]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/parisc/kernel/traps.c
Merge remote-tracking branches 'spi/topic/bcm53xx', 'spi/topic/cadence', 'spi/topic...
[mirror_ubuntu-artful-kernel.git] / arch / parisc / kernel / traps.c
1 /*
2 * linux/arch/parisc/traps.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1999, 2000 Philipp Rumpf <prumpf@tux.org>
6 */
7
8 /*
9 * 'Traps.c' handles hardware traps and faults after we have saved some
10 * state in 'asm.s'.
11 */
12
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/string.h>
16 #include <linux/errno.h>
17 #include <linux/ptrace.h>
18 #include <linux/timer.h>
19 #include <linux/delay.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/smp.h>
23 #include <linux/spinlock.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/console.h>
27 #include <linux/bug.h>
28 #include <linux/ratelimit.h>
29 #include <linux/uaccess.h>
30
31 #include <asm/assembly.h>
32 #include <asm/io.h>
33 #include <asm/irq.h>
34 #include <asm/traps.h>
35 #include <asm/unaligned.h>
36 #include <linux/atomic.h>
37 #include <asm/smp.h>
38 #include <asm/pdc.h>
39 #include <asm/pdc_chassis.h>
40 #include <asm/unwind.h>
41 #include <asm/tlbflush.h>
42 #include <asm/cacheflush.h>
43
44 #include "../math-emu/math-emu.h" /* for handle_fpe() */
45
46 static void parisc_show_stack(struct task_struct *task, unsigned long *sp,
47 struct pt_regs *regs);
48
49 static int printbinary(char *buf, unsigned long x, int nbits)
50 {
51 unsigned long mask = 1UL << (nbits - 1);
52 while (mask != 0) {
53 *buf++ = (mask & x ? '1' : '0');
54 mask >>= 1;
55 }
56 *buf = '\0';
57
58 return nbits;
59 }
60
61 #ifdef CONFIG_64BIT
62 #define RFMT "%016lx"
63 #else
64 #define RFMT "%08lx"
65 #endif
66 #define FFMT "%016llx" /* fpregs are 64-bit always */
67
68 #define PRINTREGS(lvl,r,f,fmt,x) \
69 printk("%s%s%02d-%02d " fmt " " fmt " " fmt " " fmt "\n", \
70 lvl, f, (x), (x+3), (r)[(x)+0], (r)[(x)+1], \
71 (r)[(x)+2], (r)[(x)+3])
72
73 static void print_gr(char *level, struct pt_regs *regs)
74 {
75 int i;
76 char buf[64];
77
78 printk("%s\n", level);
79 printk("%s YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI\n", level);
80 printbinary(buf, regs->gr[0], 32);
81 printk("%sPSW: %s %s\n", level, buf, print_tainted());
82
83 for (i = 0; i < 32; i += 4)
84 PRINTREGS(level, regs->gr, "r", RFMT, i);
85 }
86
87 static void print_fr(char *level, struct pt_regs *regs)
88 {
89 int i;
90 char buf[64];
91 struct { u32 sw[2]; } s;
92
93 /* FR are 64bit everywhere. Need to use asm to get the content
94 * of fpsr/fper1, and we assume that we won't have a FP Identify
95 * in our way, otherwise we're screwed.
96 * The fldd is used to restore the T-bit if there was one, as the
97 * store clears it anyway.
98 * PA2.0 book says "thou shall not use fstw on FPSR/FPERs" - T-Bone */
99 asm volatile ("fstd %%fr0,0(%1) \n\t"
100 "fldd 0(%1),%%fr0 \n\t"
101 : "=m" (s) : "r" (&s) : "r0");
102
103 printk("%s\n", level);
104 printk("%s VZOUICununcqcqcqcqcqcrmunTDVZOUI\n", level);
105 printbinary(buf, s.sw[0], 32);
106 printk("%sFPSR: %s\n", level, buf);
107 printk("%sFPER1: %08x\n", level, s.sw[1]);
108
109 /* here we'll print fr0 again, tho it'll be meaningless */
110 for (i = 0; i < 32; i += 4)
111 PRINTREGS(level, regs->fr, "fr", FFMT, i);
112 }
113
114 void show_regs(struct pt_regs *regs)
115 {
116 int i, user;
117 char *level;
118 unsigned long cr30, cr31;
119
120 user = user_mode(regs);
121 level = user ? KERN_DEBUG : KERN_CRIT;
122
123 show_regs_print_info(level);
124
125 print_gr(level, regs);
126
127 for (i = 0; i < 8; i += 4)
128 PRINTREGS(level, regs->sr, "sr", RFMT, i);
129
130 if (user)
131 print_fr(level, regs);
132
133 cr30 = mfctl(30);
134 cr31 = mfctl(31);
135 printk("%s\n", level);
136 printk("%sIASQ: " RFMT " " RFMT " IAOQ: " RFMT " " RFMT "\n",
137 level, regs->iasq[0], regs->iasq[1], regs->iaoq[0], regs->iaoq[1]);
138 printk("%s IIR: %08lx ISR: " RFMT " IOR: " RFMT "\n",
139 level, regs->iir, regs->isr, regs->ior);
140 printk("%s CPU: %8d CR30: " RFMT " CR31: " RFMT "\n",
141 level, current_thread_info()->cpu, cr30, cr31);
142 printk("%s ORIG_R28: " RFMT "\n", level, regs->orig_r28);
143
144 if (user) {
145 printk("%s IAOQ[0]: " RFMT "\n", level, regs->iaoq[0]);
146 printk("%s IAOQ[1]: " RFMT "\n", level, regs->iaoq[1]);
147 printk("%s RP(r2): " RFMT "\n", level, regs->gr[2]);
148 } else {
149 printk("%s IAOQ[0]: %pS\n", level, (void *) regs->iaoq[0]);
150 printk("%s IAOQ[1]: %pS\n", level, (void *) regs->iaoq[1]);
151 printk("%s RP(r2): %pS\n", level, (void *) regs->gr[2]);
152
153 parisc_show_stack(current, NULL, regs);
154 }
155 }
156
157 static DEFINE_RATELIMIT_STATE(_hppa_rs,
158 DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST);
159
160 #define parisc_printk_ratelimited(critical, regs, fmt, ...) { \
161 if ((critical || show_unhandled_signals) && __ratelimit(&_hppa_rs)) { \
162 printk(fmt, ##__VA_ARGS__); \
163 show_regs(regs); \
164 } \
165 }
166
167
168 static void do_show_stack(struct unwind_frame_info *info)
169 {
170 int i = 1;
171
172 printk(KERN_CRIT "Backtrace:\n");
173 while (i <= 16) {
174 if (unwind_once(info) < 0 || info->ip == 0)
175 break;
176
177 if (__kernel_text_address(info->ip)) {
178 printk(KERN_CRIT " [<" RFMT ">] %pS\n",
179 info->ip, (void *) info->ip);
180 i++;
181 }
182 }
183 printk(KERN_CRIT "\n");
184 }
185
186 static void parisc_show_stack(struct task_struct *task, unsigned long *sp,
187 struct pt_regs *regs)
188 {
189 struct unwind_frame_info info;
190 struct task_struct *t;
191
192 t = task ? task : current;
193 if (regs) {
194 unwind_frame_init(&info, t, regs);
195 goto show_stack;
196 }
197
198 if (t == current) {
199 unsigned long sp;
200
201 HERE:
202 asm volatile ("copy %%r30, %0" : "=r"(sp));
203 {
204 struct pt_regs r;
205
206 memset(&r, 0, sizeof(struct pt_regs));
207 r.iaoq[0] = (unsigned long)&&HERE;
208 r.gr[2] = (unsigned long)__builtin_return_address(0);
209 r.gr[30] = sp;
210
211 unwind_frame_init(&info, current, &r);
212 }
213 } else {
214 unwind_frame_init_from_blocked_task(&info, t);
215 }
216
217 show_stack:
218 do_show_stack(&info);
219 }
220
221 void show_stack(struct task_struct *t, unsigned long *sp)
222 {
223 return parisc_show_stack(t, sp, NULL);
224 }
225
226 int is_valid_bugaddr(unsigned long iaoq)
227 {
228 return 1;
229 }
230
231 void die_if_kernel(char *str, struct pt_regs *regs, long err)
232 {
233 if (user_mode(regs)) {
234 if (err == 0)
235 return; /* STFU */
236
237 parisc_printk_ratelimited(1, regs,
238 KERN_CRIT "%s (pid %d): %s (code %ld) at " RFMT "\n",
239 current->comm, task_pid_nr(current), str, err, regs->iaoq[0]);
240
241 return;
242 }
243
244 oops_in_progress = 1;
245
246 oops_enter();
247
248 /* Amuse the user in a SPARC fashion */
249 if (err) printk(KERN_CRIT
250 " _______________________________ \n"
251 " < Your System ate a SPARC! Gah! >\n"
252 " ------------------------------- \n"
253 " \\ ^__^\n"
254 " (__)\\ )\\/\\\n"
255 " U ||----w |\n"
256 " || ||\n");
257
258 /* unlock the pdc lock if necessary */
259 pdc_emergency_unlock();
260
261 /* maybe the kernel hasn't booted very far yet and hasn't been able
262 * to initialize the serial or STI console. In that case we should
263 * re-enable the pdc console, so that the user will be able to
264 * identify the problem. */
265 if (!console_drivers)
266 pdc_console_restart();
267
268 if (err)
269 printk(KERN_CRIT "%s (pid %d): %s (code %ld)\n",
270 current->comm, task_pid_nr(current), str, err);
271
272 /* Wot's wrong wif bein' racy? */
273 if (current->thread.flags & PARISC_KERNEL_DEATH) {
274 printk(KERN_CRIT "%s() recursion detected.\n", __func__);
275 local_irq_enable();
276 while (1);
277 }
278 current->thread.flags |= PARISC_KERNEL_DEATH;
279
280 show_regs(regs);
281 dump_stack();
282 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
283
284 if (in_interrupt())
285 panic("Fatal exception in interrupt");
286
287 if (panic_on_oops)
288 panic("Fatal exception");
289
290 oops_exit();
291 do_exit(SIGSEGV);
292 }
293
294 /* gdb uses break 4,8 */
295 #define GDB_BREAK_INSN 0x10004
296 static void handle_gdb_break(struct pt_regs *regs, int wot)
297 {
298 struct siginfo si;
299
300 si.si_signo = SIGTRAP;
301 si.si_errno = 0;
302 si.si_code = wot;
303 si.si_addr = (void __user *) (regs->iaoq[0] & ~3);
304 force_sig_info(SIGTRAP, &si, current);
305 }
306
307 static void handle_break(struct pt_regs *regs)
308 {
309 unsigned iir = regs->iir;
310
311 if (unlikely(iir == PARISC_BUG_BREAK_INSN && !user_mode(regs))) {
312 /* check if a BUG() or WARN() trapped here. */
313 enum bug_trap_type tt;
314 tt = report_bug(regs->iaoq[0] & ~3, regs);
315 if (tt == BUG_TRAP_TYPE_WARN) {
316 regs->iaoq[0] += 4;
317 regs->iaoq[1] += 4;
318 return; /* return to next instruction when WARN_ON(). */
319 }
320 die_if_kernel("Unknown kernel breakpoint", regs,
321 (tt == BUG_TRAP_TYPE_NONE) ? 9 : 0);
322 }
323
324 if (unlikely(iir != GDB_BREAK_INSN))
325 parisc_printk_ratelimited(0, regs,
326 KERN_DEBUG "break %d,%d: pid=%d command='%s'\n",
327 iir & 31, (iir>>13) & ((1<<13)-1),
328 task_pid_nr(current), current->comm);
329
330 /* send standard GDB signal */
331 handle_gdb_break(regs, TRAP_BRKPT);
332 }
333
334 static void default_trap(int code, struct pt_regs *regs)
335 {
336 printk(KERN_ERR "Trap %d on CPU %d\n", code, smp_processor_id());
337 show_regs(regs);
338 }
339
340 void (*cpu_lpmc) (int code, struct pt_regs *regs) __read_mostly = default_trap;
341
342
343 void transfer_pim_to_trap_frame(struct pt_regs *regs)
344 {
345 register int i;
346 extern unsigned int hpmc_pim_data[];
347 struct pdc_hpmc_pim_11 *pim_narrow;
348 struct pdc_hpmc_pim_20 *pim_wide;
349
350 if (boot_cpu_data.cpu_type >= pcxu) {
351
352 pim_wide = (struct pdc_hpmc_pim_20 *)hpmc_pim_data;
353
354 /*
355 * Note: The following code will probably generate a
356 * bunch of truncation error warnings from the compiler.
357 * Could be handled with an ifdef, but perhaps there
358 * is a better way.
359 */
360
361 regs->gr[0] = pim_wide->cr[22];
362
363 for (i = 1; i < 32; i++)
364 regs->gr[i] = pim_wide->gr[i];
365
366 for (i = 0; i < 32; i++)
367 regs->fr[i] = pim_wide->fr[i];
368
369 for (i = 0; i < 8; i++)
370 regs->sr[i] = pim_wide->sr[i];
371
372 regs->iasq[0] = pim_wide->cr[17];
373 regs->iasq[1] = pim_wide->iasq_back;
374 regs->iaoq[0] = pim_wide->cr[18];
375 regs->iaoq[1] = pim_wide->iaoq_back;
376
377 regs->sar = pim_wide->cr[11];
378 regs->iir = pim_wide->cr[19];
379 regs->isr = pim_wide->cr[20];
380 regs->ior = pim_wide->cr[21];
381 }
382 else {
383 pim_narrow = (struct pdc_hpmc_pim_11 *)hpmc_pim_data;
384
385 regs->gr[0] = pim_narrow->cr[22];
386
387 for (i = 1; i < 32; i++)
388 regs->gr[i] = pim_narrow->gr[i];
389
390 for (i = 0; i < 32; i++)
391 regs->fr[i] = pim_narrow->fr[i];
392
393 for (i = 0; i < 8; i++)
394 regs->sr[i] = pim_narrow->sr[i];
395
396 regs->iasq[0] = pim_narrow->cr[17];
397 regs->iasq[1] = pim_narrow->iasq_back;
398 regs->iaoq[0] = pim_narrow->cr[18];
399 regs->iaoq[1] = pim_narrow->iaoq_back;
400
401 regs->sar = pim_narrow->cr[11];
402 regs->iir = pim_narrow->cr[19];
403 regs->isr = pim_narrow->cr[20];
404 regs->ior = pim_narrow->cr[21];
405 }
406
407 /*
408 * The following fields only have meaning if we came through
409 * another path. So just zero them here.
410 */
411
412 regs->ksp = 0;
413 regs->kpc = 0;
414 regs->orig_r28 = 0;
415 }
416
417
418 /*
419 * This routine is called as a last resort when everything else
420 * has gone clearly wrong. We get called for faults in kernel space,
421 * and HPMC's.
422 */
423 void parisc_terminate(char *msg, struct pt_regs *regs, int code, unsigned long offset)
424 {
425 static DEFINE_SPINLOCK(terminate_lock);
426
427 oops_in_progress = 1;
428
429 set_eiem(0);
430 local_irq_disable();
431 spin_lock(&terminate_lock);
432
433 /* unlock the pdc lock if necessary */
434 pdc_emergency_unlock();
435
436 /* restart pdc console if necessary */
437 if (!console_drivers)
438 pdc_console_restart();
439
440 /* Not all paths will gutter the processor... */
441 switch(code){
442
443 case 1:
444 transfer_pim_to_trap_frame(regs);
445 break;
446
447 default:
448 /* Fall through */
449 break;
450
451 }
452
453 {
454 /* show_stack(NULL, (unsigned long *)regs->gr[30]); */
455 struct unwind_frame_info info;
456 unwind_frame_init(&info, current, regs);
457 do_show_stack(&info);
458 }
459
460 printk("\n");
461 printk(KERN_CRIT "%s: Code=%d regs=%p (Addr=" RFMT ")\n",
462 msg, code, regs, offset);
463 show_regs(regs);
464
465 spin_unlock(&terminate_lock);
466
467 /* put soft power button back under hardware control;
468 * if the user had pressed it once at any time, the
469 * system will shut down immediately right here. */
470 pdc_soft_power_button(0);
471
472 /* Call kernel panic() so reboot timeouts work properly
473 * FIXME: This function should be on the list of
474 * panic notifiers, and we should call panic
475 * directly from the location that we wish.
476 * e.g. We should not call panic from
477 * parisc_terminate, but rather the oter way around.
478 * This hack works, prints the panic message twice,
479 * and it enables reboot timers!
480 */
481 panic(msg);
482 }
483
484 void notrace handle_interruption(int code, struct pt_regs *regs)
485 {
486 unsigned long fault_address = 0;
487 unsigned long fault_space = 0;
488 struct siginfo si;
489
490 if (code == 1)
491 pdc_console_restart(); /* switch back to pdc if HPMC */
492 else
493 local_irq_enable();
494
495 /* Security check:
496 * If the priority level is still user, and the
497 * faulting space is not equal to the active space
498 * then the user is attempting something in a space
499 * that does not belong to them. Kill the process.
500 *
501 * This is normally the situation when the user
502 * attempts to jump into the kernel space at the
503 * wrong offset, be it at the gateway page or a
504 * random location.
505 *
506 * We cannot normally signal the process because it
507 * could *be* on the gateway page, and processes
508 * executing on the gateway page can't have signals
509 * delivered.
510 *
511 * We merely readjust the address into the users
512 * space, at a destination address of zero, and
513 * allow processing to continue.
514 */
515 if (((unsigned long)regs->iaoq[0] & 3) &&
516 ((unsigned long)regs->iasq[0] != (unsigned long)regs->sr[7])) {
517 /* Kill the user process later */
518 regs->iaoq[0] = 0 | 3;
519 regs->iaoq[1] = regs->iaoq[0] + 4;
520 regs->iasq[0] = regs->iasq[1] = regs->sr[7];
521 regs->gr[0] &= ~PSW_B;
522 return;
523 }
524
525 #if 0
526 printk(KERN_CRIT "Interruption # %d\n", code);
527 #endif
528
529 switch(code) {
530
531 case 1:
532 /* High-priority machine check (HPMC) */
533
534 /* set up a new led state on systems shipped with a LED State panel */
535 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_HPMC);
536
537 parisc_terminate("High Priority Machine Check (HPMC)",
538 regs, code, 0);
539 /* NOT REACHED */
540
541 case 2:
542 /* Power failure interrupt */
543 printk(KERN_CRIT "Power failure interrupt !\n");
544 return;
545
546 case 3:
547 /* Recovery counter trap */
548 regs->gr[0] &= ~PSW_R;
549 if (user_space(regs))
550 handle_gdb_break(regs, TRAP_TRACE);
551 /* else this must be the start of a syscall - just let it run */
552 return;
553
554 case 5:
555 /* Low-priority machine check */
556 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_LPMC);
557
558 flush_cache_all();
559 flush_tlb_all();
560 cpu_lpmc(5, regs);
561 return;
562
563 case 6:
564 /* Instruction TLB miss fault/Instruction page fault */
565 fault_address = regs->iaoq[0];
566 fault_space = regs->iasq[0];
567 break;
568
569 case 8:
570 /* Illegal instruction trap */
571 die_if_kernel("Illegal instruction", regs, code);
572 si.si_code = ILL_ILLOPC;
573 goto give_sigill;
574
575 case 9:
576 /* Break instruction trap */
577 handle_break(regs);
578 return;
579
580 case 10:
581 /* Privileged operation trap */
582 die_if_kernel("Privileged operation", regs, code);
583 si.si_code = ILL_PRVOPC;
584 goto give_sigill;
585
586 case 11:
587 /* Privileged register trap */
588 if ((regs->iir & 0xffdfffe0) == 0x034008a0) {
589
590 /* This is a MFCTL cr26/cr27 to gr instruction.
591 * PCXS traps on this, so we need to emulate it.
592 */
593
594 if (regs->iir & 0x00200000)
595 regs->gr[regs->iir & 0x1f] = mfctl(27);
596 else
597 regs->gr[regs->iir & 0x1f] = mfctl(26);
598
599 regs->iaoq[0] = regs->iaoq[1];
600 regs->iaoq[1] += 4;
601 regs->iasq[0] = regs->iasq[1];
602 return;
603 }
604
605 die_if_kernel("Privileged register usage", regs, code);
606 si.si_code = ILL_PRVREG;
607 give_sigill:
608 si.si_signo = SIGILL;
609 si.si_errno = 0;
610 si.si_addr = (void __user *) regs->iaoq[0];
611 force_sig_info(SIGILL, &si, current);
612 return;
613
614 case 12:
615 /* Overflow Trap, let the userland signal handler do the cleanup */
616 si.si_signo = SIGFPE;
617 si.si_code = FPE_INTOVF;
618 si.si_addr = (void __user *) regs->iaoq[0];
619 force_sig_info(SIGFPE, &si, current);
620 return;
621
622 case 13:
623 /* Conditional Trap
624 The condition succeeds in an instruction which traps
625 on condition */
626 if(user_mode(regs)){
627 si.si_signo = SIGFPE;
628 /* Set to zero, and let the userspace app figure it out from
629 the insn pointed to by si_addr */
630 si.si_code = 0;
631 si.si_addr = (void __user *) regs->iaoq[0];
632 force_sig_info(SIGFPE, &si, current);
633 return;
634 }
635 /* The kernel doesn't want to handle condition codes */
636 break;
637
638 case 14:
639 /* Assist Exception Trap, i.e. floating point exception. */
640 die_if_kernel("Floating point exception", regs, 0); /* quiet */
641 __inc_irq_stat(irq_fpassist_count);
642 handle_fpe(regs);
643 return;
644
645 case 15:
646 /* Data TLB miss fault/Data page fault */
647 /* Fall through */
648 case 16:
649 /* Non-access instruction TLB miss fault */
650 /* The instruction TLB entry needed for the target address of the FIC
651 is absent, and hardware can't find it, so we get to cleanup */
652 /* Fall through */
653 case 17:
654 /* Non-access data TLB miss fault/Non-access data page fault */
655 /* FIXME:
656 Still need to add slow path emulation code here!
657 If the insn used a non-shadow register, then the tlb
658 handlers could not have their side-effect (e.g. probe
659 writing to a target register) emulated since rfir would
660 erase the changes to said register. Instead we have to
661 setup everything, call this function we are in, and emulate
662 by hand. Technically we need to emulate:
663 fdc,fdce,pdc,"fic,4f",prober,probeir,probew, probeiw
664 */
665 fault_address = regs->ior;
666 fault_space = regs->isr;
667 break;
668
669 case 18:
670 /* PCXS only -- later cpu's split this into types 26,27 & 28 */
671 /* Check for unaligned access */
672 if (check_unaligned(regs)) {
673 handle_unaligned(regs);
674 return;
675 }
676 /* Fall Through */
677 case 26:
678 /* PCXL: Data memory access rights trap */
679 fault_address = regs->ior;
680 fault_space = regs->isr;
681 break;
682
683 case 19:
684 /* Data memory break trap */
685 regs->gr[0] |= PSW_X; /* So we can single-step over the trap */
686 /* fall thru */
687 case 21:
688 /* Page reference trap */
689 handle_gdb_break(regs, TRAP_HWBKPT);
690 return;
691
692 case 25:
693 /* Taken branch trap */
694 regs->gr[0] &= ~PSW_T;
695 if (user_space(regs))
696 handle_gdb_break(regs, TRAP_BRANCH);
697 /* else this must be the start of a syscall - just let it
698 * run.
699 */
700 return;
701
702 case 7:
703 /* Instruction access rights */
704 /* PCXL: Instruction memory protection trap */
705
706 /*
707 * This could be caused by either: 1) a process attempting
708 * to execute within a vma that does not have execute
709 * permission, or 2) an access rights violation caused by a
710 * flush only translation set up by ptep_get_and_clear().
711 * So we check the vma permissions to differentiate the two.
712 * If the vma indicates we have execute permission, then
713 * the cause is the latter one. In this case, we need to
714 * call do_page_fault() to fix the problem.
715 */
716
717 if (user_mode(regs)) {
718 struct vm_area_struct *vma;
719
720 down_read(&current->mm->mmap_sem);
721 vma = find_vma(current->mm,regs->iaoq[0]);
722 if (vma && (regs->iaoq[0] >= vma->vm_start)
723 && (vma->vm_flags & VM_EXEC)) {
724
725 fault_address = regs->iaoq[0];
726 fault_space = regs->iasq[0];
727
728 up_read(&current->mm->mmap_sem);
729 break; /* call do_page_fault() */
730 }
731 up_read(&current->mm->mmap_sem);
732 }
733 /* Fall Through */
734 case 27:
735 /* Data memory protection ID trap */
736 if (code == 27 && !user_mode(regs) &&
737 fixup_exception(regs))
738 return;
739
740 die_if_kernel("Protection id trap", regs, code);
741 si.si_code = SEGV_MAPERR;
742 si.si_signo = SIGSEGV;
743 si.si_errno = 0;
744 if (code == 7)
745 si.si_addr = (void __user *) regs->iaoq[0];
746 else
747 si.si_addr = (void __user *) regs->ior;
748 force_sig_info(SIGSEGV, &si, current);
749 return;
750
751 case 28:
752 /* Unaligned data reference trap */
753 handle_unaligned(regs);
754 return;
755
756 default:
757 if (user_mode(regs)) {
758 parisc_printk_ratelimited(0, regs, KERN_DEBUG
759 "handle_interruption() pid=%d command='%s'\n",
760 task_pid_nr(current), current->comm);
761 /* SIGBUS, for lack of a better one. */
762 si.si_signo = SIGBUS;
763 si.si_code = BUS_OBJERR;
764 si.si_errno = 0;
765 si.si_addr = (void __user *) regs->ior;
766 force_sig_info(SIGBUS, &si, current);
767 return;
768 }
769 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
770
771 parisc_terminate("Unexpected interruption", regs, code, 0);
772 /* NOT REACHED */
773 }
774
775 if (user_mode(regs)) {
776 if ((fault_space >> SPACEID_SHIFT) != (regs->sr[7] >> SPACEID_SHIFT)) {
777 parisc_printk_ratelimited(0, regs, KERN_DEBUG
778 "User fault %d on space 0x%08lx, pid=%d command='%s'\n",
779 code, fault_space,
780 task_pid_nr(current), current->comm);
781 si.si_signo = SIGSEGV;
782 si.si_errno = 0;
783 si.si_code = SEGV_MAPERR;
784 si.si_addr = (void __user *) regs->ior;
785 force_sig_info(SIGSEGV, &si, current);
786 return;
787 }
788 }
789 else {
790
791 /*
792 * The kernel should never fault on its own address space,
793 * unless pagefault_disable() was called before.
794 */
795
796 if (fault_space == 0 && !faulthandler_disabled())
797 {
798 /* Clean up and return if in exception table. */
799 if (fixup_exception(regs))
800 return;
801 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
802 parisc_terminate("Kernel Fault", regs, code, fault_address);
803 }
804 }
805
806 do_page_fault(regs, code, fault_address);
807 }
808
809
810 void __init initialize_ivt(const void *iva)
811 {
812 extern u32 os_hpmc_size;
813 extern const u32 os_hpmc[];
814
815 int i;
816 u32 check = 0;
817 u32 *ivap;
818 u32 *hpmcp;
819 u32 length;
820
821 if (strcmp((const char *)iva, "cows can fly"))
822 panic("IVT invalid");
823
824 ivap = (u32 *)iva;
825
826 for (i = 0; i < 8; i++)
827 *ivap++ = 0;
828
829 /* Compute Checksum for HPMC handler */
830 length = os_hpmc_size;
831 ivap[7] = length;
832
833 hpmcp = (u32 *)os_hpmc;
834
835 for (i=0; i<length/4; i++)
836 check += *hpmcp++;
837
838 for (i=0; i<8; i++)
839 check += ivap[i];
840
841 ivap[5] = -check;
842 }
843
844
845 /* early_trap_init() is called before we set up kernel mappings and
846 * write-protect the kernel */
847 void __init early_trap_init(void)
848 {
849 extern const void fault_vector_20;
850
851 #ifndef CONFIG_64BIT
852 extern const void fault_vector_11;
853 initialize_ivt(&fault_vector_11);
854 #endif
855
856 initialize_ivt(&fault_vector_20);
857 }
858
859 void __init trap_init(void)
860 {
861 }