]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/include/asm/book3s/64/pgtable.h
ASoC: wm_adsp: add support for DSP region lock
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / include / asm / book3s / 64 / pgtable.h
1 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
2 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3
4 #ifndef __ASSEMBLY__
5 #include <linux/mmdebug.h>
6 #endif
7 /*
8 * Common bits between hash and Radix page table
9 */
10 #define _PAGE_BIT_SWAP_TYPE 0
11
12 #define _PAGE_RO 0
13
14 #define _PAGE_EXEC 0x00001 /* execute permission */
15 #define _PAGE_WRITE 0x00002 /* write access allowed */
16 #define _PAGE_READ 0x00004 /* read access allowed */
17 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
18 #define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
19 #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */
20 #define _PAGE_SAO 0x00010 /* Strong access order */
21 #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */
22 #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */
23 #define _PAGE_DIRTY 0x00080 /* C: page changed */
24 #define _PAGE_ACCESSED 0x00100 /* R: page referenced */
25 /*
26 * Software bits
27 */
28 #define _RPAGE_SW0 0x2000000000000000UL
29 #define _RPAGE_SW1 0x00800
30 #define _RPAGE_SW2 0x00400
31 #define _RPAGE_SW3 0x00200
32 #define _RPAGE_RSV1 0x1000000000000000UL
33 #define _RPAGE_RSV2 0x0800000000000000UL
34 #define _RPAGE_RSV3 0x0400000000000000UL
35 #define _RPAGE_RSV4 0x0200000000000000UL
36
37 #ifdef CONFIG_MEM_SOFT_DIRTY
38 #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */
39 #else
40 #define _PAGE_SOFT_DIRTY 0x00000
41 #endif
42 #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */
43
44 /*
45 * For P9 DD1 only, we need to track whether the pte's huge.
46 */
47 #define _PAGE_LARGE _RPAGE_RSV1
48
49
50 #define _PAGE_PTE (1ul << 62) /* distinguishes PTEs from pointers */
51 #define _PAGE_PRESENT (1ul << 63) /* pte contains a translation */
52 /*
53 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
54 * Instead of fixing all of them, add an alternate define which
55 * maps CI pte mapping.
56 */
57 #define _PAGE_NO_CACHE _PAGE_TOLERANT
58 /*
59 * We support 57 bit real address in pte. Clear everything above 57, and
60 * every thing below PAGE_SHIFT;
61 */
62 #define PTE_RPN_MASK (((1UL << 57) - 1) & (PAGE_MASK))
63 /*
64 * set of bits not changed in pmd_modify. Even though we have hash specific bits
65 * in here, on radix we expect them to be zero.
66 */
67 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
68 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
69 _PAGE_SOFT_DIRTY)
70 /*
71 * user access blocked by key
72 */
73 #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
74 #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ)
75 #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \
76 _PAGE_RW | _PAGE_EXEC)
77 /*
78 * No page size encoding in the linux PTE
79 */
80 #define _PAGE_PSIZE 0
81 /*
82 * _PAGE_CHG_MASK masks of bits that are to be preserved across
83 * pgprot changes
84 */
85 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
86 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \
87 _PAGE_SOFT_DIRTY)
88 /*
89 * Mask of bits returned by pte_pgprot()
90 */
91 #define PAGE_PROT_BITS (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
92 H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
93 _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_EXEC | \
94 _PAGE_SOFT_DIRTY)
95 /*
96 * We define 2 sets of base prot bits, one for basic pages (ie,
97 * cacheable kernel and user pages) and one for non cacheable
98 * pages. We always set _PAGE_COHERENT when SMP is enabled or
99 * the processor might need it for DMA coherency.
100 */
101 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
102 #define _PAGE_BASE (_PAGE_BASE_NC)
103
104 /* Permission masks used to generate the __P and __S table,
105 *
106 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
107 *
108 * Write permissions imply read permissions for now (we could make write-only
109 * pages on BookE but we don't bother for now). Execute permission control is
110 * possible on platforms that define _PAGE_EXEC
111 *
112 * Note due to the way vm flags are laid out, the bits are XWR
113 */
114 #define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
115 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW)
116 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
117 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ)
118 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
119 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ)
120 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
121
122 #define __P000 PAGE_NONE
123 #define __P001 PAGE_READONLY
124 #define __P010 PAGE_COPY
125 #define __P011 PAGE_COPY
126 #define __P100 PAGE_READONLY_X
127 #define __P101 PAGE_READONLY_X
128 #define __P110 PAGE_COPY_X
129 #define __P111 PAGE_COPY_X
130
131 #define __S000 PAGE_NONE
132 #define __S001 PAGE_READONLY
133 #define __S010 PAGE_SHARED
134 #define __S011 PAGE_SHARED
135 #define __S100 PAGE_READONLY_X
136 #define __S101 PAGE_READONLY_X
137 #define __S110 PAGE_SHARED_X
138 #define __S111 PAGE_SHARED_X
139
140 /* Permission masks used for kernel mappings */
141 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
142 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
143 _PAGE_TOLERANT)
144 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
145 _PAGE_NON_IDEMPOTENT)
146 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
147 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
148 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
149
150 /*
151 * Protection used for kernel text. We want the debuggers to be able to
152 * set breakpoints anywhere, so don't write protect the kernel text
153 * on platforms where such control is possible.
154 */
155 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
156 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
157 #define PAGE_KERNEL_TEXT PAGE_KERNEL_X
158 #else
159 #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
160 #endif
161
162 /* Make modules code happy. We don't set RO yet */
163 #define PAGE_KERNEL_EXEC PAGE_KERNEL_X
164 #define PAGE_AGP (PAGE_KERNEL_NC)
165
166 #ifndef __ASSEMBLY__
167 /*
168 * page table defines
169 */
170 extern unsigned long __pte_index_size;
171 extern unsigned long __pmd_index_size;
172 extern unsigned long __pud_index_size;
173 extern unsigned long __pgd_index_size;
174 extern unsigned long __pmd_cache_index;
175 #define PTE_INDEX_SIZE __pte_index_size
176 #define PMD_INDEX_SIZE __pmd_index_size
177 #define PUD_INDEX_SIZE __pud_index_size
178 #define PGD_INDEX_SIZE __pgd_index_size
179 #define PMD_CACHE_INDEX __pmd_cache_index
180 /*
181 * Because of use of pte fragments and THP, size of page table
182 * are not always derived out of index size above.
183 */
184 extern unsigned long __pte_table_size;
185 extern unsigned long __pmd_table_size;
186 extern unsigned long __pud_table_size;
187 extern unsigned long __pgd_table_size;
188 #define PTE_TABLE_SIZE __pte_table_size
189 #define PMD_TABLE_SIZE __pmd_table_size
190 #define PUD_TABLE_SIZE __pud_table_size
191 #define PGD_TABLE_SIZE __pgd_table_size
192
193 extern unsigned long __pmd_val_bits;
194 extern unsigned long __pud_val_bits;
195 extern unsigned long __pgd_val_bits;
196 #define PMD_VAL_BITS __pmd_val_bits
197 #define PUD_VAL_BITS __pud_val_bits
198 #define PGD_VAL_BITS __pgd_val_bits
199
200 extern unsigned long __pte_frag_nr;
201 #define PTE_FRAG_NR __pte_frag_nr
202 extern unsigned long __pte_frag_size_shift;
203 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
204 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
205 /*
206 * Pgtable size used by swapper, init in asm code
207 */
208 #define MAX_PGD_TABLE_SIZE (sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE)
209
210 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
211 #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
212 #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
213 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
214
215 /* PMD_SHIFT determines what a second-level page table entry can map */
216 #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
217 #define PMD_SIZE (1UL << PMD_SHIFT)
218 #define PMD_MASK (~(PMD_SIZE-1))
219
220 /* PUD_SHIFT determines what a third-level page table entry can map */
221 #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
222 #define PUD_SIZE (1UL << PUD_SHIFT)
223 #define PUD_MASK (~(PUD_SIZE-1))
224
225 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
226 #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
227 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
228 #define PGDIR_MASK (~(PGDIR_SIZE-1))
229
230 /* Bits to mask out from a PMD to get to the PTE page */
231 #define PMD_MASKED_BITS 0xc0000000000000ffUL
232 /* Bits to mask out from a PUD to get to the PMD page */
233 #define PUD_MASKED_BITS 0xc0000000000000ffUL
234 /* Bits to mask out from a PGD to get to the PUD page */
235 #define PGD_MASKED_BITS 0xc0000000000000ffUL
236
237 extern unsigned long __vmalloc_start;
238 extern unsigned long __vmalloc_end;
239 #define VMALLOC_START __vmalloc_start
240 #define VMALLOC_END __vmalloc_end
241
242 extern unsigned long __kernel_virt_start;
243 extern unsigned long __kernel_virt_size;
244 #define KERN_VIRT_START __kernel_virt_start
245 #define KERN_VIRT_SIZE __kernel_virt_size
246 extern struct page *vmemmap;
247 extern unsigned long ioremap_bot;
248 extern unsigned long pci_io_base;
249 #endif /* __ASSEMBLY__ */
250
251 #include <asm/book3s/64/hash.h>
252 #include <asm/book3s/64/radix.h>
253
254 #ifdef CONFIG_PPC_64K_PAGES
255 #include <asm/book3s/64/pgtable-64k.h>
256 #else
257 #include <asm/book3s/64/pgtable-4k.h>
258 #endif
259
260 #include <asm/barrier.h>
261 /*
262 * The second half of the kernel virtual space is used for IO mappings,
263 * it's itself carved into the PIO region (ISA and PHB IO space) and
264 * the ioremap space
265 *
266 * ISA_IO_BASE = KERN_IO_START, 64K reserved area
267 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
268 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
269 */
270 #define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
271 #define FULL_IO_SIZE 0x80000000ul
272 #define ISA_IO_BASE (KERN_IO_START)
273 #define ISA_IO_END (KERN_IO_START + 0x10000ul)
274 #define PHB_IO_BASE (ISA_IO_END)
275 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
276 #define IOREMAP_BASE (PHB_IO_END)
277 #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE)
278
279 /* Advertise special mapping type for AGP */
280 #define HAVE_PAGE_AGP
281
282 /* Advertise support for _PAGE_SPECIAL */
283 #define __HAVE_ARCH_PTE_SPECIAL
284
285 #ifndef __ASSEMBLY__
286
287 /*
288 * This is the default implementation of various PTE accessors, it's
289 * used in all cases except Book3S with 64K pages where we have a
290 * concept of sub-pages
291 */
292 #ifndef __real_pte
293
294 #define __real_pte(e,p) ((real_pte_t){(e)})
295 #define __rpte_to_pte(r) ((r).pte)
296 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
297
298 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
299 do { \
300 index = 0; \
301 shift = mmu_psize_defs[psize].shift; \
302
303 #define pte_iterate_hashed_end() } while(0)
304
305 /*
306 * We expect this to be called only for user addresses or kernel virtual
307 * addresses other than the linear mapping.
308 */
309 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
310
311 #endif /* __real_pte */
312
313 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
314 pte_t *ptep, unsigned long clr,
315 unsigned long set, int huge)
316 {
317 if (radix_enabled())
318 return radix__pte_update(mm, addr, ptep, clr, set, huge);
319 return hash__pte_update(mm, addr, ptep, clr, set, huge);
320 }
321 /*
322 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
323 * We currently remove entries from the hashtable regardless of whether
324 * the entry was young or dirty.
325 *
326 * We should be more intelligent about this but for the moment we override
327 * these functions and force a tlb flush unconditionally
328 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
329 * function for both hash and radix.
330 */
331 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
332 unsigned long addr, pte_t *ptep)
333 {
334 unsigned long old;
335
336 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
337 return 0;
338 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
339 return (old & _PAGE_ACCESSED) != 0;
340 }
341
342 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
343 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
344 ({ \
345 int __r; \
346 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
347 __r; \
348 })
349
350 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
351 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
352 pte_t *ptep)
353 {
354 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_WRITE)) == 0)
355 return;
356
357 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
358 }
359
360 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
361 unsigned long addr, pte_t *ptep)
362 {
363 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_WRITE)) == 0)
364 return;
365
366 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
367 }
368
369 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
370 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
371 unsigned long addr, pte_t *ptep)
372 {
373 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
374 return __pte(old);
375 }
376
377 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
378 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
379 unsigned long addr,
380 pte_t *ptep, int full)
381 {
382 if (full && radix_enabled()) {
383 /*
384 * Let's skip the DD1 style pte update here. We know that
385 * this is a full mm pte clear and hence can be sure there is
386 * no parallel set_pte.
387 */
388 return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
389 }
390 return ptep_get_and_clear(mm, addr, ptep);
391 }
392
393
394 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
395 pte_t * ptep)
396 {
397 pte_update(mm, addr, ptep, ~0UL, 0, 0);
398 }
399
400 static inline int pte_write(pte_t pte)
401 {
402 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
403 }
404
405 static inline int pte_dirty(pte_t pte)
406 {
407 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
408 }
409
410 static inline int pte_young(pte_t pte)
411 {
412 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
413 }
414
415 static inline int pte_special(pte_t pte)
416 {
417 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
418 }
419
420 static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
421
422 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
423 static inline bool pte_soft_dirty(pte_t pte)
424 {
425 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
426 }
427
428 static inline pte_t pte_mksoft_dirty(pte_t pte)
429 {
430 return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
431 }
432
433 static inline pte_t pte_clear_soft_dirty(pte_t pte)
434 {
435 return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
436 }
437 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
438
439 #ifdef CONFIG_NUMA_BALANCING
440 static inline int pte_protnone(pte_t pte)
441 {
442 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
443 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
444 }
445
446 #define pte_mk_savedwrite pte_mk_savedwrite
447 static inline pte_t pte_mk_savedwrite(pte_t pte)
448 {
449 /*
450 * Used by Autonuma subsystem to preserve the write bit
451 * while marking the pte PROT_NONE. Only allow this
452 * on PROT_NONE pte
453 */
454 VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
455 cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
456 return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED);
457 }
458
459 #define pte_clear_savedwrite pte_clear_savedwrite
460 static inline pte_t pte_clear_savedwrite(pte_t pte)
461 {
462 /*
463 * Used by KSM subsystem to make a protnone pte readonly.
464 */
465 VM_BUG_ON(!pte_protnone(pte));
466 return __pte(pte_val(pte) | _PAGE_PRIVILEGED);
467 }
468
469 #define pte_savedwrite pte_savedwrite
470 static inline bool pte_savedwrite(pte_t pte)
471 {
472 /*
473 * Saved write ptes are prot none ptes that doesn't have
474 * privileged bit sit. We mark prot none as one which has
475 * present and pviliged bit set and RWX cleared. To mark
476 * protnone which used to have _PAGE_WRITE set we clear
477 * the privileged bit.
478 */
479 VM_BUG_ON(!pte_protnone(pte));
480 return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
481 }
482 #endif /* CONFIG_NUMA_BALANCING */
483
484 static inline int pte_present(pte_t pte)
485 {
486 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
487 }
488 /*
489 * Conversion functions: convert a page and protection to a page entry,
490 * and a page entry and page directory to the page they refer to.
491 *
492 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
493 * long for now.
494 */
495 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
496 {
497 return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
498 pgprot_val(pgprot));
499 }
500
501 static inline unsigned long pte_pfn(pte_t pte)
502 {
503 return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
504 }
505
506 /* Generic modifiers for PTE bits */
507 static inline pte_t pte_wrprotect(pte_t pte)
508 {
509 return __pte(pte_val(pte) & ~_PAGE_WRITE);
510 }
511
512 static inline pte_t pte_mkclean(pte_t pte)
513 {
514 return __pte(pte_val(pte) & ~_PAGE_DIRTY);
515 }
516
517 static inline pte_t pte_mkold(pte_t pte)
518 {
519 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
520 }
521
522 static inline pte_t pte_mkwrite(pte_t pte)
523 {
524 /*
525 * write implies read, hence set both
526 */
527 return __pte(pte_val(pte) | _PAGE_RW);
528 }
529
530 static inline pte_t pte_mkdirty(pte_t pte)
531 {
532 return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
533 }
534
535 static inline pte_t pte_mkyoung(pte_t pte)
536 {
537 return __pte(pte_val(pte) | _PAGE_ACCESSED);
538 }
539
540 static inline pte_t pte_mkspecial(pte_t pte)
541 {
542 return __pte(pte_val(pte) | _PAGE_SPECIAL);
543 }
544
545 static inline pte_t pte_mkhuge(pte_t pte)
546 {
547 return pte;
548 }
549
550 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
551 {
552 /* FIXME!! check whether this need to be a conditional */
553 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
554 }
555
556 static inline bool pte_user(pte_t pte)
557 {
558 return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
559 }
560
561 /* Encode and de-code a swap entry */
562 #define MAX_SWAPFILES_CHECK() do { \
563 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
564 /* \
565 * Don't have overlapping bits with _PAGE_HPTEFLAGS \
566 * We filter HPTEFLAGS on set_pte. \
567 */ \
568 BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
569 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \
570 } while (0)
571 /*
572 * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
573 */
574 #define SWP_TYPE_BITS 5
575 #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
576 & ((1UL << SWP_TYPE_BITS) - 1))
577 #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
578 #define __swp_entry(type, offset) ((swp_entry_t) { \
579 ((type) << _PAGE_BIT_SWAP_TYPE) \
580 | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
581 /*
582 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
583 * swap type and offset we get from swap and convert that to pte to find a
584 * matching pte in linux page table.
585 * Clear bits not found in swap entries here.
586 */
587 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
588 #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE)
589
590 #ifdef CONFIG_MEM_SOFT_DIRTY
591 #define _PAGE_SWP_SOFT_DIRTY (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
592 #else
593 #define _PAGE_SWP_SOFT_DIRTY 0UL
594 #endif /* CONFIG_MEM_SOFT_DIRTY */
595
596 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
597 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
598 {
599 return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
600 }
601
602 static inline bool pte_swp_soft_dirty(pte_t pte)
603 {
604 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
605 }
606
607 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
608 {
609 return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
610 }
611 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
612
613 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
614 {
615 /*
616 * This check for _PAGE_RWX and _PAGE_PRESENT bits
617 */
618 if (access & ~ptev)
619 return false;
620 /*
621 * This check for access to privilege space
622 */
623 if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
624 return false;
625
626 return true;
627 }
628 /*
629 * Generic functions with hash/radix callbacks
630 */
631
632 static inline void __ptep_set_access_flags(struct mm_struct *mm,
633 pte_t *ptep, pte_t entry,
634 unsigned long address)
635 {
636 if (radix_enabled())
637 return radix__ptep_set_access_flags(mm, ptep, entry, address);
638 return hash__ptep_set_access_flags(ptep, entry);
639 }
640
641 #define __HAVE_ARCH_PTE_SAME
642 static inline int pte_same(pte_t pte_a, pte_t pte_b)
643 {
644 if (radix_enabled())
645 return radix__pte_same(pte_a, pte_b);
646 return hash__pte_same(pte_a, pte_b);
647 }
648
649 static inline int pte_none(pte_t pte)
650 {
651 if (radix_enabled())
652 return radix__pte_none(pte);
653 return hash__pte_none(pte);
654 }
655
656 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
657 pte_t *ptep, pte_t pte, int percpu)
658 {
659 if (radix_enabled())
660 return radix__set_pte_at(mm, addr, ptep, pte, percpu);
661 return hash__set_pte_at(mm, addr, ptep, pte, percpu);
662 }
663
664 #define _PAGE_CACHE_CTL (_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
665
666 #define pgprot_noncached pgprot_noncached
667 static inline pgprot_t pgprot_noncached(pgprot_t prot)
668 {
669 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
670 _PAGE_NON_IDEMPOTENT);
671 }
672
673 #define pgprot_noncached_wc pgprot_noncached_wc
674 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
675 {
676 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
677 _PAGE_TOLERANT);
678 }
679
680 #define pgprot_cached pgprot_cached
681 static inline pgprot_t pgprot_cached(pgprot_t prot)
682 {
683 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
684 }
685
686 #define pgprot_writecombine pgprot_writecombine
687 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
688 {
689 return pgprot_noncached_wc(prot);
690 }
691 /*
692 * check a pte mapping have cache inhibited property
693 */
694 static inline bool pte_ci(pte_t pte)
695 {
696 unsigned long pte_v = pte_val(pte);
697
698 if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
699 ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
700 return true;
701 return false;
702 }
703
704 static inline void pmd_set(pmd_t *pmdp, unsigned long val)
705 {
706 *pmdp = __pmd(val);
707 }
708
709 static inline void pmd_clear(pmd_t *pmdp)
710 {
711 *pmdp = __pmd(0);
712 }
713
714 static inline int pmd_none(pmd_t pmd)
715 {
716 return !pmd_raw(pmd);
717 }
718
719 static inline int pmd_present(pmd_t pmd)
720 {
721
722 return !pmd_none(pmd);
723 }
724
725 static inline int pmd_bad(pmd_t pmd)
726 {
727 if (radix_enabled())
728 return radix__pmd_bad(pmd);
729 return hash__pmd_bad(pmd);
730 }
731
732 static inline void pud_set(pud_t *pudp, unsigned long val)
733 {
734 *pudp = __pud(val);
735 }
736
737 static inline void pud_clear(pud_t *pudp)
738 {
739 *pudp = __pud(0);
740 }
741
742 static inline int pud_none(pud_t pud)
743 {
744 return !pud_raw(pud);
745 }
746
747 static inline int pud_present(pud_t pud)
748 {
749 return !pud_none(pud);
750 }
751
752 extern struct page *pud_page(pud_t pud);
753 extern struct page *pmd_page(pmd_t pmd);
754 static inline pte_t pud_pte(pud_t pud)
755 {
756 return __pte_raw(pud_raw(pud));
757 }
758
759 static inline pud_t pte_pud(pte_t pte)
760 {
761 return __pud_raw(pte_raw(pte));
762 }
763 #define pud_write(pud) pte_write(pud_pte(pud))
764
765 static inline int pud_bad(pud_t pud)
766 {
767 if (radix_enabled())
768 return radix__pud_bad(pud);
769 return hash__pud_bad(pud);
770 }
771
772
773 #define pgd_write(pgd) pte_write(pgd_pte(pgd))
774 static inline void pgd_set(pgd_t *pgdp, unsigned long val)
775 {
776 *pgdp = __pgd(val);
777 }
778
779 static inline void pgd_clear(pgd_t *pgdp)
780 {
781 *pgdp = __pgd(0);
782 }
783
784 static inline int pgd_none(pgd_t pgd)
785 {
786 return !pgd_raw(pgd);
787 }
788
789 static inline int pgd_present(pgd_t pgd)
790 {
791 return !pgd_none(pgd);
792 }
793
794 static inline pte_t pgd_pte(pgd_t pgd)
795 {
796 return __pte_raw(pgd_raw(pgd));
797 }
798
799 static inline pgd_t pte_pgd(pte_t pte)
800 {
801 return __pgd_raw(pte_raw(pte));
802 }
803
804 static inline int pgd_bad(pgd_t pgd)
805 {
806 if (radix_enabled())
807 return radix__pgd_bad(pgd);
808 return hash__pgd_bad(pgd);
809 }
810
811 extern struct page *pgd_page(pgd_t pgd);
812
813 /* Pointers in the page table tree are physical addresses */
814 #define __pgtable_ptr_val(ptr) __pa(ptr)
815
816 #define pmd_page_vaddr(pmd) __va(pmd_val(pmd) & ~PMD_MASKED_BITS)
817 #define pud_page_vaddr(pud) __va(pud_val(pud) & ~PUD_MASKED_BITS)
818 #define pgd_page_vaddr(pgd) __va(pgd_val(pgd) & ~PGD_MASKED_BITS)
819
820 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
821 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
822 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
823 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
824
825 /*
826 * Find an entry in a page-table-directory. We combine the address region
827 * (the high order N bits) and the pgd portion of the address.
828 */
829
830 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
831
832 #define pud_offset(pgdp, addr) \
833 (((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
834 #define pmd_offset(pudp,addr) \
835 (((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
836 #define pte_offset_kernel(dir,addr) \
837 (((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
838
839 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
840 #define pte_unmap(pte) do { } while(0)
841
842 /* to find an entry in a kernel page-table-directory */
843 /* This now only contains the vmalloc pages */
844 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
845
846 #define pte_ERROR(e) \
847 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
848 #define pmd_ERROR(e) \
849 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
850 #define pud_ERROR(e) \
851 pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
852 #define pgd_ERROR(e) \
853 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
854
855 static inline int map_kernel_page(unsigned long ea, unsigned long pa,
856 unsigned long flags)
857 {
858 if (radix_enabled()) {
859 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
860 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
861 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
862 #endif
863 return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
864 }
865 return hash__map_kernel_page(ea, pa, flags);
866 }
867
868 static inline int __meminit vmemmap_create_mapping(unsigned long start,
869 unsigned long page_size,
870 unsigned long phys)
871 {
872 if (radix_enabled())
873 return radix__vmemmap_create_mapping(start, page_size, phys);
874 return hash__vmemmap_create_mapping(start, page_size, phys);
875 }
876
877 #ifdef CONFIG_MEMORY_HOTPLUG
878 static inline void vmemmap_remove_mapping(unsigned long start,
879 unsigned long page_size)
880 {
881 if (radix_enabled())
882 return radix__vmemmap_remove_mapping(start, page_size);
883 return hash__vmemmap_remove_mapping(start, page_size);
884 }
885 #endif
886 struct page *realmode_pfn_to_page(unsigned long pfn);
887
888 static inline pte_t pmd_pte(pmd_t pmd)
889 {
890 return __pte_raw(pmd_raw(pmd));
891 }
892
893 static inline pmd_t pte_pmd(pte_t pte)
894 {
895 return __pmd_raw(pte_raw(pte));
896 }
897
898 static inline pte_t *pmdp_ptep(pmd_t *pmd)
899 {
900 return (pte_t *)pmd;
901 }
902 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
903 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
904 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
905 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
906 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
907 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
908 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
909 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
910 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
911 #define pmd_mk_savedwrite(pmd) pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
912 #define pmd_clear_savedwrite(pmd) pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
913
914 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
915 #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd))
916 #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
917 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
918 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
919
920 #ifdef CONFIG_NUMA_BALANCING
921 static inline int pmd_protnone(pmd_t pmd)
922 {
923 return pte_protnone(pmd_pte(pmd));
924 }
925 #endif /* CONFIG_NUMA_BALANCING */
926
927 #define __HAVE_ARCH_PMD_WRITE
928 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
929 #define pmd_savedwrite(pmd) pte_savedwrite(pmd_pte(pmd))
930
931 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
932 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
933 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
934 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
935 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
936 pmd_t *pmdp, pmd_t pmd);
937 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
938 pmd_t *pmd);
939 extern int hash__has_transparent_hugepage(void);
940 static inline int has_transparent_hugepage(void)
941 {
942 if (radix_enabled())
943 return radix__has_transparent_hugepage();
944 return hash__has_transparent_hugepage();
945 }
946 #define has_transparent_hugepage has_transparent_hugepage
947
948 static inline unsigned long
949 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
950 unsigned long clr, unsigned long set)
951 {
952 if (radix_enabled())
953 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
954 return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
955 }
956
957 static inline int pmd_large(pmd_t pmd)
958 {
959 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
960 }
961
962 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
963 {
964 return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
965 }
966 /*
967 * For radix we should always find H_PAGE_HASHPTE zero. Hence
968 * the below will work for radix too
969 */
970 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
971 unsigned long addr, pmd_t *pmdp)
972 {
973 unsigned long old;
974
975 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
976 return 0;
977 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
978 return ((old & _PAGE_ACCESSED) != 0);
979 }
980
981 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
982 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
983 pmd_t *pmdp)
984 {
985
986 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_WRITE)) == 0)
987 return;
988
989 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
990 }
991
992 static inline int pmd_trans_huge(pmd_t pmd)
993 {
994 if (radix_enabled())
995 return radix__pmd_trans_huge(pmd);
996 return hash__pmd_trans_huge(pmd);
997 }
998
999 #define __HAVE_ARCH_PMD_SAME
1000 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1001 {
1002 if (radix_enabled())
1003 return radix__pmd_same(pmd_a, pmd_b);
1004 return hash__pmd_same(pmd_a, pmd_b);
1005 }
1006
1007 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1008 {
1009 if (radix_enabled())
1010 return radix__pmd_mkhuge(pmd);
1011 return hash__pmd_mkhuge(pmd);
1012 }
1013
1014 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1015 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1016 unsigned long address, pmd_t *pmdp,
1017 pmd_t entry, int dirty);
1018
1019 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1020 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1021 unsigned long address, pmd_t *pmdp);
1022
1023 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1024 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1025 unsigned long addr, pmd_t *pmdp)
1026 {
1027 if (radix_enabled())
1028 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1029 return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1030 }
1031
1032 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1033 unsigned long address, pmd_t *pmdp)
1034 {
1035 if (radix_enabled())
1036 return radix__pmdp_collapse_flush(vma, address, pmdp);
1037 return hash__pmdp_collapse_flush(vma, address, pmdp);
1038 }
1039 #define pmdp_collapse_flush pmdp_collapse_flush
1040
1041 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1042 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1043 pmd_t *pmdp, pgtable_t pgtable)
1044 {
1045 if (radix_enabled())
1046 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1047 return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1048 }
1049
1050 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1051 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1052 pmd_t *pmdp)
1053 {
1054 if (radix_enabled())
1055 return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1056 return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1057 }
1058
1059 #define __HAVE_ARCH_PMDP_INVALIDATE
1060 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1061 pmd_t *pmdp);
1062
1063 #define __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
1064 static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
1065 unsigned long address, pmd_t *pmdp)
1066 {
1067 if (radix_enabled())
1068 return radix__pmdp_huge_split_prepare(vma, address, pmdp);
1069 return hash__pmdp_huge_split_prepare(vma, address, pmdp);
1070 }
1071
1072 #define pmd_move_must_withdraw pmd_move_must_withdraw
1073 struct spinlock;
1074 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1075 struct spinlock *old_pmd_ptl,
1076 struct vm_area_struct *vma)
1077 {
1078 if (radix_enabled())
1079 return false;
1080 /*
1081 * Archs like ppc64 use pgtable to store per pmd
1082 * specific information. So when we switch the pmd,
1083 * we should also withdraw and deposit the pgtable
1084 */
1085 return true;
1086 }
1087
1088
1089 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1090 static inline bool arch_needs_pgtable_deposit(void)
1091 {
1092 if (radix_enabled())
1093 return false;
1094 return true;
1095 }
1096
1097 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1098 #endif /* __ASSEMBLY__ */
1099 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */