]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/parisc/mm/init.c
mm: drop unneeded pgdat argument from free_area_init_node()
[mirror_ubuntu-bionic-kernel.git] / arch / parisc / mm / init.c
1 /*
2 * linux/arch/parisc/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright 1999 SuSE GmbH
6 * changed by Philipp Rumpf
7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 * Copyright 2004 Randolph Chung (tausq@debian.org)
9 * Copyright 2006-2007 Helge Deller (deller@gmx.de)
10 *
11 */
12
13
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
20 #include <linux/initrd.h>
21 #include <linux/swap.h>
22 #include <linux/unistd.h>
23 #include <linux/nodemask.h> /* for node_online_map */
24 #include <linux/pagemap.h> /* for release_pages and page_cache_release */
25
26 #include <asm/pgalloc.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29 #include <asm/pdc_chassis.h>
30 #include <asm/mmzone.h>
31 #include <asm/sections.h>
32
33 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34
35 extern int data_start;
36
37 #ifdef CONFIG_DISCONTIGMEM
38 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
39 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
40 #endif
41
42 static struct resource data_resource = {
43 .name = "Kernel data",
44 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
45 };
46
47 static struct resource code_resource = {
48 .name = "Kernel code",
49 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
50 };
51
52 static struct resource pdcdata_resource = {
53 .name = "PDC data (Page Zero)",
54 .start = 0,
55 .end = 0x9ff,
56 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
57 };
58
59 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
60
61 /* The following array is initialized from the firmware specific
62 * information retrieved in kernel/inventory.c.
63 */
64
65 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
66 int npmem_ranges __read_mostly;
67
68 #ifdef CONFIG_64BIT
69 #define MAX_MEM (~0UL)
70 #else /* !CONFIG_64BIT */
71 #define MAX_MEM (3584U*1024U*1024U)
72 #endif /* !CONFIG_64BIT */
73
74 static unsigned long mem_limit __read_mostly = MAX_MEM;
75
76 static void __init mem_limit_func(void)
77 {
78 char *cp, *end;
79 unsigned long limit;
80
81 /* We need this before __setup() functions are called */
82
83 limit = MAX_MEM;
84 for (cp = boot_command_line; *cp; ) {
85 if (memcmp(cp, "mem=", 4) == 0) {
86 cp += 4;
87 limit = memparse(cp, &end);
88 if (end != cp)
89 break;
90 cp = end;
91 } else {
92 while (*cp != ' ' && *cp)
93 ++cp;
94 while (*cp == ' ')
95 ++cp;
96 }
97 }
98
99 if (limit < mem_limit)
100 mem_limit = limit;
101 }
102
103 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
104
105 static void __init setup_bootmem(void)
106 {
107 unsigned long bootmap_size;
108 unsigned long mem_max;
109 unsigned long bootmap_pages;
110 unsigned long bootmap_start_pfn;
111 unsigned long bootmap_pfn;
112 #ifndef CONFIG_DISCONTIGMEM
113 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
114 int npmem_holes;
115 #endif
116 int i, sysram_resource_count;
117
118 disable_sr_hashing(); /* Turn off space register hashing */
119
120 /*
121 * Sort the ranges. Since the number of ranges is typically
122 * small, and performance is not an issue here, just do
123 * a simple insertion sort.
124 */
125
126 for (i = 1; i < npmem_ranges; i++) {
127 int j;
128
129 for (j = i; j > 0; j--) {
130 unsigned long tmp;
131
132 if (pmem_ranges[j-1].start_pfn <
133 pmem_ranges[j].start_pfn) {
134
135 break;
136 }
137 tmp = pmem_ranges[j-1].start_pfn;
138 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
139 pmem_ranges[j].start_pfn = tmp;
140 tmp = pmem_ranges[j-1].pages;
141 pmem_ranges[j-1].pages = pmem_ranges[j].pages;
142 pmem_ranges[j].pages = tmp;
143 }
144 }
145
146 #ifndef CONFIG_DISCONTIGMEM
147 /*
148 * Throw out ranges that are too far apart (controlled by
149 * MAX_GAP).
150 */
151
152 for (i = 1; i < npmem_ranges; i++) {
153 if (pmem_ranges[i].start_pfn -
154 (pmem_ranges[i-1].start_pfn +
155 pmem_ranges[i-1].pages) > MAX_GAP) {
156 npmem_ranges = i;
157 printk("Large gap in memory detected (%ld pages). "
158 "Consider turning on CONFIG_DISCONTIGMEM\n",
159 pmem_ranges[i].start_pfn -
160 (pmem_ranges[i-1].start_pfn +
161 pmem_ranges[i-1].pages));
162 break;
163 }
164 }
165 #endif
166
167 if (npmem_ranges > 1) {
168
169 /* Print the memory ranges */
170
171 printk(KERN_INFO "Memory Ranges:\n");
172
173 for (i = 0; i < npmem_ranges; i++) {
174 unsigned long start;
175 unsigned long size;
176
177 size = (pmem_ranges[i].pages << PAGE_SHIFT);
178 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
179 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
180 i,start, start + (size - 1), size >> 20);
181 }
182 }
183
184 sysram_resource_count = npmem_ranges;
185 for (i = 0; i < sysram_resource_count; i++) {
186 struct resource *res = &sysram_resources[i];
187 res->name = "System RAM";
188 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
189 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
190 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
191 request_resource(&iomem_resource, res);
192 }
193
194 /*
195 * For 32 bit kernels we limit the amount of memory we can
196 * support, in order to preserve enough kernel address space
197 * for other purposes. For 64 bit kernels we don't normally
198 * limit the memory, but this mechanism can be used to
199 * artificially limit the amount of memory (and it is written
200 * to work with multiple memory ranges).
201 */
202
203 mem_limit_func(); /* check for "mem=" argument */
204
205 mem_max = 0;
206 num_physpages = 0;
207 for (i = 0; i < npmem_ranges; i++) {
208 unsigned long rsize;
209
210 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
211 if ((mem_max + rsize) > mem_limit) {
212 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
213 if (mem_max == mem_limit)
214 npmem_ranges = i;
215 else {
216 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
217 - (mem_max >> PAGE_SHIFT);
218 npmem_ranges = i + 1;
219 mem_max = mem_limit;
220 }
221 num_physpages += pmem_ranges[i].pages;
222 break;
223 }
224 num_physpages += pmem_ranges[i].pages;
225 mem_max += rsize;
226 }
227
228 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
229
230 #ifndef CONFIG_DISCONTIGMEM
231 /* Merge the ranges, keeping track of the holes */
232
233 {
234 unsigned long end_pfn;
235 unsigned long hole_pages;
236
237 npmem_holes = 0;
238 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
239 for (i = 1; i < npmem_ranges; i++) {
240
241 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
242 if (hole_pages) {
243 pmem_holes[npmem_holes].start_pfn = end_pfn;
244 pmem_holes[npmem_holes++].pages = hole_pages;
245 end_pfn += hole_pages;
246 }
247 end_pfn += pmem_ranges[i].pages;
248 }
249
250 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
251 npmem_ranges = 1;
252 }
253 #endif
254
255 bootmap_pages = 0;
256 for (i = 0; i < npmem_ranges; i++)
257 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
258
259 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
260
261 #ifdef CONFIG_DISCONTIGMEM
262 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
263 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
264 NODE_DATA(i)->bdata = &bootmem_node_data[i];
265 }
266 memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
267
268 for (i = 0; i < npmem_ranges; i++)
269 node_set_online(i);
270 #endif
271
272 /*
273 * Initialize and free the full range of memory in each range.
274 * Note that the only writing these routines do are to the bootmap,
275 * and we've made sure to locate the bootmap properly so that they
276 * won't be writing over anything important.
277 */
278
279 bootmap_pfn = bootmap_start_pfn;
280 max_pfn = 0;
281 for (i = 0; i < npmem_ranges; i++) {
282 unsigned long start_pfn;
283 unsigned long npages;
284
285 start_pfn = pmem_ranges[i].start_pfn;
286 npages = pmem_ranges[i].pages;
287
288 bootmap_size = init_bootmem_node(NODE_DATA(i),
289 bootmap_pfn,
290 start_pfn,
291 (start_pfn + npages) );
292 free_bootmem_node(NODE_DATA(i),
293 (start_pfn << PAGE_SHIFT),
294 (npages << PAGE_SHIFT) );
295 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
296 if ((start_pfn + npages) > max_pfn)
297 max_pfn = start_pfn + npages;
298 }
299
300 /* IOMMU is always used to access "high mem" on those boxes
301 * that can support enough mem that a PCI device couldn't
302 * directly DMA to any physical addresses.
303 * ISA DMA support will need to revisit this.
304 */
305 max_low_pfn = max_pfn;
306
307 if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
308 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
309 BUG();
310 }
311
312 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
313
314 #define PDC_CONSOLE_IO_IODC_SIZE 32768
315
316 reserve_bootmem_node(NODE_DATA(0), 0UL,
317 (unsigned long)(PAGE0->mem_free +
318 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
319 reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
320 (unsigned long)(_end - _text), BOOTMEM_DEFAULT);
321 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
322 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
323 BOOTMEM_DEFAULT);
324
325 #ifndef CONFIG_DISCONTIGMEM
326
327 /* reserve the holes */
328
329 for (i = 0; i < npmem_holes; i++) {
330 reserve_bootmem_node(NODE_DATA(0),
331 (pmem_holes[i].start_pfn << PAGE_SHIFT),
332 (pmem_holes[i].pages << PAGE_SHIFT),
333 BOOTMEM_DEFAULT);
334 }
335 #endif
336
337 #ifdef CONFIG_BLK_DEV_INITRD
338 if (initrd_start) {
339 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
340 if (__pa(initrd_start) < mem_max) {
341 unsigned long initrd_reserve;
342
343 if (__pa(initrd_end) > mem_max) {
344 initrd_reserve = mem_max - __pa(initrd_start);
345 } else {
346 initrd_reserve = initrd_end - initrd_start;
347 }
348 initrd_below_start_ok = 1;
349 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
350
351 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
352 initrd_reserve, BOOTMEM_DEFAULT);
353 }
354 }
355 #endif
356
357 data_resource.start = virt_to_phys(&data_start);
358 data_resource.end = virt_to_phys(_end) - 1;
359 code_resource.start = virt_to_phys(_text);
360 code_resource.end = virt_to_phys(&data_start)-1;
361
362 /* We don't know which region the kernel will be in, so try
363 * all of them.
364 */
365 for (i = 0; i < sysram_resource_count; i++) {
366 struct resource *res = &sysram_resources[i];
367 request_resource(res, &code_resource);
368 request_resource(res, &data_resource);
369 }
370 request_resource(&sysram_resources[0], &pdcdata_resource);
371 }
372
373 void free_initmem(void)
374 {
375 unsigned long addr, init_begin, init_end;
376
377 printk(KERN_INFO "Freeing unused kernel memory: ");
378
379 #ifdef CONFIG_DEBUG_KERNEL
380 /* Attempt to catch anyone trying to execute code here
381 * by filling the page with BRK insns.
382 *
383 * If we disable interrupts for all CPUs, then IPI stops working.
384 * Kinda breaks the global cache flushing.
385 */
386 local_irq_disable();
387
388 memset(__init_begin, 0x00,
389 (unsigned long)__init_end - (unsigned long)__init_begin);
390
391 flush_data_cache();
392 asm volatile("sync" : : );
393 flush_icache_range((unsigned long)__init_begin, (unsigned long)__init_end);
394 asm volatile("sync" : : );
395
396 local_irq_enable();
397 #endif
398
399 /* align __init_begin and __init_end to page size,
400 ignoring linker script where we might have tried to save RAM */
401 init_begin = PAGE_ALIGN((unsigned long)(__init_begin));
402 init_end = PAGE_ALIGN((unsigned long)(__init_end));
403 for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
404 ClearPageReserved(virt_to_page(addr));
405 init_page_count(virt_to_page(addr));
406 free_page(addr);
407 num_physpages++;
408 totalram_pages++;
409 }
410
411 /* set up a new led state on systems shipped LED State panel */
412 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
413
414 printk("%luk freed\n", (init_end - init_begin) >> 10);
415 }
416
417
418 #ifdef CONFIG_DEBUG_RODATA
419 void mark_rodata_ro(void)
420 {
421 /* rodata memory was already mapped with KERNEL_RO access rights by
422 pagetable_init() and map_pages(). No need to do additional stuff here */
423 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
424 (unsigned long)(__end_rodata - __start_rodata) >> 10);
425 }
426 #endif
427
428
429 /*
430 * Just an arbitrary offset to serve as a "hole" between mapping areas
431 * (between top of physical memory and a potential pcxl dma mapping
432 * area, and below the vmalloc mapping area).
433 *
434 * The current 32K value just means that there will be a 32K "hole"
435 * between mapping areas. That means that any out-of-bounds memory
436 * accesses will hopefully be caught. The vmalloc() routines leaves
437 * a hole of 4kB between each vmalloced area for the same reason.
438 */
439
440 /* Leave room for gateway page expansion */
441 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
442 #error KERNEL_MAP_START is in gateway reserved region
443 #endif
444 #define MAP_START (KERNEL_MAP_START)
445
446 #define VM_MAP_OFFSET (32*1024)
447 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
448 & ~(VM_MAP_OFFSET-1)))
449
450 void *vmalloc_start __read_mostly;
451 EXPORT_SYMBOL(vmalloc_start);
452
453 #ifdef CONFIG_PA11
454 unsigned long pcxl_dma_start __read_mostly;
455 #endif
456
457 void __init mem_init(void)
458 {
459 int codesize, reservedpages, datasize, initsize;
460
461 high_memory = __va((max_pfn << PAGE_SHIFT));
462
463 #ifndef CONFIG_DISCONTIGMEM
464 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
465 totalram_pages += free_all_bootmem();
466 #else
467 {
468 int i;
469
470 for (i = 0; i < npmem_ranges; i++)
471 totalram_pages += free_all_bootmem_node(NODE_DATA(i));
472 }
473 #endif
474
475 codesize = (unsigned long)_etext - (unsigned long)_text;
476 datasize = (unsigned long)_edata - (unsigned long)_etext;
477 initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
478
479 reservedpages = 0;
480 {
481 unsigned long pfn;
482 #ifdef CONFIG_DISCONTIGMEM
483 int i;
484
485 for (i = 0; i < npmem_ranges; i++) {
486 for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
487 if (PageReserved(pfn_to_page(pfn)))
488 reservedpages++;
489 }
490 }
491 #else /* !CONFIG_DISCONTIGMEM */
492 for (pfn = 0; pfn < max_pfn; pfn++) {
493 /*
494 * Only count reserved RAM pages
495 */
496 if (PageReserved(pfn_to_page(pfn)))
497 reservedpages++;
498 }
499 #endif
500 }
501
502 #ifdef CONFIG_PA11
503 if (hppa_dma_ops == &pcxl_dma_ops) {
504 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
505 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
506 } else {
507 pcxl_dma_start = 0;
508 vmalloc_start = SET_MAP_OFFSET(MAP_START);
509 }
510 #else
511 vmalloc_start = SET_MAP_OFFSET(MAP_START);
512 #endif
513
514 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
515 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
516 num_physpages << (PAGE_SHIFT-10),
517 codesize >> 10,
518 reservedpages << (PAGE_SHIFT-10),
519 datasize >> 10,
520 initsize >> 10
521 );
522
523 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
524 printk("virtual kernel memory layout:\n"
525 " vmalloc : 0x%p - 0x%p (%4ld MB)\n"
526 " memory : 0x%p - 0x%p (%4ld MB)\n"
527 " .init : 0x%p - 0x%p (%4ld kB)\n"
528 " .data : 0x%p - 0x%p (%4ld kB)\n"
529 " .text : 0x%p - 0x%p (%4ld kB)\n",
530
531 (void*)VMALLOC_START, (void*)VMALLOC_END,
532 (VMALLOC_END - VMALLOC_START) >> 20,
533
534 __va(0), high_memory,
535 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
536
537 __init_begin, __init_end,
538 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
539
540 _etext, _edata,
541 ((unsigned long)_edata - (unsigned long)_etext) >> 10,
542
543 _text, _etext,
544 ((unsigned long)_etext - (unsigned long)_text) >> 10);
545 #endif
546 }
547
548 unsigned long *empty_zero_page __read_mostly;
549 EXPORT_SYMBOL(empty_zero_page);
550
551 void show_mem(void)
552 {
553 int i,free = 0,total = 0,reserved = 0;
554 int shared = 0, cached = 0;
555
556 printk(KERN_INFO "Mem-info:\n");
557 show_free_areas();
558 #ifndef CONFIG_DISCONTIGMEM
559 i = max_mapnr;
560 while (i-- > 0) {
561 total++;
562 if (PageReserved(mem_map+i))
563 reserved++;
564 else if (PageSwapCache(mem_map+i))
565 cached++;
566 else if (!page_count(&mem_map[i]))
567 free++;
568 else
569 shared += page_count(&mem_map[i]) - 1;
570 }
571 #else
572 for (i = 0; i < npmem_ranges; i++) {
573 int j;
574
575 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
576 struct page *p;
577 unsigned long flags;
578
579 pgdat_resize_lock(NODE_DATA(i), &flags);
580 p = nid_page_nr(i, j) - node_start_pfn(i);
581
582 total++;
583 if (PageReserved(p))
584 reserved++;
585 else if (PageSwapCache(p))
586 cached++;
587 else if (!page_count(p))
588 free++;
589 else
590 shared += page_count(p) - 1;
591 pgdat_resize_unlock(NODE_DATA(i), &flags);
592 }
593 }
594 #endif
595 printk(KERN_INFO "%d pages of RAM\n", total);
596 printk(KERN_INFO "%d reserved pages\n", reserved);
597 printk(KERN_INFO "%d pages shared\n", shared);
598 printk(KERN_INFO "%d pages swap cached\n", cached);
599
600
601 #ifdef CONFIG_DISCONTIGMEM
602 {
603 struct zonelist *zl;
604 int i, j;
605
606 for (i = 0; i < npmem_ranges; i++) {
607 zl = node_zonelist(i, 0);
608 for (j = 0; j < MAX_NR_ZONES; j++) {
609 struct zoneref *z;
610 struct zone *zone;
611
612 printk("Zone list for zone %d on node %d: ", j, i);
613 for_each_zone_zonelist(zone, z, zl, j)
614 printk("[%d/%s] ", zone_to_nid(zone),
615 zone->name);
616 printk("\n");
617 }
618 }
619 }
620 #endif
621 }
622
623
624 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
625 {
626 pgd_t *pg_dir;
627 pmd_t *pmd;
628 pte_t *pg_table;
629 unsigned long end_paddr;
630 unsigned long start_pmd;
631 unsigned long start_pte;
632 unsigned long tmp1;
633 unsigned long tmp2;
634 unsigned long address;
635 unsigned long ro_start;
636 unsigned long ro_end;
637 unsigned long fv_addr;
638 unsigned long gw_addr;
639 extern const unsigned long fault_vector_20;
640 extern void * const linux_gateway_page;
641
642 ro_start = __pa((unsigned long)_text);
643 ro_end = __pa((unsigned long)&data_start);
644 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
645 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
646
647 end_paddr = start_paddr + size;
648
649 pg_dir = pgd_offset_k(start_vaddr);
650
651 #if PTRS_PER_PMD == 1
652 start_pmd = 0;
653 #else
654 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
655 #endif
656 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
657
658 address = start_paddr;
659 while (address < end_paddr) {
660 #if PTRS_PER_PMD == 1
661 pmd = (pmd_t *)__pa(pg_dir);
662 #else
663 pmd = (pmd_t *)pgd_address(*pg_dir);
664
665 /*
666 * pmd is physical at this point
667 */
668
669 if (!pmd) {
670 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
671 pmd = (pmd_t *) __pa(pmd);
672 }
673
674 pgd_populate(NULL, pg_dir, __va(pmd));
675 #endif
676 pg_dir++;
677
678 /* now change pmd to kernel virtual addresses */
679
680 pmd = (pmd_t *)__va(pmd) + start_pmd;
681 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
682
683 /*
684 * pg_table is physical at this point
685 */
686
687 pg_table = (pte_t *)pmd_address(*pmd);
688 if (!pg_table) {
689 pg_table = (pte_t *)
690 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
691 pg_table = (pte_t *) __pa(pg_table);
692 }
693
694 pmd_populate_kernel(NULL, pmd, __va(pg_table));
695
696 /* now change pg_table to kernel virtual addresses */
697
698 pg_table = (pte_t *) __va(pg_table) + start_pte;
699 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
700 pte_t pte;
701
702 /*
703 * Map the fault vector writable so we can
704 * write the HPMC checksum.
705 */
706 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
707 if (address >= ro_start && address < ro_end
708 && address != fv_addr
709 && address != gw_addr)
710 pte = __mk_pte(address, PAGE_KERNEL_RO);
711 else
712 #endif
713 pte = __mk_pte(address, pgprot);
714
715 if (address >= end_paddr)
716 pte_val(pte) = 0;
717
718 set_pte(pg_table, pte);
719
720 address += PAGE_SIZE;
721 }
722 start_pte = 0;
723
724 if (address >= end_paddr)
725 break;
726 }
727 start_pmd = 0;
728 }
729 }
730
731 /*
732 * pagetable_init() sets up the page tables
733 *
734 * Note that gateway_init() places the Linux gateway page at page 0.
735 * Since gateway pages cannot be dereferenced this has the desirable
736 * side effect of trapping those pesky NULL-reference errors in the
737 * kernel.
738 */
739 static void __init pagetable_init(void)
740 {
741 int range;
742
743 /* Map each physical memory range to its kernel vaddr */
744
745 for (range = 0; range < npmem_ranges; range++) {
746 unsigned long start_paddr;
747 unsigned long end_paddr;
748 unsigned long size;
749
750 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
751 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
752 size = pmem_ranges[range].pages << PAGE_SHIFT;
753
754 map_pages((unsigned long)__va(start_paddr), start_paddr,
755 size, PAGE_KERNEL);
756 }
757
758 #ifdef CONFIG_BLK_DEV_INITRD
759 if (initrd_end && initrd_end > mem_limit) {
760 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
761 map_pages(initrd_start, __pa(initrd_start),
762 initrd_end - initrd_start, PAGE_KERNEL);
763 }
764 #endif
765
766 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
767 memset(empty_zero_page, 0, PAGE_SIZE);
768 }
769
770 static void __init gateway_init(void)
771 {
772 unsigned long linux_gateway_page_addr;
773 /* FIXME: This is 'const' in order to trick the compiler
774 into not treating it as DP-relative data. */
775 extern void * const linux_gateway_page;
776
777 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
778
779 /*
780 * Setup Linux Gateway page.
781 *
782 * The Linux gateway page will reside in kernel space (on virtual
783 * page 0), so it doesn't need to be aliased into user space.
784 */
785
786 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
787 PAGE_SIZE, PAGE_GATEWAY);
788 }
789
790 #ifdef CONFIG_HPUX
791 void
792 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
793 {
794 pgd_t *pg_dir;
795 pmd_t *pmd;
796 pte_t *pg_table;
797 unsigned long start_pmd;
798 unsigned long start_pte;
799 unsigned long address;
800 unsigned long hpux_gw_page_addr;
801 /* FIXME: This is 'const' in order to trick the compiler
802 into not treating it as DP-relative data. */
803 extern void * const hpux_gateway_page;
804
805 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
806
807 /*
808 * Setup HP-UX Gateway page.
809 *
810 * The HP-UX gateway page resides in the user address space,
811 * so it needs to be aliased into each process.
812 */
813
814 pg_dir = pgd_offset(mm,hpux_gw_page_addr);
815
816 #if PTRS_PER_PMD == 1
817 start_pmd = 0;
818 #else
819 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
820 #endif
821 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
822
823 address = __pa(&hpux_gateway_page);
824 #if PTRS_PER_PMD == 1
825 pmd = (pmd_t *)__pa(pg_dir);
826 #else
827 pmd = (pmd_t *) pgd_address(*pg_dir);
828
829 /*
830 * pmd is physical at this point
831 */
832
833 if (!pmd) {
834 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
835 pmd = (pmd_t *) __pa(pmd);
836 }
837
838 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
839 #endif
840 /* now change pmd to kernel virtual addresses */
841
842 pmd = (pmd_t *)__va(pmd) + start_pmd;
843
844 /*
845 * pg_table is physical at this point
846 */
847
848 pg_table = (pte_t *) pmd_address(*pmd);
849 if (!pg_table)
850 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
851
852 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
853
854 /* now change pg_table to kernel virtual addresses */
855
856 pg_table = (pte_t *) __va(pg_table) + start_pte;
857 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
858 }
859 EXPORT_SYMBOL(map_hpux_gateway_page);
860 #endif
861
862 void __init paging_init(void)
863 {
864 int i;
865
866 setup_bootmem();
867 pagetable_init();
868 gateway_init();
869 flush_cache_all_local(); /* start with known state */
870 flush_tlb_all_local(NULL);
871
872 for (i = 0; i < npmem_ranges; i++) {
873 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
874
875 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
876
877 #ifdef CONFIG_DISCONTIGMEM
878 /* Need to initialize the pfnnid_map before we can initialize
879 the zone */
880 {
881 int j;
882 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
883 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
884 j++) {
885 pfnnid_map[j] = i;
886 }
887 }
888 #endif
889
890 free_area_init_node(i, zones_size,
891 pmem_ranges[i].start_pfn, NULL);
892 }
893 }
894
895 #ifdef CONFIG_PA20
896
897 /*
898 * Currently, all PA20 chips have 18 bit protection IDs, which is the
899 * limiting factor (space ids are 32 bits).
900 */
901
902 #define NR_SPACE_IDS 262144
903
904 #else
905
906 /*
907 * Currently we have a one-to-one relationship between space IDs and
908 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
909 * support 15 bit protection IDs, so that is the limiting factor.
910 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
911 * probably not worth the effort for a special case here.
912 */
913
914 #define NR_SPACE_IDS 32768
915
916 #endif /* !CONFIG_PA20 */
917
918 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
919 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
920
921 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
922 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
923 static unsigned long space_id_index;
924 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
925 static unsigned long dirty_space_ids = 0;
926
927 static DEFINE_SPINLOCK(sid_lock);
928
929 unsigned long alloc_sid(void)
930 {
931 unsigned long index;
932
933 spin_lock(&sid_lock);
934
935 if (free_space_ids == 0) {
936 if (dirty_space_ids != 0) {
937 spin_unlock(&sid_lock);
938 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
939 spin_lock(&sid_lock);
940 }
941 BUG_ON(free_space_ids == 0);
942 }
943
944 free_space_ids--;
945
946 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
947 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
948 space_id_index = index;
949
950 spin_unlock(&sid_lock);
951
952 return index << SPACEID_SHIFT;
953 }
954
955 void free_sid(unsigned long spaceid)
956 {
957 unsigned long index = spaceid >> SPACEID_SHIFT;
958 unsigned long *dirty_space_offset;
959
960 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
961 index &= (BITS_PER_LONG - 1);
962
963 spin_lock(&sid_lock);
964
965 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
966
967 *dirty_space_offset |= (1L << index);
968 dirty_space_ids++;
969
970 spin_unlock(&sid_lock);
971 }
972
973
974 #ifdef CONFIG_SMP
975 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
976 {
977 int i;
978
979 /* NOTE: sid_lock must be held upon entry */
980
981 *ndirtyptr = dirty_space_ids;
982 if (dirty_space_ids != 0) {
983 for (i = 0; i < SID_ARRAY_SIZE; i++) {
984 dirty_array[i] = dirty_space_id[i];
985 dirty_space_id[i] = 0;
986 }
987 dirty_space_ids = 0;
988 }
989
990 return;
991 }
992
993 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
994 {
995 int i;
996
997 /* NOTE: sid_lock must be held upon entry */
998
999 if (ndirty != 0) {
1000 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1001 space_id[i] ^= dirty_array[i];
1002 }
1003
1004 free_space_ids += ndirty;
1005 space_id_index = 0;
1006 }
1007 }
1008
1009 #else /* CONFIG_SMP */
1010
1011 static void recycle_sids(void)
1012 {
1013 int i;
1014
1015 /* NOTE: sid_lock must be held upon entry */
1016
1017 if (dirty_space_ids != 0) {
1018 for (i = 0; i < SID_ARRAY_SIZE; i++) {
1019 space_id[i] ^= dirty_space_id[i];
1020 dirty_space_id[i] = 0;
1021 }
1022
1023 free_space_ids += dirty_space_ids;
1024 dirty_space_ids = 0;
1025 space_id_index = 0;
1026 }
1027 }
1028 #endif
1029
1030 /*
1031 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1032 * purged, we can safely reuse the space ids that were released but
1033 * not flushed from the tlb.
1034 */
1035
1036 #ifdef CONFIG_SMP
1037
1038 static unsigned long recycle_ndirty;
1039 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1040 static unsigned int recycle_inuse;
1041
1042 void flush_tlb_all(void)
1043 {
1044 int do_recycle;
1045
1046 do_recycle = 0;
1047 spin_lock(&sid_lock);
1048 if (dirty_space_ids > RECYCLE_THRESHOLD) {
1049 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
1050 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1051 recycle_inuse++;
1052 do_recycle++;
1053 }
1054 spin_unlock(&sid_lock);
1055 on_each_cpu(flush_tlb_all_local, NULL, 1);
1056 if (do_recycle) {
1057 spin_lock(&sid_lock);
1058 recycle_sids(recycle_ndirty,recycle_dirty_array);
1059 recycle_inuse = 0;
1060 spin_unlock(&sid_lock);
1061 }
1062 }
1063 #else
1064 void flush_tlb_all(void)
1065 {
1066 spin_lock(&sid_lock);
1067 flush_tlb_all_local(NULL);
1068 recycle_sids();
1069 spin_unlock(&sid_lock);
1070 }
1071 #endif
1072
1073 #ifdef CONFIG_BLK_DEV_INITRD
1074 void free_initrd_mem(unsigned long start, unsigned long end)
1075 {
1076 if (start >= end)
1077 return;
1078 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1079 for (; start < end; start += PAGE_SIZE) {
1080 ClearPageReserved(virt_to_page(start));
1081 init_page_count(virt_to_page(start));
1082 free_page(start);
1083 num_physpages++;
1084 totalram_pages++;
1085 }
1086 }
1087 #endif