]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/include/asm/book3s/32/pgtable.h
Merge tag 'nfs-for-4.11-3' of git://git.linux-nfs.org/projects/anna/linux-nfs
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / include / asm / book3s / 32 / pgtable.h
1 #ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H
2 #define _ASM_POWERPC_BOOK3S_32_PGTABLE_H
3
4 #define __ARCH_USE_5LEVEL_HACK
5 #include <asm-generic/pgtable-nopmd.h>
6
7 #include <asm/book3s/32/hash.h>
8
9 /* And here we include common definitions */
10 #include <asm/pte-common.h>
11
12 #define PTE_INDEX_SIZE PTE_SHIFT
13 #define PMD_INDEX_SIZE 0
14 #define PUD_INDEX_SIZE 0
15 #define PGD_INDEX_SIZE (32 - PGDIR_SHIFT)
16
17 #define PMD_CACHE_INDEX PMD_INDEX_SIZE
18
19 #ifndef __ASSEMBLY__
20 #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE)
21 #define PMD_TABLE_SIZE 0
22 #define PUD_TABLE_SIZE 0
23 #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
24 #endif /* __ASSEMBLY__ */
25
26 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
27 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
28
29 /*
30 * The normal case is that PTEs are 32-bits and we have a 1-page
31 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
32 *
33 * For any >32-bit physical address platform, we can use the following
34 * two level page table layout where the pgdir is 8KB and the MS 13 bits
35 * are an index to the second level table. The combined pgdir/pmd first
36 * level has 2048 entries and the second level has 512 64-bit PTE entries.
37 * -Matt
38 */
39 /* PGDIR_SHIFT determines what a top-level page table entry can map */
40 #define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
41 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
42 #define PGDIR_MASK (~(PGDIR_SIZE-1))
43
44 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
45 /*
46 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
47 * value (for now) on others, from where we can start layout kernel
48 * virtual space that goes below PKMAP and FIXMAP
49 */
50 #ifdef CONFIG_HIGHMEM
51 #define KVIRT_TOP PKMAP_BASE
52 #else
53 #define KVIRT_TOP (0xfe000000UL) /* for now, could be FIXMAP_BASE ? */
54 #endif
55
56 /*
57 * ioremap_bot starts at that address. Early ioremaps move down from there,
58 * until mem_init() at which point this becomes the top of the vmalloc
59 * and ioremap space
60 */
61 #ifdef CONFIG_NOT_COHERENT_CACHE
62 #define IOREMAP_TOP ((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK)
63 #else
64 #define IOREMAP_TOP KVIRT_TOP
65 #endif
66
67 /*
68 * Just any arbitrary offset to the start of the vmalloc VM area: the
69 * current 16MB value just means that there will be a 64MB "hole" after the
70 * physical memory until the kernel virtual memory starts. That means that
71 * any out-of-bounds memory accesses will hopefully be caught.
72 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
73 * area for the same reason. ;)
74 *
75 * We no longer map larger than phys RAM with the BATs so we don't have
76 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry
77 * about clashes between our early calls to ioremap() that start growing down
78 * from ioremap_base being run into the VM area allocations (growing upwards
79 * from VMALLOC_START). For this reason we have ioremap_bot to check when
80 * we actually run into our mappings setup in the early boot with the VM
81 * system. This really does become a problem for machines with good amounts
82 * of RAM. -- Cort
83 */
84 #define VMALLOC_OFFSET (0x1000000) /* 16M */
85 #ifdef PPC_PIN_SIZE
86 #define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
87 #else
88 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
89 #endif
90 #define VMALLOC_END ioremap_bot
91
92 #ifndef __ASSEMBLY__
93 #include <linux/sched.h>
94 #include <linux/threads.h>
95 #include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */
96
97 extern unsigned long ioremap_bot;
98
99 /* Bits to mask out from a PGD to get to the PUD page */
100 #define PGD_MASKED_BITS 0
101
102 #define pte_ERROR(e) \
103 pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
104 (unsigned long long)pte_val(e))
105 #define pgd_ERROR(e) \
106 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
107 /*
108 * Bits in a linux-style PTE. These match the bits in the
109 * (hardware-defined) PowerPC PTE as closely as possible.
110 */
111
112 #define pte_clear(mm, addr, ptep) \
113 do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0)
114
115 #define pmd_none(pmd) (!pmd_val(pmd))
116 #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
117 #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
118 static inline void pmd_clear(pmd_t *pmdp)
119 {
120 *pmdp = __pmd(0);
121 }
122
123
124 /*
125 * When flushing the tlb entry for a page, we also need to flush the hash
126 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
127 */
128 extern int flush_hash_pages(unsigned context, unsigned long va,
129 unsigned long pmdval, int count);
130
131 /* Add an HPTE to the hash table */
132 extern void add_hash_page(unsigned context, unsigned long va,
133 unsigned long pmdval);
134
135 /* Flush an entry from the TLB/hash table */
136 extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
137 unsigned long address);
138
139 /*
140 * PTE updates. This function is called whenever an existing
141 * valid PTE is updated. This does -not- include set_pte_at()
142 * which nowadays only sets a new PTE.
143 *
144 * Depending on the type of MMU, we may need to use atomic updates
145 * and the PTE may be either 32 or 64 bit wide. In the later case,
146 * when using atomic updates, only the low part of the PTE is
147 * accessed atomically.
148 *
149 * In addition, on 44x, we also maintain a global flag indicating
150 * that an executable user mapping was modified, which is needed
151 * to properly flush the virtually tagged instruction cache of
152 * those implementations.
153 */
154 #ifndef CONFIG_PTE_64BIT
155 static inline unsigned long pte_update(pte_t *p,
156 unsigned long clr,
157 unsigned long set)
158 {
159 unsigned long old, tmp;
160
161 __asm__ __volatile__("\
162 1: lwarx %0,0,%3\n\
163 andc %1,%0,%4\n\
164 or %1,%1,%5\n"
165 PPC405_ERR77(0,%3)
166 " stwcx. %1,0,%3\n\
167 bne- 1b"
168 : "=&r" (old), "=&r" (tmp), "=m" (*p)
169 : "r" (p), "r" (clr), "r" (set), "m" (*p)
170 : "cc" );
171
172 return old;
173 }
174 #else /* CONFIG_PTE_64BIT */
175 static inline unsigned long long pte_update(pte_t *p,
176 unsigned long clr,
177 unsigned long set)
178 {
179 unsigned long long old;
180 unsigned long tmp;
181
182 __asm__ __volatile__("\
183 1: lwarx %L0,0,%4\n\
184 lwzx %0,0,%3\n\
185 andc %1,%L0,%5\n\
186 or %1,%1,%6\n"
187 PPC405_ERR77(0,%3)
188 " stwcx. %1,0,%4\n\
189 bne- 1b"
190 : "=&r" (old), "=&r" (tmp), "=m" (*p)
191 : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
192 : "cc" );
193
194 return old;
195 }
196 #endif /* CONFIG_PTE_64BIT */
197
198 /*
199 * 2.6 calls this without flushing the TLB entry; this is wrong
200 * for our hash-based implementation, we fix that up here.
201 */
202 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
203 static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
204 {
205 unsigned long old;
206 old = pte_update(ptep, _PAGE_ACCESSED, 0);
207 if (old & _PAGE_HASHPTE) {
208 unsigned long ptephys = __pa(ptep) & PAGE_MASK;
209 flush_hash_pages(context, addr, ptephys, 1);
210 }
211 return (old & _PAGE_ACCESSED) != 0;
212 }
213 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
214 __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
215
216 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
217 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
218 pte_t *ptep)
219 {
220 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
221 }
222
223 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
224 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
225 pte_t *ptep)
226 {
227 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), _PAGE_RO);
228 }
229 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
230 unsigned long addr, pte_t *ptep)
231 {
232 ptep_set_wrprotect(mm, addr, ptep);
233 }
234
235
236 static inline void __ptep_set_access_flags(struct mm_struct *mm,
237 pte_t *ptep, pte_t entry,
238 unsigned long address)
239 {
240 unsigned long set = pte_val(entry) &
241 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
242 unsigned long clr = ~pte_val(entry) & _PAGE_RO;
243
244 pte_update(ptep, clr, set);
245 }
246
247 #define __HAVE_ARCH_PTE_SAME
248 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
249
250 /*
251 * Note that on Book E processors, the pmd contains the kernel virtual
252 * (lowmem) address of the pte page. The physical address is less useful
253 * because everything runs with translation enabled (even the TLB miss
254 * handler). On everything else the pmd contains the physical address
255 * of the pte page. -- paulus
256 */
257 #ifndef CONFIG_BOOKE
258 #define pmd_page_vaddr(pmd) \
259 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
260 #define pmd_page(pmd) \
261 pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
262 #else
263 #define pmd_page_vaddr(pmd) \
264 ((unsigned long) (pmd_val(pmd) & PAGE_MASK))
265 #define pmd_page(pmd) \
266 pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
267 #endif
268
269 /* to find an entry in a kernel page-table-directory */
270 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
271
272 /* to find an entry in a page-table-directory */
273 #define pgd_index(address) ((address) >> PGDIR_SHIFT)
274 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
275
276 /* Find an entry in the third-level page table.. */
277 #define pte_index(address) \
278 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
279 #define pte_offset_kernel(dir, addr) \
280 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
281 #define pte_offset_map(dir, addr) \
282 ((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr))
283 #define pte_unmap(pte) kunmap_atomic(pte)
284
285 /*
286 * Encode and decode a swap entry.
287 * Note that the bits we use in a PTE for representing a swap entry
288 * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used).
289 * -- paulus
290 */
291 #define __swp_type(entry) ((entry).val & 0x1f)
292 #define __swp_offset(entry) ((entry).val >> 5)
293 #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
294 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
295 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
296
297 extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep,
298 pmd_t **pmdp);
299
300 /* Generic accessors to PTE bits */
301 static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_RW);}
302 static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); }
303 static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); }
304 static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); }
305 static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
306 static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
307
308 static inline int pte_present(pte_t pte)
309 {
310 return pte_val(pte) & _PAGE_PRESENT;
311 }
312
313 /* Conversion functions: convert a page and protection to a page entry,
314 * and a page entry and page directory to the page they refer to.
315 *
316 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
317 * long for now.
318 */
319 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
320 {
321 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
322 pgprot_val(pgprot));
323 }
324
325 static inline unsigned long pte_pfn(pte_t pte)
326 {
327 return pte_val(pte) >> PTE_RPN_SHIFT;
328 }
329
330 /* Generic modifiers for PTE bits */
331 static inline pte_t pte_wrprotect(pte_t pte)
332 {
333 return __pte(pte_val(pte) & ~_PAGE_RW);
334 }
335
336 static inline pte_t pte_mkclean(pte_t pte)
337 {
338 return __pte(pte_val(pte) & ~_PAGE_DIRTY);
339 }
340
341 static inline pte_t pte_mkold(pte_t pte)
342 {
343 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
344 }
345
346 static inline pte_t pte_mkwrite(pte_t pte)
347 {
348 return __pte(pte_val(pte) | _PAGE_RW);
349 }
350
351 static inline pte_t pte_mkdirty(pte_t pte)
352 {
353 return __pte(pte_val(pte) | _PAGE_DIRTY);
354 }
355
356 static inline pte_t pte_mkyoung(pte_t pte)
357 {
358 return __pte(pte_val(pte) | _PAGE_ACCESSED);
359 }
360
361 static inline pte_t pte_mkspecial(pte_t pte)
362 {
363 return __pte(pte_val(pte) | _PAGE_SPECIAL);
364 }
365
366 static inline pte_t pte_mkhuge(pte_t pte)
367 {
368 return pte;
369 }
370
371 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
372 {
373 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
374 }
375
376
377
378 /* This low level function performs the actual PTE insertion
379 * Setting the PTE depends on the MMU type and other factors. It's
380 * an horrible mess that I'm not going to try to clean up now but
381 * I'm keeping it in one place rather than spread around
382 */
383 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
384 pte_t *ptep, pte_t pte, int percpu)
385 {
386 #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
387 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
388 * helper pte_update() which does an atomic update. We need to do that
389 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
390 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
391 * the hash bits instead (ie, same as the non-SMP case)
392 */
393 if (percpu)
394 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
395 | (pte_val(pte) & ~_PAGE_HASHPTE));
396 else
397 pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
398
399 #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
400 /* Second case is 32-bit with 64-bit PTE. In this case, we
401 * can just store as long as we do the two halves in the right order
402 * with a barrier in between. This is possible because we take care,
403 * in the hash code, to pre-invalidate if the PTE was already hashed,
404 * which synchronizes us with any concurrent invalidation.
405 * In the percpu case, we also fallback to the simple update preserving
406 * the hash bits
407 */
408 if (percpu) {
409 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
410 | (pte_val(pte) & ~_PAGE_HASHPTE));
411 return;
412 }
413 if (pte_val(*ptep) & _PAGE_HASHPTE)
414 flush_hash_entry(mm, ptep, addr);
415 __asm__ __volatile__("\
416 stw%U0%X0 %2,%0\n\
417 eieio\n\
418 stw%U0%X0 %L2,%1"
419 : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
420 : "r" (pte) : "memory");
421
422 #elif defined(CONFIG_PPC_STD_MMU_32)
423 /* Third case is 32-bit hash table in UP mode, we need to preserve
424 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
425 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
426 * and see we need to keep track that this PTE needs invalidating
427 */
428 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
429 | (pte_val(pte) & ~_PAGE_HASHPTE));
430
431 #else
432 #error "Not supported "
433 #endif
434 }
435
436 /*
437 * Macro to mark a page protection value as "uncacheable".
438 */
439
440 #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
441 _PAGE_WRITETHRU)
442
443 #define pgprot_noncached pgprot_noncached
444 static inline pgprot_t pgprot_noncached(pgprot_t prot)
445 {
446 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
447 _PAGE_NO_CACHE | _PAGE_GUARDED);
448 }
449
450 #define pgprot_noncached_wc pgprot_noncached_wc
451 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
452 {
453 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
454 _PAGE_NO_CACHE);
455 }
456
457 #define pgprot_cached pgprot_cached
458 static inline pgprot_t pgprot_cached(pgprot_t prot)
459 {
460 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
461 _PAGE_COHERENT);
462 }
463
464 #define pgprot_cached_wthru pgprot_cached_wthru
465 static inline pgprot_t pgprot_cached_wthru(pgprot_t prot)
466 {
467 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
468 _PAGE_COHERENT | _PAGE_WRITETHRU);
469 }
470
471 #define pgprot_cached_noncoherent pgprot_cached_noncoherent
472 static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot)
473 {
474 return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL);
475 }
476
477 #define pgprot_writecombine pgprot_writecombine
478 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
479 {
480 return pgprot_noncached_wc(prot);
481 }
482
483 #endif /* !__ASSEMBLY__ */
484
485 #endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */