]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/parisc/kernel/time.c
Merge branch 'tc_action-fixes'
[mirror_ubuntu-artful-kernel.git] / arch / parisc / kernel / time.c
1 /*
2 * linux/arch/parisc/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7 *
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 */
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/init.h>
23 #include <linux/smp.h>
24 #include <linux/profile.h>
25 #include <linux/clocksource.h>
26 #include <linux/platform_device.h>
27 #include <linux/ftrace.h>
28
29 #include <asm/uaccess.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <asm/page.h>
33 #include <asm/param.h>
34 #include <asm/pdc.h>
35 #include <asm/led.h>
36
37 #include <linux/timex.h>
38
39 static unsigned long clocktick __read_mostly; /* timer cycles per tick */
40
41 #ifndef CONFIG_64BIT
42 /*
43 * The processor-internal cycle counter (Control Register 16) is used as time
44 * source for the sched_clock() function. This register is 64bit wide on a
45 * 64-bit kernel and 32bit on a 32-bit kernel. Since sched_clock() always
46 * requires a 64bit counter we emulate on the 32-bit kernel the higher 32bits
47 * with a per-cpu variable which we increase every time the counter
48 * wraps-around (which happens every ~4 secounds).
49 */
50 static DEFINE_PER_CPU(unsigned long, cr16_high_32_bits);
51 #endif
52
53 /*
54 * We keep time on PA-RISC Linux by using the Interval Timer which is
55 * a pair of registers; one is read-only and one is write-only; both
56 * accessed through CR16. The read-only register is 32 or 64 bits wide,
57 * and increments by 1 every CPU clock tick. The architecture only
58 * guarantees us a rate between 0.5 and 2, but all implementations use a
59 * rate of 1. The write-only register is 32-bits wide. When the lowest
60 * 32 bits of the read-only register compare equal to the write-only
61 * register, it raises a maskable external interrupt. Each processor has
62 * an Interval Timer of its own and they are not synchronised.
63 *
64 * We want to generate an interrupt every 1/HZ seconds. So we program
65 * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
66 * is programmed with the intended time of the next tick. We can be
67 * held off for an arbitrarily long period of time by interrupts being
68 * disabled, so we may miss one or more ticks.
69 */
70 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
71 {
72 unsigned long now, now2;
73 unsigned long next_tick;
74 unsigned long cycles_elapsed, ticks_elapsed = 1;
75 unsigned long cycles_remainder;
76 unsigned int cpu = smp_processor_id();
77 struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
78
79 /* gcc can optimize for "read-only" case with a local clocktick */
80 unsigned long cpt = clocktick;
81
82 profile_tick(CPU_PROFILING);
83
84 /* Initialize next_tick to the expected tick time. */
85 next_tick = cpuinfo->it_value;
86
87 /* Get current cycle counter (Control Register 16). */
88 now = mfctl(16);
89
90 cycles_elapsed = now - next_tick;
91
92 if ((cycles_elapsed >> 6) < cpt) {
93 /* use "cheap" math (add/subtract) instead
94 * of the more expensive div/mul method
95 */
96 cycles_remainder = cycles_elapsed;
97 while (cycles_remainder > cpt) {
98 cycles_remainder -= cpt;
99 ticks_elapsed++;
100 }
101 } else {
102 /* TODO: Reduce this to one fdiv op */
103 cycles_remainder = cycles_elapsed % cpt;
104 ticks_elapsed += cycles_elapsed / cpt;
105 }
106
107 /* convert from "division remainder" to "remainder of clock tick" */
108 cycles_remainder = cpt - cycles_remainder;
109
110 /* Determine when (in CR16 cycles) next IT interrupt will fire.
111 * We want IT to fire modulo clocktick even if we miss/skip some.
112 * But those interrupts don't in fact get delivered that regularly.
113 */
114 next_tick = now + cycles_remainder;
115
116 cpuinfo->it_value = next_tick;
117
118 /* Program the IT when to deliver the next interrupt.
119 * Only bottom 32-bits of next_tick are writable in CR16!
120 */
121 mtctl(next_tick, 16);
122
123 #if !defined(CONFIG_64BIT)
124 /* check for overflow on a 32bit kernel (every ~4 seconds). */
125 if (unlikely(next_tick < now))
126 this_cpu_inc(cr16_high_32_bits);
127 #endif
128
129 /* Skip one clocktick on purpose if we missed next_tick.
130 * The new CR16 must be "later" than current CR16 otherwise
131 * itimer would not fire until CR16 wrapped - e.g 4 seconds
132 * later on a 1Ghz processor. We'll account for the missed
133 * tick on the next timer interrupt.
134 *
135 * "next_tick - now" will always give the difference regardless
136 * if one or the other wrapped. If "now" is "bigger" we'll end up
137 * with a very large unsigned number.
138 */
139 now2 = mfctl(16);
140 if (next_tick - now2 > cpt)
141 mtctl(next_tick+cpt, 16);
142
143 #if 1
144 /*
145 * GGG: DEBUG code for how many cycles programming CR16 used.
146 */
147 if (unlikely(now2 - now > 0x3000)) /* 12K cycles */
148 printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
149 " cyc %lX rem %lX "
150 " next/now %lX/%lX\n",
151 cpu, now2 - now, cycles_elapsed, cycles_remainder,
152 next_tick, now );
153 #endif
154
155 /* Can we differentiate between "early CR16" (aka Scenario 1) and
156 * "long delay" (aka Scenario 3)? I don't think so.
157 *
158 * Timer_interrupt will be delivered at least a few hundred cycles
159 * after the IT fires. But it's arbitrary how much time passes
160 * before we call it "late". I've picked one second.
161 *
162 * It's important NO printk's are between reading CR16 and
163 * setting up the next value. May introduce huge variance.
164 */
165 if (unlikely(ticks_elapsed > HZ)) {
166 /* Scenario 3: very long delay? bad in any case */
167 printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
168 " cycles %lX rem %lX "
169 " next/now %lX/%lX\n",
170 cpu,
171 cycles_elapsed, cycles_remainder,
172 next_tick, now );
173 }
174
175 /* Done mucking with unreliable delivery of interrupts.
176 * Go do system house keeping.
177 */
178
179 if (!--cpuinfo->prof_counter) {
180 cpuinfo->prof_counter = cpuinfo->prof_multiplier;
181 update_process_times(user_mode(get_irq_regs()));
182 }
183
184 if (cpu == 0)
185 xtime_update(ticks_elapsed);
186
187 return IRQ_HANDLED;
188 }
189
190
191 unsigned long profile_pc(struct pt_regs *regs)
192 {
193 unsigned long pc = instruction_pointer(regs);
194
195 if (regs->gr[0] & PSW_N)
196 pc -= 4;
197
198 #ifdef CONFIG_SMP
199 if (in_lock_functions(pc))
200 pc = regs->gr[2];
201 #endif
202
203 return pc;
204 }
205 EXPORT_SYMBOL(profile_pc);
206
207
208 /* clock source code */
209
210 static cycle_t read_cr16(struct clocksource *cs)
211 {
212 return get_cycles();
213 }
214
215 static struct clocksource clocksource_cr16 = {
216 .name = "cr16",
217 .rating = 300,
218 .read = read_cr16,
219 .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
220 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
221 };
222
223 int update_cr16_clocksource(void)
224 {
225 /* since the cr16 cycle counters are not synchronized across CPUs,
226 we'll check if we should switch to a safe clocksource: */
227 if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
228 clocksource_change_rating(&clocksource_cr16, 0);
229 return 1;
230 }
231
232 return 0;
233 }
234
235 void __init start_cpu_itimer(void)
236 {
237 unsigned int cpu = smp_processor_id();
238 unsigned long next_tick = mfctl(16) + clocktick;
239
240 #if defined(CONFIG_HAVE_UNSTABLE_SCHED_CLOCK) && defined(CONFIG_64BIT)
241 /* With multiple 64bit CPUs online, the cr16's are not syncronized. */
242 if (cpu != 0)
243 clear_sched_clock_stable();
244 #endif
245
246 mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
247
248 per_cpu(cpu_data, cpu).it_value = next_tick;
249 }
250
251 static int __init rtc_init(void)
252 {
253 struct platform_device *pdev;
254
255 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
256 return PTR_ERR_OR_ZERO(pdev);
257 }
258 device_initcall(rtc_init);
259
260 void read_persistent_clock(struct timespec *ts)
261 {
262 static struct pdc_tod tod_data;
263 if (pdc_tod_read(&tod_data) == 0) {
264 ts->tv_sec = tod_data.tod_sec;
265 ts->tv_nsec = tod_data.tod_usec * 1000;
266 } else {
267 printk(KERN_ERR "Error reading tod clock\n");
268 ts->tv_sec = 0;
269 ts->tv_nsec = 0;
270 }
271 }
272
273
274 /*
275 * sched_clock() framework
276 */
277
278 static u32 cyc2ns_mul __read_mostly;
279 static u32 cyc2ns_shift __read_mostly;
280
281 u64 sched_clock(void)
282 {
283 u64 now;
284
285 /* Get current cycle counter (Control Register 16). */
286 #ifdef CONFIG_64BIT
287 now = mfctl(16);
288 #else
289 now = mfctl(16) + (((u64) this_cpu_read(cr16_high_32_bits)) << 32);
290 #endif
291
292 /* return the value in ns (cycles_2_ns) */
293 return mul_u64_u32_shr(now, cyc2ns_mul, cyc2ns_shift);
294 }
295
296
297 /*
298 * timer interrupt and sched_clock() initialization
299 */
300
301 void __init time_init(void)
302 {
303 unsigned long current_cr16_khz;
304
305 current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */
306 clocktick = (100 * PAGE0->mem_10msec) / HZ;
307
308 /* calculate mult/shift values for cr16 */
309 clocks_calc_mult_shift(&cyc2ns_mul, &cyc2ns_shift, current_cr16_khz,
310 NSEC_PER_MSEC, 0);
311
312 start_cpu_itimer(); /* get CPU 0 started */
313
314 /* register at clocksource framework */
315 clocksource_register_khz(&clocksource_cr16, current_cr16_khz);
316 }