (void) inb(0x40);
101 msb = inb(0x40);
102 ct1 = read_c0_count();
103 } while (msb);
104
105 /* Stop the counter. */
106 outb(0x38, 0x43);
107 /*
108 * Return the difference, this is how far the r4k counter increments
109 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
110 * clock (= 1000000 / HZ / 2).
111 */
112 /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
113 return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
114 }
115
116 /*
117 * Here we need to calibrate the cycle counter to at least be close.
118 */
119 void __init plat_time_init(void)
120 {
121 unsigned long r4k_ticks[3];
122 unsigned long r4k_tick;
123
124 /*
125 * Figure out the r4k offset, the algorithm is very simple and works in
126 * _all_ cases as long as the 8254 counter register itself works ok (as
127 * an interrupt driving timer it does not because of bug, this is why
128 * we are using the onchip r4k counter/compare register to serve this
129 * purpose, but for r4k_offset calculation it will work ok for us).
130 * There are other very complicated ways of performing this calculation
131 * but this one works just fine so I am not going to futz around. ;-)
132 */
133 printk(KERN_INFO "Calibrating system timer... ");
134 dosample(); /* Prime cache. */
135 dosample(); /* Prime cache. */
136 /* Zero is NOT an option. */
137 do {
138 r4k_ticks[0] = dosample();
139 } while (!r4k_ticks[0]);
140 do {
141 r4k_ticks[1] = dosample();
142 } while (!r4k_ticks[1]);
143
144 if (r4k_ticks[0] != r4k_ticks[1]) {
145 printk("warning: timer counts differ, retrying... ");
146 r4k_ticks[2] = dosample();
147 if (r4k_ticks[2] == r4k_ticks[0]
148 || r4k_ticks[2] == r4k_ticks[1])
149 r4k_tick = r4k_ticks[2];
150 else {
151 printk("disagreement, using average... ");
152 r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
153 + r4k_ticks[2]) / 3;
154 }
155 } else
156 r4k_tick = r4k_ticks[0];
157
158 printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
159 (int) (r4k_tick / (500000 / HZ)),
160 (int) (r4k_tick % (500000 / HZ)));
161
162 mips_hpt_frequency = r4k_tick * HZ;
163
164 switch (sni_brd_type) {
165 case SNI_BRD_10:
166 case SNI_BRD_10NEW:
167 case SNI_BRD_TOWER_OASIC:
168 case SNI_BRD_MINITOWER:
169 sni_a20r_timer_setup();
170 break;
171 }
172 setup_pit_timer();
173 }
174
175 void read_persistent_clock(struct timespec *ts)
176 {
177 ts->tv_sec = -1;
178 ts->tv_nsec = 0;
179 }