]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/parisc/kernel/firmware.c
Linux-2.6.12-rc2
[mirror_ubuntu-artful-kernel.git] / arch / parisc / kernel / firmware.c
1 /*
2 * arch/parisc/kernel/firmware.c - safe PDC access routines
3 *
4 * PDC == Processor Dependent Code
5 *
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
9 *
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14 * Copyright 2004 Thibaut VARENE <varenet@parisc-linux.org>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 */
22
23 /* I think it would be in everyone's best interest to follow this
24 * guidelines when writing PDC wrappers:
25 *
26 * - the name of the pdc wrapper should match one of the macros
27 * used for the first two arguments
28 * - don't use caps for random parts of the name
29 * - use the static PDC result buffers and "copyout" to structs
30 * supplied by the caller to encapsulate alignment restrictions
31 * - hold pdc_lock while in PDC or using static result buffers
32 * - use __pa() to convert virtual (kernel) pointers to physical
33 * ones.
34 * - the name of the struct used for pdc return values should equal
35 * one of the macros used for the first two arguments to the
36 * corresponding PDC call
37 * - keep the order of arguments
38 * - don't be smart (setting trailing NUL bytes for strings, return
39 * something useful even if the call failed) unless you are sure
40 * it's not going to affect functionality or performance
41 *
42 * Example:
43 * int pdc_cache_info(struct pdc_cache_info *cache_info )
44 * {
45 * int retval;
46 *
47 * spin_lock_irq(&pdc_lock);
48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 * convert_to_wide(pdc_result);
50 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 * spin_unlock_irq(&pdc_lock);
52 *
53 * return retval;
54 * }
55 * prumpf 991016
56 */
57
58 #include <stdarg.h>
59
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
66
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/system.h>
71 #include <asm/processor.h> /* for boot_cpu_data */
72
73 static DEFINE_SPINLOCK(pdc_lock);
74 static unsigned long pdc_result[32] __attribute__ ((aligned (8)));
75 static unsigned long pdc_result2[32] __attribute__ ((aligned (8)));
76
77 #ifdef __LP64__
78 #define WIDE_FIRMWARE 0x1
79 #define NARROW_FIRMWARE 0x2
80
81 /* Firmware needs to be initially set to narrow to determine the
82 * actual firmware width. */
83 int parisc_narrow_firmware = 1;
84 #endif
85
86 /* on all currently-supported platforms, IODC I/O calls are always
87 * 32-bit calls, and MEM_PDC calls are always the same width as the OS.
88 * This means Cxxx boxes can't run wide kernels right now. -PB
89 *
90 * CONFIG_PDC_NARROW has been added to allow 64-bit kernels to run on
91 * systems with 32-bit MEM_PDC calls. This will allow wide kernels to
92 * run on Cxxx boxes now. -RB
93 *
94 * Note that some PAT boxes may have 64-bit IODC I/O...
95 */
96
97 #ifdef __LP64__
98 long real64_call(unsigned long function, ...);
99 #endif
100 long real32_call(unsigned long function, ...);
101
102 #ifdef __LP64__
103 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
104 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
105 #else
106 # define MEM_PDC (unsigned long)PAGE0->mem_pdc
107 # define mem_pdc_call(args...) real32_call(MEM_PDC, args)
108 #endif
109
110
111 /**
112 * f_extend - Convert PDC addresses to kernel addresses.
113 * @address: Address returned from PDC.
114 *
115 * This function is used to convert PDC addresses into kernel addresses
116 * when the PDC address size and kernel address size are different.
117 */
118 static unsigned long f_extend(unsigned long address)
119 {
120 #ifdef __LP64__
121 if(unlikely(parisc_narrow_firmware)) {
122 if((address & 0xff000000) == 0xf0000000)
123 return 0xf0f0f0f000000000UL | (u32)address;
124
125 if((address & 0xf0000000) == 0xf0000000)
126 return 0xffffffff00000000UL | (u32)address;
127 }
128 #endif
129 return address;
130 }
131
132 /**
133 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
134 * @address: The return buffer from PDC.
135 *
136 * This function is used to convert the return buffer addresses retrieved from PDC
137 * into kernel addresses when the PDC address size and kernel address size are
138 * different.
139 */
140 static void convert_to_wide(unsigned long *addr)
141 {
142 #ifdef __LP64__
143 int i;
144 unsigned int *p = (unsigned int *)addr;
145
146 if(unlikely(parisc_narrow_firmware)) {
147 for(i = 31; i >= 0; --i)
148 addr[i] = p[i];
149 }
150 #endif
151 }
152
153 /**
154 * set_firmware_width - Determine if the firmware is wide or narrow.
155 *
156 * This function must be called before any pdc_* function that uses the convert_to_wide
157 * function.
158 */
159 void __init set_firmware_width(void)
160 {
161 #ifdef __LP64__
162 int retval;
163
164 spin_lock_irq(&pdc_lock);
165 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
166 convert_to_wide(pdc_result);
167 if(pdc_result[0] != NARROW_FIRMWARE)
168 parisc_narrow_firmware = 0;
169 spin_unlock_irq(&pdc_lock);
170 #endif
171 }
172
173 /**
174 * pdc_emergency_unlock - Unlock the linux pdc lock
175 *
176 * This call unlocks the linux pdc lock in case we need some PDC functions
177 * (like pdc_add_valid) during kernel stack dump.
178 */
179 void pdc_emergency_unlock(void)
180 {
181 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
182 if (spin_is_locked(&pdc_lock))
183 spin_unlock(&pdc_lock);
184 }
185
186
187 /**
188 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
189 * @address: Address to be verified.
190 *
191 * This PDC call attempts to read from the specified address and verifies
192 * if the address is valid.
193 *
194 * The return value is PDC_OK (0) in case accessing this address is valid.
195 */
196 int pdc_add_valid(unsigned long address)
197 {
198 int retval;
199
200 spin_lock_irq(&pdc_lock);
201 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
202 spin_unlock_irq(&pdc_lock);
203
204 return retval;
205 }
206 EXPORT_SYMBOL(pdc_add_valid);
207
208 /**
209 * pdc_chassis_info - Return chassis information.
210 * @result: The return buffer.
211 * @chassis_info: The memory buffer address.
212 * @len: The size of the memory buffer address.
213 *
214 * An HVERSION dependent call for returning the chassis information.
215 */
216 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
217 {
218 int retval;
219
220 spin_lock_irq(&pdc_lock);
221 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
222 memcpy(&pdc_result2, led_info, len);
223 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
224 __pa(pdc_result), __pa(pdc_result2), len);
225 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
226 memcpy(led_info, pdc_result2, len);
227 spin_unlock_irq(&pdc_lock);
228
229 return retval;
230 }
231
232 /**
233 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
234 * @retval: -1 on error, 0 on success. Other value are PDC errors
235 *
236 * Must be correctly formatted or expect system crash
237 */
238 #ifdef __LP64__
239 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
240 {
241 int retval = 0;
242
243 if (!is_pdc_pat())
244 return -1;
245
246 spin_lock_irq(&pdc_lock);
247 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
248 spin_unlock_irq(&pdc_lock);
249
250 return retval;
251 }
252 #endif
253
254 /**
255 * pdc_chassis_disp - Updates display
256 * @retval: -1 on error, 0 on success
257 *
258 * Works on old PDC only (E class, others?)
259 */
260 int pdc_chassis_disp(unsigned long disp)
261 {
262 int retval = 0;
263
264 spin_lock_irq(&pdc_lock);
265 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
266 spin_unlock_irq(&pdc_lock);
267
268 return retval;
269 }
270
271 /**
272 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
273 * @pdc_coproc_info: Return buffer address.
274 *
275 * This PDC call returns the presence and status of all the coprocessors
276 * attached to the processor.
277 */
278 int __init pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
279 {
280 int retval;
281
282 spin_lock_irq(&pdc_lock);
283 retval = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
284 convert_to_wide(pdc_result);
285 pdc_coproc_info->ccr_functional = pdc_result[0];
286 pdc_coproc_info->ccr_present = pdc_result[1];
287 pdc_coproc_info->revision = pdc_result[17];
288 pdc_coproc_info->model = pdc_result[18];
289 spin_unlock_irq(&pdc_lock);
290
291 return retval;
292 }
293
294 /**
295 * pdc_iodc_read - Read data from the modules IODC.
296 * @actcnt: The actual number of bytes.
297 * @hpa: The HPA of the module for the iodc read.
298 * @index: The iodc entry point.
299 * @iodc_data: A buffer memory for the iodc options.
300 * @iodc_data_size: Size of the memory buffer.
301 *
302 * This PDC call reads from the IODC of the module specified by the hpa
303 * argument.
304 */
305 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
306 void *iodc_data, unsigned int iodc_data_size)
307 {
308 int retval;
309
310 spin_lock_irq(&pdc_lock);
311 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
312 index, __pa(pdc_result2), iodc_data_size);
313 convert_to_wide(pdc_result);
314 *actcnt = pdc_result[0];
315 memcpy(iodc_data, pdc_result2, iodc_data_size);
316 spin_unlock_irq(&pdc_lock);
317
318 return retval;
319 }
320 EXPORT_SYMBOL(pdc_iodc_read);
321
322 /**
323 * pdc_system_map_find_mods - Locate unarchitected modules.
324 * @pdc_mod_info: Return buffer address.
325 * @mod_path: pointer to dev path structure.
326 * @mod_index: fixed address module index.
327 *
328 * To locate and identify modules which reside at fixed I/O addresses, which
329 * do not self-identify via architected bus walks.
330 */
331 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
332 struct pdc_module_path *mod_path, long mod_index)
333 {
334 int retval;
335
336 spin_lock_irq(&pdc_lock);
337 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
338 __pa(pdc_result2), mod_index);
339 convert_to_wide(pdc_result);
340 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
341 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
342 spin_unlock_irq(&pdc_lock);
343
344 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
345 return retval;
346 }
347
348 /**
349 * pdc_system_map_find_addrs - Retrieve additional address ranges.
350 * @pdc_addr_info: Return buffer address.
351 * @mod_index: Fixed address module index.
352 * @addr_index: Address range index.
353 *
354 * Retrieve additional information about subsequent address ranges for modules
355 * with multiple address ranges.
356 */
357 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
358 long mod_index, long addr_index)
359 {
360 int retval;
361
362 spin_lock_irq(&pdc_lock);
363 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
364 mod_index, addr_index);
365 convert_to_wide(pdc_result);
366 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
367 spin_unlock_irq(&pdc_lock);
368
369 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
370 return retval;
371 }
372
373 /**
374 * pdc_model_info - Return model information about the processor.
375 * @model: The return buffer.
376 *
377 * Returns the version numbers, identifiers, and capabilities from the processor module.
378 */
379 int pdc_model_info(struct pdc_model *model)
380 {
381 int retval;
382
383 spin_lock_irq(&pdc_lock);
384 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
385 convert_to_wide(pdc_result);
386 memcpy(model, pdc_result, sizeof(*model));
387 spin_unlock_irq(&pdc_lock);
388
389 return retval;
390 }
391
392 /**
393 * pdc_model_sysmodel - Get the system model name.
394 * @name: A char array of at least 81 characters.
395 *
396 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L)
397 */
398 int pdc_model_sysmodel(char *name)
399 {
400 int retval;
401
402 spin_lock_irq(&pdc_lock);
403 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
404 OS_ID_HPUX, __pa(name));
405 convert_to_wide(pdc_result);
406
407 if (retval == PDC_OK) {
408 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
409 } else {
410 name[0] = 0;
411 }
412 spin_unlock_irq(&pdc_lock);
413
414 return retval;
415 }
416
417 /**
418 * pdc_model_versions - Identify the version number of each processor.
419 * @cpu_id: The return buffer.
420 * @id: The id of the processor to check.
421 *
422 * Returns the version number for each processor component.
423 *
424 * This comment was here before, but I do not know what it means :( -RB
425 * id: 0 = cpu revision, 1 = boot-rom-version
426 */
427 int pdc_model_versions(unsigned long *versions, int id)
428 {
429 int retval;
430
431 spin_lock_irq(&pdc_lock);
432 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
433 convert_to_wide(pdc_result);
434 *versions = pdc_result[0];
435 spin_unlock_irq(&pdc_lock);
436
437 return retval;
438 }
439
440 /**
441 * pdc_model_cpuid - Returns the CPU_ID.
442 * @cpu_id: The return buffer.
443 *
444 * Returns the CPU_ID value which uniquely identifies the cpu portion of
445 * the processor module.
446 */
447 int pdc_model_cpuid(unsigned long *cpu_id)
448 {
449 int retval;
450
451 spin_lock_irq(&pdc_lock);
452 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
453 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
454 convert_to_wide(pdc_result);
455 *cpu_id = pdc_result[0];
456 spin_unlock_irq(&pdc_lock);
457
458 return retval;
459 }
460
461 /**
462 * pdc_model_capabilities - Returns the platform capabilities.
463 * @capabilities: The return buffer.
464 *
465 * Returns information about platform support for 32- and/or 64-bit
466 * OSes, IO-PDIR coherency, and virtual aliasing.
467 */
468 int pdc_model_capabilities(unsigned long *capabilities)
469 {
470 int retval;
471
472 spin_lock_irq(&pdc_lock);
473 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
474 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
475 convert_to_wide(pdc_result);
476 *capabilities = pdc_result[0];
477 spin_unlock_irq(&pdc_lock);
478
479 return retval;
480 }
481
482 /**
483 * pdc_cache_info - Return cache and TLB information.
484 * @cache_info: The return buffer.
485 *
486 * Returns information about the processor's cache and TLB.
487 */
488 int pdc_cache_info(struct pdc_cache_info *cache_info)
489 {
490 int retval;
491
492 spin_lock_irq(&pdc_lock);
493 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
494 convert_to_wide(pdc_result);
495 memcpy(cache_info, pdc_result, sizeof(*cache_info));
496 spin_unlock_irq(&pdc_lock);
497
498 return retval;
499 }
500
501 #ifndef CONFIG_PA20
502 /**
503 * pdc_btlb_info - Return block TLB information.
504 * @btlb: The return buffer.
505 *
506 * Returns information about the hardware Block TLB.
507 */
508 int pdc_btlb_info(struct pdc_btlb_info *btlb)
509 {
510 int retval;
511
512 spin_lock_irq(&pdc_lock);
513 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
514 memcpy(btlb, pdc_result, sizeof(*btlb));
515 spin_unlock_irq(&pdc_lock);
516
517 if(retval < 0) {
518 btlb->max_size = 0;
519 }
520 return retval;
521 }
522
523 /**
524 * pdc_mem_map_hpa - Find fixed module information.
525 * @address: The return buffer
526 * @mod_path: pointer to dev path structure.
527 *
528 * This call was developed for S700 workstations to allow the kernel to find
529 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
530 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
531 * call.
532 *
533 * This call is supported by all existing S700 workstations (up to Gecko).
534 */
535 int pdc_mem_map_hpa(struct pdc_memory_map *address,
536 struct pdc_module_path *mod_path)
537 {
538 int retval;
539
540 spin_lock_irq(&pdc_lock);
541 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
542 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
543 __pa(pdc_result2));
544 memcpy(address, pdc_result, sizeof(*address));
545 spin_unlock_irq(&pdc_lock);
546
547 return retval;
548 }
549 #endif /* !CONFIG_PA20 */
550
551 /**
552 * pdc_lan_station_id - Get the LAN address.
553 * @lan_addr: The return buffer.
554 * @hpa: The network device HPA.
555 *
556 * Get the LAN station address when it is not directly available from the LAN hardware.
557 */
558 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
559 {
560 int retval;
561
562 spin_lock_irq(&pdc_lock);
563 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
564 __pa(pdc_result), hpa);
565 if (retval < 0) {
566 /* FIXME: else read MAC from NVRAM */
567 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
568 } else {
569 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
570 }
571 spin_unlock_irq(&pdc_lock);
572
573 return retval;
574 }
575 EXPORT_SYMBOL(pdc_lan_station_id);
576
577 /**
578 * pdc_stable_read - Read data from Stable Storage.
579 * @staddr: Stable Storage address to access.
580 * @memaddr: The memory address where Stable Storage data shall be copied.
581 * @count: number of bytes to transfert. count is multiple of 4.
582 *
583 * This PDC call reads from the Stable Storage address supplied in staddr
584 * and copies count bytes to the memory address memaddr.
585 * The call will fail if staddr+count > PDC_STABLE size.
586 */
587 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
588 {
589 int retval;
590
591 spin_lock_irq(&pdc_lock);
592 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
593 __pa(pdc_result), count);
594 convert_to_wide(pdc_result);
595 memcpy(memaddr, pdc_result, count);
596 spin_unlock_irq(&pdc_lock);
597
598 return retval;
599 }
600 EXPORT_SYMBOL(pdc_stable_read);
601
602 /**
603 * pdc_stable_write - Write data to Stable Storage.
604 * @staddr: Stable Storage address to access.
605 * @memaddr: The memory address where Stable Storage data shall be read from.
606 * @count: number of bytes to transfert. count is multiple of 4.
607 *
608 * This PDC call reads count bytes from the supplied memaddr address,
609 * and copies count bytes to the Stable Storage address staddr.
610 * The call will fail if staddr+count > PDC_STABLE size.
611 */
612 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
613 {
614 int retval;
615
616 spin_lock_irq(&pdc_lock);
617 memcpy(pdc_result, memaddr, count);
618 convert_to_wide(pdc_result);
619 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
620 __pa(pdc_result), count);
621 spin_unlock_irq(&pdc_lock);
622
623 return retval;
624 }
625 EXPORT_SYMBOL(pdc_stable_write);
626
627 /**
628 * pdc_stable_get_size - Get Stable Storage size in bytes.
629 * @size: pointer where the size will be stored.
630 *
631 * This PDC call returns the number of bytes in the processor's Stable
632 * Storage, which is the number of contiguous bytes implemented in Stable
633 * Storage starting from staddr=0. size in an unsigned 64-bit integer
634 * which is a multiple of four.
635 */
636 int pdc_stable_get_size(unsigned long *size)
637 {
638 int retval;
639
640 spin_lock_irq(&pdc_lock);
641 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
642 *size = pdc_result[0];
643 spin_unlock_irq(&pdc_lock);
644
645 return retval;
646 }
647 EXPORT_SYMBOL(pdc_stable_get_size);
648
649 /**
650 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
651 *
652 * This PDC call is meant to be used to check the integrity of the current
653 * contents of Stable Storage.
654 */
655 int pdc_stable_verify_contents(void)
656 {
657 int retval;
658
659 spin_lock_irq(&pdc_lock);
660 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
661 spin_unlock_irq(&pdc_lock);
662
663 return retval;
664 }
665 EXPORT_SYMBOL(pdc_stable_verify_contents);
666
667 /**
668 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
669 * the validity indicator.
670 *
671 * This PDC call will erase all contents of Stable Storage. Use with care!
672 */
673 int pdc_stable_initialize(void)
674 {
675 int retval;
676
677 spin_lock_irq(&pdc_lock);
678 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
679 spin_unlock_irq(&pdc_lock);
680
681 return retval;
682 }
683 EXPORT_SYMBOL(pdc_stable_initialize);
684
685 /**
686 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
687 * @hwpath: fully bc.mod style path to the device.
688 * @initiator: the array to return the result into
689 *
690 * Get the SCSI operational parameters from PDC.
691 * Needed since HPUX never used BIOS or symbios card NVRAM.
692 * Most ncr/sym cards won't have an entry and just use whatever
693 * capabilities of the card are (eg Ultra, LVD). But there are
694 * several cases where it's useful:
695 * o set SCSI id for Multi-initiator clusters,
696 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
697 * o bus width exported is less than what the interface chip supports.
698 */
699 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
700 {
701 int retval;
702
703 spin_lock_irq(&pdc_lock);
704
705 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
706 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
707 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
708
709 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
710 __pa(pdc_result), __pa(hwpath));
711 if (retval < PDC_OK)
712 goto out;
713
714 if (pdc_result[0] < 16) {
715 initiator->host_id = pdc_result[0];
716 } else {
717 initiator->host_id = -1;
718 }
719
720 /*
721 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
722 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
723 */
724 switch (pdc_result[1]) {
725 case 1: initiator->factor = 50; break;
726 case 2: initiator->factor = 25; break;
727 case 5: initiator->factor = 12; break;
728 case 25: initiator->factor = 10; break;
729 case 20: initiator->factor = 12; break;
730 case 40: initiator->factor = 10; break;
731 default: initiator->factor = -1; break;
732 }
733
734 if (IS_SPROCKETS()) {
735 initiator->width = pdc_result[4];
736 initiator->mode = pdc_result[5];
737 } else {
738 initiator->width = -1;
739 initiator->mode = -1;
740 }
741
742 out:
743 spin_unlock_irq(&pdc_lock);
744 return (retval >= PDC_OK);
745 }
746 EXPORT_SYMBOL(pdc_get_initiator);
747
748
749 /**
750 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
751 * @num_entries: The return value.
752 * @hpa: The HPA for the device.
753 *
754 * This PDC function returns the number of entries in the specified cell's
755 * interrupt table.
756 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
757 */
758 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
759 {
760 int retval;
761
762 spin_lock_irq(&pdc_lock);
763 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
764 __pa(pdc_result), hpa);
765 convert_to_wide(pdc_result);
766 *num_entries = pdc_result[0];
767 spin_unlock_irq(&pdc_lock);
768
769 return retval;
770 }
771
772 /**
773 * pdc_pci_irt - Get the PCI interrupt routing table.
774 * @num_entries: The number of entries in the table.
775 * @hpa: The Hard Physical Address of the device.
776 * @tbl:
777 *
778 * Get the PCI interrupt routing table for the device at the given HPA.
779 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
780 */
781 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
782 {
783 int retval;
784
785 BUG_ON((unsigned long)tbl & 0x7);
786
787 spin_lock_irq(&pdc_lock);
788 pdc_result[0] = num_entries;
789 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
790 __pa(pdc_result), hpa, __pa(tbl));
791 spin_unlock_irq(&pdc_lock);
792
793 return retval;
794 }
795
796
797 #if 0 /* UNTEST CODE - left here in case someone needs it */
798
799 /**
800 * pdc_pci_config_read - read PCI config space.
801 * @hpa token from PDC to indicate which PCI device
802 * @pci_addr configuration space address to read from
803 *
804 * Read PCI Configuration space *before* linux PCI subsystem is running.
805 */
806 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
807 {
808 int retval;
809 spin_lock_irq(&pdc_lock);
810 pdc_result[0] = 0;
811 pdc_result[1] = 0;
812 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
813 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
814 spin_unlock_irq(&pdc_lock);
815 return retval ? ~0 : (unsigned int) pdc_result[0];
816 }
817
818
819 /**
820 * pdc_pci_config_write - read PCI config space.
821 * @hpa token from PDC to indicate which PCI device
822 * @pci_addr configuration space address to write
823 * @val value we want in the 32-bit register
824 *
825 * Write PCI Configuration space *before* linux PCI subsystem is running.
826 */
827 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
828 {
829 int retval;
830 spin_lock_irq(&pdc_lock);
831 pdc_result[0] = 0;
832 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
833 __pa(pdc_result), hpa,
834 cfg_addr&~3UL, 4UL, (unsigned long) val);
835 spin_unlock_irq(&pdc_lock);
836 return retval;
837 }
838 #endif /* UNTESTED CODE */
839
840 /**
841 * pdc_tod_read - Read the Time-Of-Day clock.
842 * @tod: The return buffer:
843 *
844 * Read the Time-Of-Day clock
845 */
846 int pdc_tod_read(struct pdc_tod *tod)
847 {
848 int retval;
849
850 spin_lock_irq(&pdc_lock);
851 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
852 convert_to_wide(pdc_result);
853 memcpy(tod, pdc_result, sizeof(*tod));
854 spin_unlock_irq(&pdc_lock);
855
856 return retval;
857 }
858 EXPORT_SYMBOL(pdc_tod_read);
859
860 /**
861 * pdc_tod_set - Set the Time-Of-Day clock.
862 * @sec: The number of seconds since epoch.
863 * @usec: The number of micro seconds.
864 *
865 * Set the Time-Of-Day clock.
866 */
867 int pdc_tod_set(unsigned long sec, unsigned long usec)
868 {
869 int retval;
870
871 spin_lock_irq(&pdc_lock);
872 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
873 spin_unlock_irq(&pdc_lock);
874
875 return retval;
876 }
877 EXPORT_SYMBOL(pdc_tod_set);
878
879 #ifdef __LP64__
880 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
881 struct pdc_memory_table *tbl, unsigned long entries)
882 {
883 int retval;
884
885 spin_lock_irq(&pdc_lock);
886 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
887 convert_to_wide(pdc_result);
888 memcpy(r_addr, pdc_result, sizeof(*r_addr));
889 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
890 spin_unlock_irq(&pdc_lock);
891
892 return retval;
893 }
894 #endif /* __LP64__ */
895
896 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
897 * so I guessed at unsigned long. Someone who knows what this does, can fix
898 * it later. :)
899 */
900 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
901 {
902 int retval;
903
904 spin_lock_irq(&pdc_lock);
905 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
906 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
907 spin_unlock_irq(&pdc_lock);
908
909 return retval;
910 }
911
912 /*
913 * pdc_do_reset - Reset the system.
914 *
915 * Reset the system.
916 */
917 int pdc_do_reset(void)
918 {
919 int retval;
920
921 spin_lock_irq(&pdc_lock);
922 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
923 spin_unlock_irq(&pdc_lock);
924
925 return retval;
926 }
927
928 /*
929 * pdc_soft_power_info - Enable soft power switch.
930 * @power_reg: address of soft power register
931 *
932 * Return the absolute address of the soft power switch register
933 */
934 int __init pdc_soft_power_info(unsigned long *power_reg)
935 {
936 int retval;
937
938 *power_reg = (unsigned long) (-1);
939
940 spin_lock_irq(&pdc_lock);
941 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
942 if (retval == PDC_OK) {
943 convert_to_wide(pdc_result);
944 *power_reg = f_extend(pdc_result[0]);
945 }
946 spin_unlock_irq(&pdc_lock);
947
948 return retval;
949 }
950
951 /*
952 * pdc_soft_power_button - Control the soft power button behaviour
953 * @sw_control: 0 for hardware control, 1 for software control
954 *
955 *
956 * This PDC function places the soft power button under software or
957 * hardware control.
958 * Under software control the OS may control to when to allow to shut
959 * down the system. Under hardware control pressing the power button
960 * powers off the system immediately.
961 */
962 int pdc_soft_power_button(int sw_control)
963 {
964 int retval;
965 spin_lock_irq(&pdc_lock);
966 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
967 spin_unlock_irq(&pdc_lock);
968 return retval;
969 }
970
971 /*
972 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
973 * Primarily a problem on T600 (which parisc-linux doesn't support) but
974 * who knows what other platform firmware might do with this OS "hook".
975 */
976 void pdc_io_reset(void)
977 {
978 spin_lock_irq(&pdc_lock);
979 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
980 spin_unlock_irq(&pdc_lock);
981 }
982
983 /*
984 * pdc_io_reset_devices - Hack to Stop USB controller
985 *
986 * If PDC used the usb controller, the usb controller
987 * is still running and will crash the machines during iommu
988 * setup, because of still running DMA. This PDC call
989 * stops the USB controller.
990 * Normally called after calling pdc_io_reset().
991 */
992 void pdc_io_reset_devices(void)
993 {
994 spin_lock_irq(&pdc_lock);
995 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
996 spin_unlock_irq(&pdc_lock);
997 }
998
999
1000 /**
1001 * pdc_iodc_putc - Console character print using IODC.
1002 * @c: the character to output.
1003 *
1004 * Note that only these special chars are architected for console IODC io:
1005 * BEL, BS, CR, and LF. Others are passed through.
1006 * Since the HP console requires CR+LF to perform a 'newline', we translate
1007 * "\n" to "\r\n".
1008 */
1009 void pdc_iodc_putc(unsigned char c)
1010 {
1011 /* XXX Should we spinlock posx usage */
1012 static int posx; /* for simple TAB-Simulation... */
1013 static int __attribute__((aligned(8))) iodc_retbuf[32];
1014 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1015 unsigned int n;
1016 unsigned int flags;
1017
1018 switch (c) {
1019 case '\n':
1020 iodc_dbuf[0] = '\r';
1021 iodc_dbuf[1] = '\n';
1022 n = 2;
1023 posx = 0;
1024 break;
1025 case '\t':
1026 pdc_iodc_putc(' ');
1027 while (posx & 7) /* expand TAB */
1028 pdc_iodc_putc(' ');
1029 return; /* return since IODC can't handle this */
1030 case '\b':
1031 posx-=2; /* BS */
1032 default:
1033 iodc_dbuf[0] = c;
1034 n = 1;
1035 posx++;
1036 break;
1037 }
1038
1039 spin_lock_irqsave(&pdc_lock, flags);
1040 real32_call(PAGE0->mem_cons.iodc_io,
1041 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1042 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1043 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1044 spin_unlock_irqrestore(&pdc_lock, flags);
1045 }
1046
1047 /**
1048 * pdc_iodc_outc - Console character print using IODC (without conversions).
1049 * @c: the character to output.
1050 *
1051 * Write the character directly to the IODC console.
1052 */
1053 void pdc_iodc_outc(unsigned char c)
1054 {
1055 unsigned int n, flags;
1056
1057 /* fill buffer with one caracter and print it */
1058 static int __attribute__((aligned(8))) iodc_retbuf[32];
1059 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1060
1061 n = 1;
1062 iodc_dbuf[0] = c;
1063
1064 spin_lock_irqsave(&pdc_lock, flags);
1065 real32_call(PAGE0->mem_cons.iodc_io,
1066 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1067 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1068 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1069 spin_unlock_irqrestore(&pdc_lock, flags);
1070 }
1071
1072 /**
1073 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1074 *
1075 * Read a character (non-blocking) from the PDC console, returns -1 if
1076 * key is not present.
1077 */
1078 int pdc_iodc_getc(void)
1079 {
1080 unsigned int flags;
1081 static int __attribute__((aligned(8))) iodc_retbuf[32];
1082 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1083 int ch;
1084 int status;
1085
1086 /* Bail if no console input device. */
1087 if (!PAGE0->mem_kbd.iodc_io)
1088 return 0;
1089
1090 /* wait for a keyboard (rs232)-input */
1091 spin_lock_irqsave(&pdc_lock, flags);
1092 real32_call(PAGE0->mem_kbd.iodc_io,
1093 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1094 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1095 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1096
1097 ch = *iodc_dbuf;
1098 status = *iodc_retbuf;
1099 spin_unlock_irqrestore(&pdc_lock, flags);
1100
1101 if (status == 0)
1102 return -1;
1103
1104 return ch;
1105 }
1106
1107 int pdc_sti_call(unsigned long func, unsigned long flags,
1108 unsigned long inptr, unsigned long outputr,
1109 unsigned long glob_cfg)
1110 {
1111 int retval;
1112
1113 spin_lock_irq(&pdc_lock);
1114 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1115 spin_unlock_irq(&pdc_lock);
1116
1117 return retval;
1118 }
1119 EXPORT_SYMBOL(pdc_sti_call);
1120
1121 #ifdef __LP64__
1122 /**
1123 * pdc_pat_cell_get_number - Returns the cell number.
1124 * @cell_info: The return buffer.
1125 *
1126 * This PDC call returns the cell number of the cell from which the call
1127 * is made.
1128 */
1129 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1130 {
1131 int retval;
1132
1133 spin_lock_irq(&pdc_lock);
1134 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1135 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1136 spin_unlock_irq(&pdc_lock);
1137
1138 return retval;
1139 }
1140
1141 /**
1142 * pdc_pat_cell_module - Retrieve the cell's module information.
1143 * @actcnt: The number of bytes written to mem_addr.
1144 * @ploc: The physical location.
1145 * @mod: The module index.
1146 * @view_type: The view of the address type.
1147 * @mem_addr: The return buffer.
1148 *
1149 * This PDC call returns information about each module attached to the cell
1150 * at the specified location.
1151 */
1152 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1153 unsigned long view_type, void *mem_addr)
1154 {
1155 int retval;
1156 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1157
1158 spin_lock_irq(&pdc_lock);
1159 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1160 ploc, mod, view_type, __pa(&result));
1161 if(!retval) {
1162 *actcnt = pdc_result[0];
1163 memcpy(mem_addr, &result, *actcnt);
1164 }
1165 spin_unlock_irq(&pdc_lock);
1166
1167 return retval;
1168 }
1169
1170 /**
1171 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1172 * @cpu_info: The return buffer.
1173 * @hpa: The Hard Physical Address of the CPU.
1174 *
1175 * Retrieve the cpu number for the cpu at the specified HPA.
1176 */
1177 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1178 {
1179 int retval;
1180
1181 spin_lock_irq(&pdc_lock);
1182 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1183 __pa(&pdc_result), hpa);
1184 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1185 spin_unlock_irq(&pdc_lock);
1186
1187 return retval;
1188 }
1189
1190 /**
1191 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1192 * @num_entries: The return value.
1193 * @cell_num: The target cell.
1194 *
1195 * This PDC function returns the number of entries in the specified cell's
1196 * interrupt table.
1197 */
1198 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1199 {
1200 int retval;
1201
1202 spin_lock_irq(&pdc_lock);
1203 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1204 __pa(pdc_result), cell_num);
1205 *num_entries = pdc_result[0];
1206 spin_unlock_irq(&pdc_lock);
1207
1208 return retval;
1209 }
1210
1211 /**
1212 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1213 * @r_addr: The return buffer.
1214 * @cell_num: The target cell.
1215 *
1216 * This PDC function returns the actual interrupt table for the specified cell.
1217 */
1218 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1219 {
1220 int retval;
1221
1222 spin_lock_irq(&pdc_lock);
1223 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1224 __pa(r_addr), cell_num);
1225 spin_unlock_irq(&pdc_lock);
1226
1227 return retval;
1228 }
1229
1230 /**
1231 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1232 * @actlen: The return buffer.
1233 * @mem_addr: Pointer to the memory buffer.
1234 * @count: The number of bytes to read from the buffer.
1235 * @offset: The offset with respect to the beginning of the buffer.
1236 *
1237 */
1238 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1239 unsigned long count, unsigned long offset)
1240 {
1241 int retval;
1242
1243 spin_lock_irq(&pdc_lock);
1244 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1245 __pa(pdc_result2), count, offset);
1246 *actual_len = pdc_result[0];
1247 memcpy(mem_addr, pdc_result2, *actual_len);
1248 spin_unlock_irq(&pdc_lock);
1249
1250 return retval;
1251 }
1252
1253 /**
1254 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1255 * @pci_addr: PCI configuration space address for which the read request is being made.
1256 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1257 * @mem_addr: Pointer to return memory buffer.
1258 *
1259 */
1260 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1261 {
1262 int retval;
1263 spin_lock_irq(&pdc_lock);
1264 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1265 __pa(pdc_result), pci_addr, pci_size);
1266 switch(pci_size) {
1267 case 1: *(u8 *) mem_addr = (u8) pdc_result[0];
1268 case 2: *(u16 *)mem_addr = (u16) pdc_result[0];
1269 case 4: *(u32 *)mem_addr = (u32) pdc_result[0];
1270 }
1271 spin_unlock_irq(&pdc_lock);
1272
1273 return retval;
1274 }
1275
1276 /**
1277 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1278 * @pci_addr: PCI configuration space address for which the write request is being made.
1279 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1280 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1281 * written to PCI Config space.
1282 *
1283 */
1284 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1285 {
1286 int retval;
1287
1288 spin_lock_irq(&pdc_lock);
1289 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1290 pci_addr, pci_size, val);
1291 spin_unlock_irq(&pdc_lock);
1292
1293 return retval;
1294 }
1295 #endif /* __LP64__ */
1296
1297
1298 /***************** 32-bit real-mode calls ***********/
1299 /* The struct below is used
1300 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1301 * real32_call_asm() then uses this stack in narrow real mode
1302 */
1303
1304 struct narrow_stack {
1305 /* use int, not long which is 64 bits */
1306 unsigned int arg13;
1307 unsigned int arg12;
1308 unsigned int arg11;
1309 unsigned int arg10;
1310 unsigned int arg9;
1311 unsigned int arg8;
1312 unsigned int arg7;
1313 unsigned int arg6;
1314 unsigned int arg5;
1315 unsigned int arg4;
1316 unsigned int arg3;
1317 unsigned int arg2;
1318 unsigned int arg1;
1319 unsigned int arg0;
1320 unsigned int frame_marker[8];
1321 unsigned int sp;
1322 /* in reality, there's nearly 8k of stack after this */
1323 };
1324
1325 long real32_call(unsigned long fn, ...)
1326 {
1327 va_list args;
1328 extern struct narrow_stack real_stack;
1329 extern unsigned long real32_call_asm(unsigned int *,
1330 unsigned int *,
1331 unsigned int);
1332
1333 va_start(args, fn);
1334 real_stack.arg0 = va_arg(args, unsigned int);
1335 real_stack.arg1 = va_arg(args, unsigned int);
1336 real_stack.arg2 = va_arg(args, unsigned int);
1337 real_stack.arg3 = va_arg(args, unsigned int);
1338 real_stack.arg4 = va_arg(args, unsigned int);
1339 real_stack.arg5 = va_arg(args, unsigned int);
1340 real_stack.arg6 = va_arg(args, unsigned int);
1341 real_stack.arg7 = va_arg(args, unsigned int);
1342 real_stack.arg8 = va_arg(args, unsigned int);
1343 real_stack.arg9 = va_arg(args, unsigned int);
1344 real_stack.arg10 = va_arg(args, unsigned int);
1345 real_stack.arg11 = va_arg(args, unsigned int);
1346 real_stack.arg12 = va_arg(args, unsigned int);
1347 real_stack.arg13 = va_arg(args, unsigned int);
1348 va_end(args);
1349
1350 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1351 }
1352
1353 #ifdef __LP64__
1354 /***************** 64-bit real-mode calls ***********/
1355
1356 struct wide_stack {
1357 unsigned long arg0;
1358 unsigned long arg1;
1359 unsigned long arg2;
1360 unsigned long arg3;
1361 unsigned long arg4;
1362 unsigned long arg5;
1363 unsigned long arg6;
1364 unsigned long arg7;
1365 unsigned long arg8;
1366 unsigned long arg9;
1367 unsigned long arg10;
1368 unsigned long arg11;
1369 unsigned long arg12;
1370 unsigned long arg13;
1371 unsigned long frame_marker[2]; /* rp, previous sp */
1372 unsigned long sp;
1373 /* in reality, there's nearly 8k of stack after this */
1374 };
1375
1376 long real64_call(unsigned long fn, ...)
1377 {
1378 va_list args;
1379 extern struct wide_stack real64_stack;
1380 extern unsigned long real64_call_asm(unsigned long *,
1381 unsigned long *,
1382 unsigned long);
1383
1384 va_start(args, fn);
1385 real64_stack.arg0 = va_arg(args, unsigned long);
1386 real64_stack.arg1 = va_arg(args, unsigned long);
1387 real64_stack.arg2 = va_arg(args, unsigned long);
1388 real64_stack.arg3 = va_arg(args, unsigned long);
1389 real64_stack.arg4 = va_arg(args, unsigned long);
1390 real64_stack.arg5 = va_arg(args, unsigned long);
1391 real64_stack.arg6 = va_arg(args, unsigned long);
1392 real64_stack.arg7 = va_arg(args, unsigned long);
1393 real64_stack.arg8 = va_arg(args, unsigned long);
1394 real64_stack.arg9 = va_arg(args, unsigned long);
1395 real64_stack.arg10 = va_arg(args, unsigned long);
1396 real64_stack.arg11 = va_arg(args, unsigned long);
1397 real64_stack.arg12 = va_arg(args, unsigned long);
1398 real64_stack.arg13 = va_arg(args, unsigned long);
1399 va_end(args);
1400
1401 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1402 }
1403
1404 #endif /* __LP64__ */
1405