]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/parisc/kernel/time.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / arch / parisc / kernel / time.c
1 /*
2 * linux/arch/parisc/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7 *
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 */
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/rtc.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/sched_clock.h>
19 #include <linux/kernel.h>
20 #include <linux/param.h>
21 #include <linux/string.h>
22 #include <linux/mm.h>
23 #include <linux/interrupt.h>
24 #include <linux/time.h>
25 #include <linux/init.h>
26 #include <linux/smp.h>
27 #include <linux/profile.h>
28 #include <linux/clocksource.h>
29 #include <linux/platform_device.h>
30 #include <linux/ftrace.h>
31
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/irq.h>
35 #include <asm/page.h>
36 #include <asm/param.h>
37 #include <asm/pdc.h>
38 #include <asm/led.h>
39
40 #include <linux/timex.h>
41
42 static unsigned long clocktick __read_mostly; /* timer cycles per tick */
43
44 /*
45 * We keep time on PA-RISC Linux by using the Interval Timer which is
46 * a pair of registers; one is read-only and one is write-only; both
47 * accessed through CR16. The read-only register is 32 or 64 bits wide,
48 * and increments by 1 every CPU clock tick. The architecture only
49 * guarantees us a rate between 0.5 and 2, but all implementations use a
50 * rate of 1. The write-only register is 32-bits wide. When the lowest
51 * 32 bits of the read-only register compare equal to the write-only
52 * register, it raises a maskable external interrupt. Each processor has
53 * an Interval Timer of its own and they are not synchronised.
54 *
55 * We want to generate an interrupt every 1/HZ seconds. So we program
56 * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
57 * is programmed with the intended time of the next tick. We can be
58 * held off for an arbitrarily long period of time by interrupts being
59 * disabled, so we may miss one or more ticks.
60 */
61 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
62 {
63 unsigned long now;
64 unsigned long next_tick;
65 unsigned long ticks_elapsed = 0;
66 unsigned int cpu = smp_processor_id();
67 struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
68
69 /* gcc can optimize for "read-only" case with a local clocktick */
70 unsigned long cpt = clocktick;
71
72 profile_tick(CPU_PROFILING);
73
74 /* Initialize next_tick to the old expected tick time. */
75 next_tick = cpuinfo->it_value;
76
77 /* Calculate how many ticks have elapsed. */
78 do {
79 ++ticks_elapsed;
80 next_tick += cpt;
81 now = mfctl(16);
82 } while (next_tick - now > cpt);
83
84 /* Store (in CR16 cycles) up to when we are accounting right now. */
85 cpuinfo->it_value = next_tick;
86
87 /* Go do system house keeping. */
88 if (cpu == 0)
89 xtime_update(ticks_elapsed);
90
91 update_process_times(user_mode(get_irq_regs()));
92
93 /* Skip clockticks on purpose if we know we would miss those.
94 * The new CR16 must be "later" than current CR16 otherwise
95 * itimer would not fire until CR16 wrapped - e.g 4 seconds
96 * later on a 1Ghz processor. We'll account for the missed
97 * ticks on the next timer interrupt.
98 * We want IT to fire modulo clocktick even if we miss/skip some.
99 * But those interrupts don't in fact get delivered that regularly.
100 *
101 * "next_tick - now" will always give the difference regardless
102 * if one or the other wrapped. If "now" is "bigger" we'll end up
103 * with a very large unsigned number.
104 */
105 while (next_tick - mfctl(16) > cpt)
106 next_tick += cpt;
107
108 /* Program the IT when to deliver the next interrupt.
109 * Only bottom 32-bits of next_tick are writable in CR16!
110 * Timer interrupt will be delivered at least a few hundred cycles
111 * after the IT fires, so if we are too close (<= 500 cycles) to the
112 * next cycle, simply skip it.
113 */
114 if (next_tick - mfctl(16) <= 500)
115 next_tick += cpt;
116 mtctl(next_tick, 16);
117
118 return IRQ_HANDLED;
119 }
120
121
122 unsigned long profile_pc(struct pt_regs *regs)
123 {
124 unsigned long pc = instruction_pointer(regs);
125
126 if (regs->gr[0] & PSW_N)
127 pc -= 4;
128
129 #ifdef CONFIG_SMP
130 if (in_lock_functions(pc))
131 pc = regs->gr[2];
132 #endif
133
134 return pc;
135 }
136 EXPORT_SYMBOL(profile_pc);
137
138
139 /* clock source code */
140
141 static u64 notrace read_cr16(struct clocksource *cs)
142 {
143 return get_cycles();
144 }
145
146 static struct clocksource clocksource_cr16 = {
147 .name = "cr16",
148 .rating = 300,
149 .read = read_cr16,
150 .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
151 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
152 };
153
154 void __init start_cpu_itimer(void)
155 {
156 unsigned int cpu = smp_processor_id();
157 unsigned long next_tick = mfctl(16) + clocktick;
158
159 mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
160
161 per_cpu(cpu_data, cpu).it_value = next_tick;
162 }
163
164 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
165 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
166 {
167 struct pdc_tod tod_data;
168
169 memset(tm, 0, sizeof(*tm));
170 if (pdc_tod_read(&tod_data) < 0)
171 return -EOPNOTSUPP;
172
173 /* we treat tod_sec as unsigned, so this can work until year 2106 */
174 rtc_time64_to_tm(tod_data.tod_sec, tm);
175 return rtc_valid_tm(tm);
176 }
177
178 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
179 {
180 time64_t secs = rtc_tm_to_time64(tm);
181
182 if (pdc_tod_set(secs, 0) < 0)
183 return -EOPNOTSUPP;
184
185 return 0;
186 }
187
188 static const struct rtc_class_ops rtc_generic_ops = {
189 .read_time = rtc_generic_get_time,
190 .set_time = rtc_generic_set_time,
191 };
192
193 static int __init rtc_init(void)
194 {
195 struct platform_device *pdev;
196
197 pdev = platform_device_register_data(NULL, "rtc-generic", -1,
198 &rtc_generic_ops,
199 sizeof(rtc_generic_ops));
200
201 return PTR_ERR_OR_ZERO(pdev);
202 }
203 device_initcall(rtc_init);
204 #endif
205
206 void read_persistent_clock(struct timespec *ts)
207 {
208 static struct pdc_tod tod_data;
209 if (pdc_tod_read(&tod_data) == 0) {
210 ts->tv_sec = tod_data.tod_sec;
211 ts->tv_nsec = tod_data.tod_usec * 1000;
212 } else {
213 printk(KERN_ERR "Error reading tod clock\n");
214 ts->tv_sec = 0;
215 ts->tv_nsec = 0;
216 }
217 }
218
219
220 static u64 notrace read_cr16_sched_clock(void)
221 {
222 return get_cycles();
223 }
224
225
226 /*
227 * timer interrupt and sched_clock() initialization
228 */
229
230 void __init time_init(void)
231 {
232 unsigned long cr16_hz;
233
234 clocktick = (100 * PAGE0->mem_10msec) / HZ;
235 start_cpu_itimer(); /* get CPU 0 started */
236
237 cr16_hz = 100 * PAGE0->mem_10msec; /* Hz */
238
239 /* register as sched_clock source */
240 sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
241 }
242
243 static int __init init_cr16_clocksource(void)
244 {
245 /*
246 * The cr16 interval timers are not syncronized across CPUs, so mark
247 * them unstable and lower rating on SMP systems.
248 */
249 if (num_online_cpus() > 1) {
250 clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
251 clocksource_cr16.rating = 0;
252 }
253
254 /* register at clocksource framework */
255 clocksource_register_hz(&clocksource_cr16,
256 100 * PAGE0->mem_10msec);
257
258 return 0;
259 }
260
261 device_initcall(init_cr16_clocksource);