]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/crypto/crc32-vpmsum_core.S
Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / crypto / crc32-vpmsum_core.S
1 /*
2 * Core of the accelerated CRC algorithm.
3 * In your file, define the constants and CRC_FUNCTION_NAME
4 * Then include this file.
5 *
6 * Calculate the checksum of data that is 16 byte aligned and a multiple of
7 * 16 bytes.
8 *
9 * The first step is to reduce it to 1024 bits. We do this in 8 parallel
10 * chunks in order to mask the latency of the vpmsum instructions. If we
11 * have more than 32 kB of data to checksum we repeat this step multiple
12 * times, passing in the previous 1024 bits.
13 *
14 * The next step is to reduce the 1024 bits to 64 bits. This step adds
15 * 32 bits of 0s to the end - this matches what a CRC does. We just
16 * calculate constants that land the data in this 32 bits.
17 *
18 * We then use fixed point Barrett reduction to compute a mod n over GF(2)
19 * for n = CRC using POWER8 instructions. We use x = 32.
20 *
21 * http://en.wikipedia.org/wiki/Barrett_reduction
22 *
23 * Copyright (C) 2015 Anton Blanchard <anton@au.ibm.com>, IBM
24 *
25 * This program is free software; you can redistribute it and/or
26 * modify it under the terms of the GNU General Public License
27 * as published by the Free Software Foundation; either version
28 * 2 of the License, or (at your option) any later version.
29 */
30
31 #include <asm/ppc_asm.h>
32 #include <asm/ppc-opcode.h>
33
34 #define MAX_SIZE 32768
35
36 .text
37
38 #if defined(__BIG_ENDIAN__) && defined(REFLECT)
39 #define BYTESWAP_DATA
40 #elif defined(__LITTLE_ENDIAN__) && !defined(REFLECT)
41 #define BYTESWAP_DATA
42 #else
43 #undef BYTESWAP_DATA
44 #endif
45
46 #define off16 r25
47 #define off32 r26
48 #define off48 r27
49 #define off64 r28
50 #define off80 r29
51 #define off96 r30
52 #define off112 r31
53
54 #define const1 v24
55 #define const2 v25
56
57 #define byteswap v26
58 #define mask_32bit v27
59 #define mask_64bit v28
60 #define zeroes v29
61
62 #ifdef BYTESWAP_DATA
63 #define VPERM(A, B, C, D) vperm A, B, C, D
64 #else
65 #define VPERM(A, B, C, D)
66 #endif
67
68 /* unsigned int CRC_FUNCTION_NAME(unsigned int crc, void *p, unsigned long len) */
69 FUNC_START(CRC_FUNCTION_NAME)
70 std r31,-8(r1)
71 std r30,-16(r1)
72 std r29,-24(r1)
73 std r28,-32(r1)
74 std r27,-40(r1)
75 std r26,-48(r1)
76 std r25,-56(r1)
77
78 li off16,16
79 li off32,32
80 li off48,48
81 li off64,64
82 li off80,80
83 li off96,96
84 li off112,112
85 li r0,0
86
87 /* Enough room for saving 10 non volatile VMX registers */
88 subi r6,r1,56+10*16
89 subi r7,r1,56+2*16
90
91 stvx v20,0,r6
92 stvx v21,off16,r6
93 stvx v22,off32,r6
94 stvx v23,off48,r6
95 stvx v24,off64,r6
96 stvx v25,off80,r6
97 stvx v26,off96,r6
98 stvx v27,off112,r6
99 stvx v28,0,r7
100 stvx v29,off16,r7
101
102 mr r10,r3
103
104 vxor zeroes,zeroes,zeroes
105 vspltisw v0,-1
106
107 vsldoi mask_32bit,zeroes,v0,4
108 vsldoi mask_64bit,zeroes,v0,8
109
110 /* Get the initial value into v8 */
111 vxor v8,v8,v8
112 MTVRD(v8, R3)
113 #ifdef REFLECT
114 vsldoi v8,zeroes,v8,8 /* shift into bottom 32 bits */
115 #else
116 vsldoi v8,v8,zeroes,4 /* shift into top 32 bits */
117 #endif
118
119 #ifdef BYTESWAP_DATA
120 addis r3,r2,.byteswap_constant@toc@ha
121 addi r3,r3,.byteswap_constant@toc@l
122
123 lvx byteswap,0,r3
124 addi r3,r3,16
125 #endif
126
127 cmpdi r5,256
128 blt .Lshort
129
130 rldicr r6,r5,0,56
131
132 /* Checksum in blocks of MAX_SIZE */
133 1: lis r7,MAX_SIZE@h
134 ori r7,r7,MAX_SIZE@l
135 mr r9,r7
136 cmpd r6,r7
137 bgt 2f
138 mr r7,r6
139 2: subf r6,r7,r6
140
141 /* our main loop does 128 bytes at a time */
142 srdi r7,r7,7
143
144 /*
145 * Work out the offset into the constants table to start at. Each
146 * constant is 16 bytes, and it is used against 128 bytes of input
147 * data - 128 / 16 = 8
148 */
149 sldi r8,r7,4
150 srdi r9,r9,3
151 subf r8,r8,r9
152
153 /* We reduce our final 128 bytes in a separate step */
154 addi r7,r7,-1
155 mtctr r7
156
157 addis r3,r2,.constants@toc@ha
158 addi r3,r3,.constants@toc@l
159
160 /* Find the start of our constants */
161 add r3,r3,r8
162
163 /* zero v0-v7 which will contain our checksums */
164 vxor v0,v0,v0
165 vxor v1,v1,v1
166 vxor v2,v2,v2
167 vxor v3,v3,v3
168 vxor v4,v4,v4
169 vxor v5,v5,v5
170 vxor v6,v6,v6
171 vxor v7,v7,v7
172
173 lvx const1,0,r3
174
175 /*
176 * If we are looping back to consume more data we use the values
177 * already in v16-v23.
178 */
179 cmpdi r0,1
180 beq 2f
181
182 /* First warm up pass */
183 lvx v16,0,r4
184 lvx v17,off16,r4
185 VPERM(v16,v16,v16,byteswap)
186 VPERM(v17,v17,v17,byteswap)
187 lvx v18,off32,r4
188 lvx v19,off48,r4
189 VPERM(v18,v18,v18,byteswap)
190 VPERM(v19,v19,v19,byteswap)
191 lvx v20,off64,r4
192 lvx v21,off80,r4
193 VPERM(v20,v20,v20,byteswap)
194 VPERM(v21,v21,v21,byteswap)
195 lvx v22,off96,r4
196 lvx v23,off112,r4
197 VPERM(v22,v22,v22,byteswap)
198 VPERM(v23,v23,v23,byteswap)
199 addi r4,r4,8*16
200
201 /* xor in initial value */
202 vxor v16,v16,v8
203
204 2: bdz .Lfirst_warm_up_done
205
206 addi r3,r3,16
207 lvx const2,0,r3
208
209 /* Second warm up pass */
210 VPMSUMD(v8,v16,const1)
211 lvx v16,0,r4
212 VPERM(v16,v16,v16,byteswap)
213 ori r2,r2,0
214
215 VPMSUMD(v9,v17,const1)
216 lvx v17,off16,r4
217 VPERM(v17,v17,v17,byteswap)
218 ori r2,r2,0
219
220 VPMSUMD(v10,v18,const1)
221 lvx v18,off32,r4
222 VPERM(v18,v18,v18,byteswap)
223 ori r2,r2,0
224
225 VPMSUMD(v11,v19,const1)
226 lvx v19,off48,r4
227 VPERM(v19,v19,v19,byteswap)
228 ori r2,r2,0
229
230 VPMSUMD(v12,v20,const1)
231 lvx v20,off64,r4
232 VPERM(v20,v20,v20,byteswap)
233 ori r2,r2,0
234
235 VPMSUMD(v13,v21,const1)
236 lvx v21,off80,r4
237 VPERM(v21,v21,v21,byteswap)
238 ori r2,r2,0
239
240 VPMSUMD(v14,v22,const1)
241 lvx v22,off96,r4
242 VPERM(v22,v22,v22,byteswap)
243 ori r2,r2,0
244
245 VPMSUMD(v15,v23,const1)
246 lvx v23,off112,r4
247 VPERM(v23,v23,v23,byteswap)
248
249 addi r4,r4,8*16
250
251 bdz .Lfirst_cool_down
252
253 /*
254 * main loop. We modulo schedule it such that it takes three iterations
255 * to complete - first iteration load, second iteration vpmsum, third
256 * iteration xor.
257 */
258 .balign 16
259 4: lvx const1,0,r3
260 addi r3,r3,16
261 ori r2,r2,0
262
263 vxor v0,v0,v8
264 VPMSUMD(v8,v16,const2)
265 lvx v16,0,r4
266 VPERM(v16,v16,v16,byteswap)
267 ori r2,r2,0
268
269 vxor v1,v1,v9
270 VPMSUMD(v9,v17,const2)
271 lvx v17,off16,r4
272 VPERM(v17,v17,v17,byteswap)
273 ori r2,r2,0
274
275 vxor v2,v2,v10
276 VPMSUMD(v10,v18,const2)
277 lvx v18,off32,r4
278 VPERM(v18,v18,v18,byteswap)
279 ori r2,r2,0
280
281 vxor v3,v3,v11
282 VPMSUMD(v11,v19,const2)
283 lvx v19,off48,r4
284 VPERM(v19,v19,v19,byteswap)
285 lvx const2,0,r3
286 ori r2,r2,0
287
288 vxor v4,v4,v12
289 VPMSUMD(v12,v20,const1)
290 lvx v20,off64,r4
291 VPERM(v20,v20,v20,byteswap)
292 ori r2,r2,0
293
294 vxor v5,v5,v13
295 VPMSUMD(v13,v21,const1)
296 lvx v21,off80,r4
297 VPERM(v21,v21,v21,byteswap)
298 ori r2,r2,0
299
300 vxor v6,v6,v14
301 VPMSUMD(v14,v22,const1)
302 lvx v22,off96,r4
303 VPERM(v22,v22,v22,byteswap)
304 ori r2,r2,0
305
306 vxor v7,v7,v15
307 VPMSUMD(v15,v23,const1)
308 lvx v23,off112,r4
309 VPERM(v23,v23,v23,byteswap)
310
311 addi r4,r4,8*16
312
313 bdnz 4b
314
315 .Lfirst_cool_down:
316 /* First cool down pass */
317 lvx const1,0,r3
318 addi r3,r3,16
319
320 vxor v0,v0,v8
321 VPMSUMD(v8,v16,const1)
322 ori r2,r2,0
323
324 vxor v1,v1,v9
325 VPMSUMD(v9,v17,const1)
326 ori r2,r2,0
327
328 vxor v2,v2,v10
329 VPMSUMD(v10,v18,const1)
330 ori r2,r2,0
331
332 vxor v3,v3,v11
333 VPMSUMD(v11,v19,const1)
334 ori r2,r2,0
335
336 vxor v4,v4,v12
337 VPMSUMD(v12,v20,const1)
338 ori r2,r2,0
339
340 vxor v5,v5,v13
341 VPMSUMD(v13,v21,const1)
342 ori r2,r2,0
343
344 vxor v6,v6,v14
345 VPMSUMD(v14,v22,const1)
346 ori r2,r2,0
347
348 vxor v7,v7,v15
349 VPMSUMD(v15,v23,const1)
350 ori r2,r2,0
351
352 .Lsecond_cool_down:
353 /* Second cool down pass */
354 vxor v0,v0,v8
355 vxor v1,v1,v9
356 vxor v2,v2,v10
357 vxor v3,v3,v11
358 vxor v4,v4,v12
359 vxor v5,v5,v13
360 vxor v6,v6,v14
361 vxor v7,v7,v15
362
363 #ifdef REFLECT
364 /*
365 * vpmsumd produces a 96 bit result in the least significant bits
366 * of the register. Since we are bit reflected we have to shift it
367 * left 32 bits so it occupies the least significant bits in the
368 * bit reflected domain.
369 */
370 vsldoi v0,v0,zeroes,4
371 vsldoi v1,v1,zeroes,4
372 vsldoi v2,v2,zeroes,4
373 vsldoi v3,v3,zeroes,4
374 vsldoi v4,v4,zeroes,4
375 vsldoi v5,v5,zeroes,4
376 vsldoi v6,v6,zeroes,4
377 vsldoi v7,v7,zeroes,4
378 #endif
379
380 /* xor with last 1024 bits */
381 lvx v8,0,r4
382 lvx v9,off16,r4
383 VPERM(v8,v8,v8,byteswap)
384 VPERM(v9,v9,v9,byteswap)
385 lvx v10,off32,r4
386 lvx v11,off48,r4
387 VPERM(v10,v10,v10,byteswap)
388 VPERM(v11,v11,v11,byteswap)
389 lvx v12,off64,r4
390 lvx v13,off80,r4
391 VPERM(v12,v12,v12,byteswap)
392 VPERM(v13,v13,v13,byteswap)
393 lvx v14,off96,r4
394 lvx v15,off112,r4
395 VPERM(v14,v14,v14,byteswap)
396 VPERM(v15,v15,v15,byteswap)
397
398 addi r4,r4,8*16
399
400 vxor v16,v0,v8
401 vxor v17,v1,v9
402 vxor v18,v2,v10
403 vxor v19,v3,v11
404 vxor v20,v4,v12
405 vxor v21,v5,v13
406 vxor v22,v6,v14
407 vxor v23,v7,v15
408
409 li r0,1
410 cmpdi r6,0
411 addi r6,r6,128
412 bne 1b
413
414 /* Work out how many bytes we have left */
415 andi. r5,r5,127
416
417 /* Calculate where in the constant table we need to start */
418 subfic r6,r5,128
419 add r3,r3,r6
420
421 /* How many 16 byte chunks are in the tail */
422 srdi r7,r5,4
423 mtctr r7
424
425 /*
426 * Reduce the previously calculated 1024 bits to 64 bits, shifting
427 * 32 bits to include the trailing 32 bits of zeros
428 */
429 lvx v0,0,r3
430 lvx v1,off16,r3
431 lvx v2,off32,r3
432 lvx v3,off48,r3
433 lvx v4,off64,r3
434 lvx v5,off80,r3
435 lvx v6,off96,r3
436 lvx v7,off112,r3
437 addi r3,r3,8*16
438
439 VPMSUMW(v0,v16,v0)
440 VPMSUMW(v1,v17,v1)
441 VPMSUMW(v2,v18,v2)
442 VPMSUMW(v3,v19,v3)
443 VPMSUMW(v4,v20,v4)
444 VPMSUMW(v5,v21,v5)
445 VPMSUMW(v6,v22,v6)
446 VPMSUMW(v7,v23,v7)
447
448 /* Now reduce the tail (0 - 112 bytes) */
449 cmpdi r7,0
450 beq 1f
451
452 lvx v16,0,r4
453 lvx v17,0,r3
454 VPERM(v16,v16,v16,byteswap)
455 VPMSUMW(v16,v16,v17)
456 vxor v0,v0,v16
457 bdz 1f
458
459 lvx v16,off16,r4
460 lvx v17,off16,r3
461 VPERM(v16,v16,v16,byteswap)
462 VPMSUMW(v16,v16,v17)
463 vxor v0,v0,v16
464 bdz 1f
465
466 lvx v16,off32,r4
467 lvx v17,off32,r3
468 VPERM(v16,v16,v16,byteswap)
469 VPMSUMW(v16,v16,v17)
470 vxor v0,v0,v16
471 bdz 1f
472
473 lvx v16,off48,r4
474 lvx v17,off48,r3
475 VPERM(v16,v16,v16,byteswap)
476 VPMSUMW(v16,v16,v17)
477 vxor v0,v0,v16
478 bdz 1f
479
480 lvx v16,off64,r4
481 lvx v17,off64,r3
482 VPERM(v16,v16,v16,byteswap)
483 VPMSUMW(v16,v16,v17)
484 vxor v0,v0,v16
485 bdz 1f
486
487 lvx v16,off80,r4
488 lvx v17,off80,r3
489 VPERM(v16,v16,v16,byteswap)
490 VPMSUMW(v16,v16,v17)
491 vxor v0,v0,v16
492 bdz 1f
493
494 lvx v16,off96,r4
495 lvx v17,off96,r3
496 VPERM(v16,v16,v16,byteswap)
497 VPMSUMW(v16,v16,v17)
498 vxor v0,v0,v16
499
500 /* Now xor all the parallel chunks together */
501 1: vxor v0,v0,v1
502 vxor v2,v2,v3
503 vxor v4,v4,v5
504 vxor v6,v6,v7
505
506 vxor v0,v0,v2
507 vxor v4,v4,v6
508
509 vxor v0,v0,v4
510
511 .Lbarrett_reduction:
512 /* Barrett constants */
513 addis r3,r2,.barrett_constants@toc@ha
514 addi r3,r3,.barrett_constants@toc@l
515
516 lvx const1,0,r3
517 lvx const2,off16,r3
518
519 vsldoi v1,v0,v0,8
520 vxor v0,v0,v1 /* xor two 64 bit results together */
521
522 #ifdef REFLECT
523 /* shift left one bit */
524 vspltisb v1,1
525 vsl v0,v0,v1
526 #endif
527
528 vand v0,v0,mask_64bit
529 #ifndef REFLECT
530 /*
531 * Now for the Barrett reduction algorithm. The idea is to calculate q,
532 * the multiple of our polynomial that we need to subtract. By
533 * doing the computation 2x bits higher (ie 64 bits) and shifting the
534 * result back down 2x bits, we round down to the nearest multiple.
535 */
536 VPMSUMD(v1,v0,const1) /* ma */
537 vsldoi v1,zeroes,v1,8 /* q = floor(ma/(2^64)) */
538 VPMSUMD(v1,v1,const2) /* qn */
539 vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */
540
541 /*
542 * Get the result into r3. We need to shift it left 8 bytes:
543 * V0 [ 0 1 2 X ]
544 * V0 [ 0 X 2 3 ]
545 */
546 vsldoi v0,v0,zeroes,8 /* shift result into top 64 bits */
547 #else
548 /*
549 * The reflected version of Barrett reduction. Instead of bit
550 * reflecting our data (which is expensive to do), we bit reflect our
551 * constants and our algorithm, which means the intermediate data in
552 * our vector registers goes from 0-63 instead of 63-0. We can reflect
553 * the algorithm because we don't carry in mod 2 arithmetic.
554 */
555 vand v1,v0,mask_32bit /* bottom 32 bits of a */
556 VPMSUMD(v1,v1,const1) /* ma */
557 vand v1,v1,mask_32bit /* bottom 32bits of ma */
558 VPMSUMD(v1,v1,const2) /* qn */
559 vxor v0,v0,v1 /* a - qn, subtraction is xor in GF(2) */
560
561 /*
562 * Since we are bit reflected, the result (ie the low 32 bits) is in
563 * the high 32 bits. We just need to shift it left 4 bytes
564 * V0 [ 0 1 X 3 ]
565 * V0 [ 0 X 2 3 ]
566 */
567 vsldoi v0,v0,zeroes,4 /* shift result into top 64 bits of */
568 #endif
569
570 /* Get it into r3 */
571 MFVRD(R3, v0)
572
573 .Lout:
574 subi r6,r1,56+10*16
575 subi r7,r1,56+2*16
576
577 lvx v20,0,r6
578 lvx v21,off16,r6
579 lvx v22,off32,r6
580 lvx v23,off48,r6
581 lvx v24,off64,r6
582 lvx v25,off80,r6
583 lvx v26,off96,r6
584 lvx v27,off112,r6
585 lvx v28,0,r7
586 lvx v29,off16,r7
587
588 ld r31,-8(r1)
589 ld r30,-16(r1)
590 ld r29,-24(r1)
591 ld r28,-32(r1)
592 ld r27,-40(r1)
593 ld r26,-48(r1)
594 ld r25,-56(r1)
595
596 blr
597
598 .Lfirst_warm_up_done:
599 lvx const1,0,r3
600 addi r3,r3,16
601
602 VPMSUMD(v8,v16,const1)
603 VPMSUMD(v9,v17,const1)
604 VPMSUMD(v10,v18,const1)
605 VPMSUMD(v11,v19,const1)
606 VPMSUMD(v12,v20,const1)
607 VPMSUMD(v13,v21,const1)
608 VPMSUMD(v14,v22,const1)
609 VPMSUMD(v15,v23,const1)
610
611 b .Lsecond_cool_down
612
613 .Lshort:
614 cmpdi r5,0
615 beq .Lzero
616
617 addis r3,r2,.short_constants@toc@ha
618 addi r3,r3,.short_constants@toc@l
619
620 /* Calculate where in the constant table we need to start */
621 subfic r6,r5,256
622 add r3,r3,r6
623
624 /* How many 16 byte chunks? */
625 srdi r7,r5,4
626 mtctr r7
627
628 vxor v19,v19,v19
629 vxor v20,v20,v20
630
631 lvx v0,0,r4
632 lvx v16,0,r3
633 VPERM(v0,v0,v16,byteswap)
634 vxor v0,v0,v8 /* xor in initial value */
635 VPMSUMW(v0,v0,v16)
636 bdz .Lv0
637
638 lvx v1,off16,r4
639 lvx v17,off16,r3
640 VPERM(v1,v1,v17,byteswap)
641 VPMSUMW(v1,v1,v17)
642 bdz .Lv1
643
644 lvx v2,off32,r4
645 lvx v16,off32,r3
646 VPERM(v2,v2,v16,byteswap)
647 VPMSUMW(v2,v2,v16)
648 bdz .Lv2
649
650 lvx v3,off48,r4
651 lvx v17,off48,r3
652 VPERM(v3,v3,v17,byteswap)
653 VPMSUMW(v3,v3,v17)
654 bdz .Lv3
655
656 lvx v4,off64,r4
657 lvx v16,off64,r3
658 VPERM(v4,v4,v16,byteswap)
659 VPMSUMW(v4,v4,v16)
660 bdz .Lv4
661
662 lvx v5,off80,r4
663 lvx v17,off80,r3
664 VPERM(v5,v5,v17,byteswap)
665 VPMSUMW(v5,v5,v17)
666 bdz .Lv5
667
668 lvx v6,off96,r4
669 lvx v16,off96,r3
670 VPERM(v6,v6,v16,byteswap)
671 VPMSUMW(v6,v6,v16)
672 bdz .Lv6
673
674 lvx v7,off112,r4
675 lvx v17,off112,r3
676 VPERM(v7,v7,v17,byteswap)
677 VPMSUMW(v7,v7,v17)
678 bdz .Lv7
679
680 addi r3,r3,128
681 addi r4,r4,128
682
683 lvx v8,0,r4
684 lvx v16,0,r3
685 VPERM(v8,v8,v16,byteswap)
686 VPMSUMW(v8,v8,v16)
687 bdz .Lv8
688
689 lvx v9,off16,r4
690 lvx v17,off16,r3
691 VPERM(v9,v9,v17,byteswap)
692 VPMSUMW(v9,v9,v17)
693 bdz .Lv9
694
695 lvx v10,off32,r4
696 lvx v16,off32,r3
697 VPERM(v10,v10,v16,byteswap)
698 VPMSUMW(v10,v10,v16)
699 bdz .Lv10
700
701 lvx v11,off48,r4
702 lvx v17,off48,r3
703 VPERM(v11,v11,v17,byteswap)
704 VPMSUMW(v11,v11,v17)
705 bdz .Lv11
706
707 lvx v12,off64,r4
708 lvx v16,off64,r3
709 VPERM(v12,v12,v16,byteswap)
710 VPMSUMW(v12,v12,v16)
711 bdz .Lv12
712
713 lvx v13,off80,r4
714 lvx v17,off80,r3
715 VPERM(v13,v13,v17,byteswap)
716 VPMSUMW(v13,v13,v17)
717 bdz .Lv13
718
719 lvx v14,off96,r4
720 lvx v16,off96,r3
721 VPERM(v14,v14,v16,byteswap)
722 VPMSUMW(v14,v14,v16)
723 bdz .Lv14
724
725 lvx v15,off112,r4
726 lvx v17,off112,r3
727 VPERM(v15,v15,v17,byteswap)
728 VPMSUMW(v15,v15,v17)
729
730 .Lv15: vxor v19,v19,v15
731 .Lv14: vxor v20,v20,v14
732 .Lv13: vxor v19,v19,v13
733 .Lv12: vxor v20,v20,v12
734 .Lv11: vxor v19,v19,v11
735 .Lv10: vxor v20,v20,v10
736 .Lv9: vxor v19,v19,v9
737 .Lv8: vxor v20,v20,v8
738 .Lv7: vxor v19,v19,v7
739 .Lv6: vxor v20,v20,v6
740 .Lv5: vxor v19,v19,v5
741 .Lv4: vxor v20,v20,v4
742 .Lv3: vxor v19,v19,v3
743 .Lv2: vxor v20,v20,v2
744 .Lv1: vxor v19,v19,v1
745 .Lv0: vxor v20,v20,v0
746
747 vxor v0,v19,v20
748
749 b .Lbarrett_reduction
750
751 .Lzero:
752 mr r3,r10
753 b .Lout
754
755 FUNC_END(CRC_FUNCTION_NAME)