]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/include/asm/book3s/64/pgtable.h
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / include / asm / book3s / 64 / pgtable.h
1 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
2 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3
4 #include <asm-generic/5level-fixup.h>
5
6 #ifndef __ASSEMBLY__
7 #include <linux/mmdebug.h>
8 #endif
9
10 /*
11 * Common bits between hash and Radix page table
12 */
13 #define _PAGE_BIT_SWAP_TYPE 0
14
15 #define _PAGE_RO 0
16
17 #define _PAGE_EXEC 0x00001 /* execute permission */
18 #define _PAGE_WRITE 0x00002 /* write access allowed */
19 #define _PAGE_READ 0x00004 /* read access allowed */
20 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
21 #define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
22 #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */
23 #define _PAGE_SAO 0x00010 /* Strong access order */
24 #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */
25 #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */
26 #define _PAGE_DIRTY 0x00080 /* C: page changed */
27 #define _PAGE_ACCESSED 0x00100 /* R: page referenced */
28 /*
29 * Software bits
30 */
31 #define _RPAGE_SW0 0x2000000000000000UL
32 #define _RPAGE_SW1 0x00800
33 #define _RPAGE_SW2 0x00400
34 #define _RPAGE_SW3 0x00200
35 #define _RPAGE_RSV1 0x1000000000000000UL
36 #define _RPAGE_RSV2 0x0800000000000000UL
37 #define _RPAGE_RSV3 0x0400000000000000UL
38 #define _RPAGE_RSV4 0x0200000000000000UL
39
40 #ifdef CONFIG_MEM_SOFT_DIRTY
41 #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */
42 #else
43 #define _PAGE_SOFT_DIRTY 0x00000
44 #endif
45 #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */
46
47 /*
48 * For P9 DD1 only, we need to track whether the pte's huge.
49 */
50 #define _PAGE_LARGE _RPAGE_RSV1
51
52
53 #define _PAGE_PTE (1ul << 62) /* distinguishes PTEs from pointers */
54 #define _PAGE_PRESENT (1ul << 63) /* pte contains a translation */
55 /*
56 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
57 * Instead of fixing all of them, add an alternate define which
58 * maps CI pte mapping.
59 */
60 #define _PAGE_NO_CACHE _PAGE_TOLERANT
61 /*
62 * We support 57 bit real address in pte. Clear everything above 57, and
63 * every thing below PAGE_SHIFT;
64 */
65 #define PTE_RPN_MASK (((1UL << 57) - 1) & (PAGE_MASK))
66 /*
67 * set of bits not changed in pmd_modify. Even though we have hash specific bits
68 * in here, on radix we expect them to be zero.
69 */
70 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
71 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
72 _PAGE_SOFT_DIRTY)
73 /*
74 * user access blocked by key
75 */
76 #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
77 #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ)
78 #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \
79 _PAGE_RW | _PAGE_EXEC)
80 /*
81 * No page size encoding in the linux PTE
82 */
83 #define _PAGE_PSIZE 0
84 /*
85 * _PAGE_CHG_MASK masks of bits that are to be preserved across
86 * pgprot changes
87 */
88 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
89 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \
90 _PAGE_SOFT_DIRTY)
91 /*
92 * Mask of bits returned by pte_pgprot()
93 */
94 #define PAGE_PROT_BITS (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
95 H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
96 _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_EXEC | \
97 _PAGE_SOFT_DIRTY)
98 /*
99 * We define 2 sets of base prot bits, one for basic pages (ie,
100 * cacheable kernel and user pages) and one for non cacheable
101 * pages. We always set _PAGE_COHERENT when SMP is enabled or
102 * the processor might need it for DMA coherency.
103 */
104 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
105 #define _PAGE_BASE (_PAGE_BASE_NC)
106
107 /* Permission masks used to generate the __P and __S table,
108 *
109 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
110 *
111 * Write permissions imply read permissions for now (we could make write-only
112 * pages on BookE but we don't bother for now). Execute permission control is
113 * possible on platforms that define _PAGE_EXEC
114 *
115 * Note due to the way vm flags are laid out, the bits are XWR
116 */
117 #define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
118 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW)
119 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
120 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ)
121 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
122 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ)
123 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
124
125 #define __P000 PAGE_NONE
126 #define __P001 PAGE_READONLY
127 #define __P010 PAGE_COPY
128 #define __P011 PAGE_COPY
129 #define __P100 PAGE_READONLY_X
130 #define __P101 PAGE_READONLY_X
131 #define __P110 PAGE_COPY_X
132 #define __P111 PAGE_COPY_X
133
134 #define __S000 PAGE_NONE
135 #define __S001 PAGE_READONLY
136 #define __S010 PAGE_SHARED
137 #define __S011 PAGE_SHARED
138 #define __S100 PAGE_READONLY_X
139 #define __S101 PAGE_READONLY_X
140 #define __S110 PAGE_SHARED_X
141 #define __S111 PAGE_SHARED_X
142
143 /* Permission masks used for kernel mappings */
144 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
145 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
146 _PAGE_TOLERANT)
147 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
148 _PAGE_NON_IDEMPOTENT)
149 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
150 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
151 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
152
153 /*
154 * Protection used for kernel text. We want the debuggers to be able to
155 * set breakpoints anywhere, so don't write protect the kernel text
156 * on platforms where such control is possible.
157 */
158 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
159 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
160 #define PAGE_KERNEL_TEXT PAGE_KERNEL_X
161 #else
162 #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
163 #endif
164
165 /* Make modules code happy. We don't set RO yet */
166 #define PAGE_KERNEL_EXEC PAGE_KERNEL_X
167 #define PAGE_AGP (PAGE_KERNEL_NC)
168
169 #ifndef __ASSEMBLY__
170 /*
171 * page table defines
172 */
173 extern unsigned long __pte_index_size;
174 extern unsigned long __pmd_index_size;
175 extern unsigned long __pud_index_size;
176 extern unsigned long __pgd_index_size;
177 extern unsigned long __pmd_cache_index;
178 #define PTE_INDEX_SIZE __pte_index_size
179 #define PMD_INDEX_SIZE __pmd_index_size
180 #define PUD_INDEX_SIZE __pud_index_size
181 #define PGD_INDEX_SIZE __pgd_index_size
182 #define PMD_CACHE_INDEX __pmd_cache_index
183 /*
184 * Because of use of pte fragments and THP, size of page table
185 * are not always derived out of index size above.
186 */
187 extern unsigned long __pte_table_size;
188 extern unsigned long __pmd_table_size;
189 extern unsigned long __pud_table_size;
190 extern unsigned long __pgd_table_size;
191 #define PTE_TABLE_SIZE __pte_table_size
192 #define PMD_TABLE_SIZE __pmd_table_size
193 #define PUD_TABLE_SIZE __pud_table_size
194 #define PGD_TABLE_SIZE __pgd_table_size
195
196 extern unsigned long __pmd_val_bits;
197 extern unsigned long __pud_val_bits;
198 extern unsigned long __pgd_val_bits;
199 #define PMD_VAL_BITS __pmd_val_bits
200 #define PUD_VAL_BITS __pud_val_bits
201 #define PGD_VAL_BITS __pgd_val_bits
202
203 extern unsigned long __pte_frag_nr;
204 #define PTE_FRAG_NR __pte_frag_nr
205 extern unsigned long __pte_frag_size_shift;
206 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
207 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
208 /*
209 * Pgtable size used by swapper, init in asm code
210 */
211 #define MAX_PGD_TABLE_SIZE (sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE)
212
213 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
214 #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
215 #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
216 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
217
218 /* PMD_SHIFT determines what a second-level page table entry can map */
219 #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
220 #define PMD_SIZE (1UL << PMD_SHIFT)
221 #define PMD_MASK (~(PMD_SIZE-1))
222
223 /* PUD_SHIFT determines what a third-level page table entry can map */
224 #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
225 #define PUD_SIZE (1UL << PUD_SHIFT)
226 #define PUD_MASK (~(PUD_SIZE-1))
227
228 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
229 #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
230 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
231 #define PGDIR_MASK (~(PGDIR_SIZE-1))
232
233 /* Bits to mask out from a PMD to get to the PTE page */
234 #define PMD_MASKED_BITS 0xc0000000000000ffUL
235 /* Bits to mask out from a PUD to get to the PMD page */
236 #define PUD_MASKED_BITS 0xc0000000000000ffUL
237 /* Bits to mask out from a PGD to get to the PUD page */
238 #define PGD_MASKED_BITS 0xc0000000000000ffUL
239
240 extern unsigned long __vmalloc_start;
241 extern unsigned long __vmalloc_end;
242 #define VMALLOC_START __vmalloc_start
243 #define VMALLOC_END __vmalloc_end
244
245 extern unsigned long __kernel_virt_start;
246 extern unsigned long __kernel_virt_size;
247 #define KERN_VIRT_START __kernel_virt_start
248 #define KERN_VIRT_SIZE __kernel_virt_size
249 extern struct page *vmemmap;
250 extern unsigned long ioremap_bot;
251 extern unsigned long pci_io_base;
252 #endif /* __ASSEMBLY__ */
253
254 #include <asm/book3s/64/hash.h>
255 #include <asm/book3s/64/radix.h>
256
257 #ifdef CONFIG_PPC_64K_PAGES
258 #include <asm/book3s/64/pgtable-64k.h>
259 #else
260 #include <asm/book3s/64/pgtable-4k.h>
261 #endif
262
263 #include <asm/barrier.h>
264 /*
265 * The second half of the kernel virtual space is used for IO mappings,
266 * it's itself carved into the PIO region (ISA and PHB IO space) and
267 * the ioremap space
268 *
269 * ISA_IO_BASE = KERN_IO_START, 64K reserved area
270 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
271 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
272 */
273 #define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
274 #define FULL_IO_SIZE 0x80000000ul
275 #define ISA_IO_BASE (KERN_IO_START)
276 #define ISA_IO_END (KERN_IO_START + 0x10000ul)
277 #define PHB_IO_BASE (ISA_IO_END)
278 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
279 #define IOREMAP_BASE (PHB_IO_END)
280 #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE)
281
282 /* Advertise special mapping type for AGP */
283 #define HAVE_PAGE_AGP
284
285 /* Advertise support for _PAGE_SPECIAL */
286 #define __HAVE_ARCH_PTE_SPECIAL
287
288 #ifndef __ASSEMBLY__
289
290 /*
291 * This is the default implementation of various PTE accessors, it's
292 * used in all cases except Book3S with 64K pages where we have a
293 * concept of sub-pages
294 */
295 #ifndef __real_pte
296
297 #define __real_pte(e,p) ((real_pte_t){(e)})
298 #define __rpte_to_pte(r) ((r).pte)
299 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
300
301 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
302 do { \
303 index = 0; \
304 shift = mmu_psize_defs[psize].shift; \
305
306 #define pte_iterate_hashed_end() } while(0)
307
308 /*
309 * We expect this to be called only for user addresses or kernel virtual
310 * addresses other than the linear mapping.
311 */
312 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
313
314 #endif /* __real_pte */
315
316 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
317 pte_t *ptep, unsigned long clr,
318 unsigned long set, int huge)
319 {
320 if (radix_enabled())
321 return radix__pte_update(mm, addr, ptep, clr, set, huge);
322 return hash__pte_update(mm, addr, ptep, clr, set, huge);
323 }
324 /*
325 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
326 * We currently remove entries from the hashtable regardless of whether
327 * the entry was young or dirty.
328 *
329 * We should be more intelligent about this but for the moment we override
330 * these functions and force a tlb flush unconditionally
331 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
332 * function for both hash and radix.
333 */
334 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
335 unsigned long addr, pte_t *ptep)
336 {
337 unsigned long old;
338
339 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
340 return 0;
341 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
342 return (old & _PAGE_ACCESSED) != 0;
343 }
344
345 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
346 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
347 ({ \
348 int __r; \
349 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
350 __r; \
351 })
352
353 static inline int __pte_write(pte_t pte)
354 {
355 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
356 }
357
358 #ifdef CONFIG_NUMA_BALANCING
359 #define pte_savedwrite pte_savedwrite
360 static inline bool pte_savedwrite(pte_t pte)
361 {
362 /*
363 * Saved write ptes are prot none ptes that doesn't have
364 * privileged bit sit. We mark prot none as one which has
365 * present and pviliged bit set and RWX cleared. To mark
366 * protnone which used to have _PAGE_WRITE set we clear
367 * the privileged bit.
368 */
369 return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
370 }
371 #else
372 #define pte_savedwrite pte_savedwrite
373 static inline bool pte_savedwrite(pte_t pte)
374 {
375 return false;
376 }
377 #endif
378
379 static inline int pte_write(pte_t pte)
380 {
381 return __pte_write(pte) || pte_savedwrite(pte);
382 }
383
384 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
385 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
386 pte_t *ptep)
387 {
388 if (__pte_write(*ptep))
389 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
390 else if (unlikely(pte_savedwrite(*ptep)))
391 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
392 }
393
394 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
395 unsigned long addr, pte_t *ptep)
396 {
397 /*
398 * We should not find protnone for hugetlb, but this complete the
399 * interface.
400 */
401 if (__pte_write(*ptep))
402 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
403 else if (unlikely(pte_savedwrite(*ptep)))
404 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
405 }
406
407 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
408 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
409 unsigned long addr, pte_t *ptep)
410 {
411 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
412 return __pte(old);
413 }
414
415 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
416 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
417 unsigned long addr,
418 pte_t *ptep, int full)
419 {
420 if (full && radix_enabled()) {
421 /*
422 * Let's skip the DD1 style pte update here. We know that
423 * this is a full mm pte clear and hence can be sure there is
424 * no parallel set_pte.
425 */
426 return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
427 }
428 return ptep_get_and_clear(mm, addr, ptep);
429 }
430
431
432 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
433 pte_t * ptep)
434 {
435 pte_update(mm, addr, ptep, ~0UL, 0, 0);
436 }
437
438 static inline int pte_dirty(pte_t pte)
439 {
440 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
441 }
442
443 static inline int pte_young(pte_t pte)
444 {
445 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
446 }
447
448 static inline int pte_special(pte_t pte)
449 {
450 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
451 }
452
453 static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
454
455 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
456 static inline bool pte_soft_dirty(pte_t pte)
457 {
458 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
459 }
460
461 static inline pte_t pte_mksoft_dirty(pte_t pte)
462 {
463 return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
464 }
465
466 static inline pte_t pte_clear_soft_dirty(pte_t pte)
467 {
468 return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
469 }
470 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
471
472 #ifdef CONFIG_NUMA_BALANCING
473 static inline int pte_protnone(pte_t pte)
474 {
475 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
476 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
477 }
478
479 #define pte_mk_savedwrite pte_mk_savedwrite
480 static inline pte_t pte_mk_savedwrite(pte_t pte)
481 {
482 /*
483 * Used by Autonuma subsystem to preserve the write bit
484 * while marking the pte PROT_NONE. Only allow this
485 * on PROT_NONE pte
486 */
487 VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
488 cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
489 return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED);
490 }
491
492 #define pte_clear_savedwrite pte_clear_savedwrite
493 static inline pte_t pte_clear_savedwrite(pte_t pte)
494 {
495 /*
496 * Used by KSM subsystem to make a protnone pte readonly.
497 */
498 VM_BUG_ON(!pte_protnone(pte));
499 return __pte(pte_val(pte) | _PAGE_PRIVILEGED);
500 }
501 #else
502 #define pte_clear_savedwrite pte_clear_savedwrite
503 static inline pte_t pte_clear_savedwrite(pte_t pte)
504 {
505 VM_WARN_ON(1);
506 return __pte(pte_val(pte) & ~_PAGE_WRITE);
507 }
508 #endif /* CONFIG_NUMA_BALANCING */
509
510 static inline int pte_present(pte_t pte)
511 {
512 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
513 }
514 /*
515 * Conversion functions: convert a page and protection to a page entry,
516 * and a page entry and page directory to the page they refer to.
517 *
518 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
519 * long for now.
520 */
521 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
522 {
523 return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
524 pgprot_val(pgprot));
525 }
526
527 static inline unsigned long pte_pfn(pte_t pte)
528 {
529 return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
530 }
531
532 /* Generic modifiers for PTE bits */
533 static inline pte_t pte_wrprotect(pte_t pte)
534 {
535 if (unlikely(pte_savedwrite(pte)))
536 return pte_clear_savedwrite(pte);
537 return __pte(pte_val(pte) & ~_PAGE_WRITE);
538 }
539
540 static inline pte_t pte_mkclean(pte_t pte)
541 {
542 return __pte(pte_val(pte) & ~_PAGE_DIRTY);
543 }
544
545 static inline pte_t pte_mkold(pte_t pte)
546 {
547 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
548 }
549
550 static inline pte_t pte_mkwrite(pte_t pte)
551 {
552 /*
553 * write implies read, hence set both
554 */
555 return __pte(pte_val(pte) | _PAGE_RW);
556 }
557
558 static inline pte_t pte_mkdirty(pte_t pte)
559 {
560 return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
561 }
562
563 static inline pte_t pte_mkyoung(pte_t pte)
564 {
565 return __pte(pte_val(pte) | _PAGE_ACCESSED);
566 }
567
568 static inline pte_t pte_mkspecial(pte_t pte)
569 {
570 return __pte(pte_val(pte) | _PAGE_SPECIAL);
571 }
572
573 static inline pte_t pte_mkhuge(pte_t pte)
574 {
575 return pte;
576 }
577
578 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
579 {
580 /* FIXME!! check whether this need to be a conditional */
581 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
582 }
583
584 static inline bool pte_user(pte_t pte)
585 {
586 return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
587 }
588
589 /* Encode and de-code a swap entry */
590 #define MAX_SWAPFILES_CHECK() do { \
591 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
592 /* \
593 * Don't have overlapping bits with _PAGE_HPTEFLAGS \
594 * We filter HPTEFLAGS on set_pte. \
595 */ \
596 BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
597 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \
598 } while (0)
599 /*
600 * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
601 */
602 #define SWP_TYPE_BITS 5
603 #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
604 & ((1UL << SWP_TYPE_BITS) - 1))
605 #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
606 #define __swp_entry(type, offset) ((swp_entry_t) { \
607 ((type) << _PAGE_BIT_SWAP_TYPE) \
608 | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
609 /*
610 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
611 * swap type and offset we get from swap and convert that to pte to find a
612 * matching pte in linux page table.
613 * Clear bits not found in swap entries here.
614 */
615 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
616 #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE)
617
618 #ifdef CONFIG_MEM_SOFT_DIRTY
619 #define _PAGE_SWP_SOFT_DIRTY (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
620 #else
621 #define _PAGE_SWP_SOFT_DIRTY 0UL
622 #endif /* CONFIG_MEM_SOFT_DIRTY */
623
624 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
625 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
626 {
627 return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
628 }
629
630 static inline bool pte_swp_soft_dirty(pte_t pte)
631 {
632 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
633 }
634
635 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
636 {
637 return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
638 }
639 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
640
641 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
642 {
643 /*
644 * This check for _PAGE_RWX and _PAGE_PRESENT bits
645 */
646 if (access & ~ptev)
647 return false;
648 /*
649 * This check for access to privilege space
650 */
651 if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
652 return false;
653
654 return true;
655 }
656 /*
657 * Generic functions with hash/radix callbacks
658 */
659
660 static inline void __ptep_set_access_flags(struct mm_struct *mm,
661 pte_t *ptep, pte_t entry,
662 unsigned long address)
663 {
664 if (radix_enabled())
665 return radix__ptep_set_access_flags(mm, ptep, entry, address);
666 return hash__ptep_set_access_flags(ptep, entry);
667 }
668
669 #define __HAVE_ARCH_PTE_SAME
670 static inline int pte_same(pte_t pte_a, pte_t pte_b)
671 {
672 if (radix_enabled())
673 return radix__pte_same(pte_a, pte_b);
674 return hash__pte_same(pte_a, pte_b);
675 }
676
677 static inline int pte_none(pte_t pte)
678 {
679 if (radix_enabled())
680 return radix__pte_none(pte);
681 return hash__pte_none(pte);
682 }
683
684 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
685 pte_t *ptep, pte_t pte, int percpu)
686 {
687 if (radix_enabled())
688 return radix__set_pte_at(mm, addr, ptep, pte, percpu);
689 return hash__set_pte_at(mm, addr, ptep, pte, percpu);
690 }
691
692 #define _PAGE_CACHE_CTL (_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
693
694 #define pgprot_noncached pgprot_noncached
695 static inline pgprot_t pgprot_noncached(pgprot_t prot)
696 {
697 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
698 _PAGE_NON_IDEMPOTENT);
699 }
700
701 #define pgprot_noncached_wc pgprot_noncached_wc
702 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
703 {
704 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
705 _PAGE_TOLERANT);
706 }
707
708 #define pgprot_cached pgprot_cached
709 static inline pgprot_t pgprot_cached(pgprot_t prot)
710 {
711 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
712 }
713
714 #define pgprot_writecombine pgprot_writecombine
715 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
716 {
717 return pgprot_noncached_wc(prot);
718 }
719 /*
720 * check a pte mapping have cache inhibited property
721 */
722 static inline bool pte_ci(pte_t pte)
723 {
724 unsigned long pte_v = pte_val(pte);
725
726 if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
727 ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
728 return true;
729 return false;
730 }
731
732 static inline void pmd_set(pmd_t *pmdp, unsigned long val)
733 {
734 *pmdp = __pmd(val);
735 }
736
737 static inline void pmd_clear(pmd_t *pmdp)
738 {
739 *pmdp = __pmd(0);
740 }
741
742 static inline int pmd_none(pmd_t pmd)
743 {
744 return !pmd_raw(pmd);
745 }
746
747 static inline int pmd_present(pmd_t pmd)
748 {
749
750 return !pmd_none(pmd);
751 }
752
753 static inline int pmd_bad(pmd_t pmd)
754 {
755 if (radix_enabled())
756 return radix__pmd_bad(pmd);
757 return hash__pmd_bad(pmd);
758 }
759
760 static inline void pud_set(pud_t *pudp, unsigned long val)
761 {
762 *pudp = __pud(val);
763 }
764
765 static inline void pud_clear(pud_t *pudp)
766 {
767 *pudp = __pud(0);
768 }
769
770 static inline int pud_none(pud_t pud)
771 {
772 return !pud_raw(pud);
773 }
774
775 static inline int pud_present(pud_t pud)
776 {
777 return !pud_none(pud);
778 }
779
780 extern struct page *pud_page(pud_t pud);
781 extern struct page *pmd_page(pmd_t pmd);
782 static inline pte_t pud_pte(pud_t pud)
783 {
784 return __pte_raw(pud_raw(pud));
785 }
786
787 static inline pud_t pte_pud(pte_t pte)
788 {
789 return __pud_raw(pte_raw(pte));
790 }
791 #define pud_write(pud) pte_write(pud_pte(pud))
792
793 static inline int pud_bad(pud_t pud)
794 {
795 if (radix_enabled())
796 return radix__pud_bad(pud);
797 return hash__pud_bad(pud);
798 }
799
800
801 #define pgd_write(pgd) pte_write(pgd_pte(pgd))
802 static inline void pgd_set(pgd_t *pgdp, unsigned long val)
803 {
804 *pgdp = __pgd(val);
805 }
806
807 static inline void pgd_clear(pgd_t *pgdp)
808 {
809 *pgdp = __pgd(0);
810 }
811
812 static inline int pgd_none(pgd_t pgd)
813 {
814 return !pgd_raw(pgd);
815 }
816
817 static inline int pgd_present(pgd_t pgd)
818 {
819 return !pgd_none(pgd);
820 }
821
822 static inline pte_t pgd_pte(pgd_t pgd)
823 {
824 return __pte_raw(pgd_raw(pgd));
825 }
826
827 static inline pgd_t pte_pgd(pte_t pte)
828 {
829 return __pgd_raw(pte_raw(pte));
830 }
831
832 static inline int pgd_bad(pgd_t pgd)
833 {
834 if (radix_enabled())
835 return radix__pgd_bad(pgd);
836 return hash__pgd_bad(pgd);
837 }
838
839 extern struct page *pgd_page(pgd_t pgd);
840
841 /* Pointers in the page table tree are physical addresses */
842 #define __pgtable_ptr_val(ptr) __pa(ptr)
843
844 #define pmd_page_vaddr(pmd) __va(pmd_val(pmd) & ~PMD_MASKED_BITS)
845 #define pud_page_vaddr(pud) __va(pud_val(pud) & ~PUD_MASKED_BITS)
846 #define pgd_page_vaddr(pgd) __va(pgd_val(pgd) & ~PGD_MASKED_BITS)
847
848 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
849 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
850 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
851 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
852
853 /*
854 * Find an entry in a page-table-directory. We combine the address region
855 * (the high order N bits) and the pgd portion of the address.
856 */
857
858 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
859
860 #define pud_offset(pgdp, addr) \
861 (((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
862 #define pmd_offset(pudp,addr) \
863 (((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
864 #define pte_offset_kernel(dir,addr) \
865 (((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
866
867 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
868 #define pte_unmap(pte) do { } while(0)
869
870 /* to find an entry in a kernel page-table-directory */
871 /* This now only contains the vmalloc pages */
872 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
873
874 #define pte_ERROR(e) \
875 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
876 #define pmd_ERROR(e) \
877 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
878 #define pud_ERROR(e) \
879 pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
880 #define pgd_ERROR(e) \
881 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
882
883 static inline int map_kernel_page(unsigned long ea, unsigned long pa,
884 unsigned long flags)
885 {
886 if (radix_enabled()) {
887 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
888 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
889 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
890 #endif
891 return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
892 }
893 return hash__map_kernel_page(ea, pa, flags);
894 }
895
896 static inline int __meminit vmemmap_create_mapping(unsigned long start,
897 unsigned long page_size,
898 unsigned long phys)
899 {
900 if (radix_enabled())
901 return radix__vmemmap_create_mapping(start, page_size, phys);
902 return hash__vmemmap_create_mapping(start, page_size, phys);
903 }
904
905 #ifdef CONFIG_MEMORY_HOTPLUG
906 static inline void vmemmap_remove_mapping(unsigned long start,
907 unsigned long page_size)
908 {
909 if (radix_enabled())
910 return radix__vmemmap_remove_mapping(start, page_size);
911 return hash__vmemmap_remove_mapping(start, page_size);
912 }
913 #endif
914 struct page *realmode_pfn_to_page(unsigned long pfn);
915
916 static inline pte_t pmd_pte(pmd_t pmd)
917 {
918 return __pte_raw(pmd_raw(pmd));
919 }
920
921 static inline pmd_t pte_pmd(pte_t pte)
922 {
923 return __pmd_raw(pte_raw(pte));
924 }
925
926 static inline pte_t *pmdp_ptep(pmd_t *pmd)
927 {
928 return (pte_t *)pmd;
929 }
930 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
931 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
932 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
933 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
934 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
935 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
936 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
937 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
938 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
939 #define pmd_mk_savedwrite(pmd) pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
940 #define pmd_clear_savedwrite(pmd) pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
941
942 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
943 #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd))
944 #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
945 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
946 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
947
948 #ifdef CONFIG_NUMA_BALANCING
949 static inline int pmd_protnone(pmd_t pmd)
950 {
951 return pte_protnone(pmd_pte(pmd));
952 }
953 #endif /* CONFIG_NUMA_BALANCING */
954
955 #define __HAVE_ARCH_PMD_WRITE
956 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
957 #define __pmd_write(pmd) __pte_write(pmd_pte(pmd))
958 #define pmd_savedwrite(pmd) pte_savedwrite(pmd_pte(pmd))
959
960 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
961 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
962 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
963 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
964 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
965 pmd_t *pmdp, pmd_t pmd);
966 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
967 pmd_t *pmd);
968 extern int hash__has_transparent_hugepage(void);
969 static inline int has_transparent_hugepage(void)
970 {
971 if (radix_enabled())
972 return radix__has_transparent_hugepage();
973 return hash__has_transparent_hugepage();
974 }
975 #define has_transparent_hugepage has_transparent_hugepage
976
977 static inline unsigned long
978 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
979 unsigned long clr, unsigned long set)
980 {
981 if (radix_enabled())
982 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
983 return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
984 }
985
986 static inline int pmd_large(pmd_t pmd)
987 {
988 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
989 }
990
991 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
992 {
993 return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
994 }
995 /*
996 * For radix we should always find H_PAGE_HASHPTE zero. Hence
997 * the below will work for radix too
998 */
999 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1000 unsigned long addr, pmd_t *pmdp)
1001 {
1002 unsigned long old;
1003
1004 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1005 return 0;
1006 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1007 return ((old & _PAGE_ACCESSED) != 0);
1008 }
1009
1010 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1011 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1012 pmd_t *pmdp)
1013 {
1014 if (__pmd_write((*pmdp)))
1015 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1016 else if (unlikely(pmd_savedwrite(*pmdp)))
1017 pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1018 }
1019
1020 static inline int pmd_trans_huge(pmd_t pmd)
1021 {
1022 if (radix_enabled())
1023 return radix__pmd_trans_huge(pmd);
1024 return hash__pmd_trans_huge(pmd);
1025 }
1026
1027 #define __HAVE_ARCH_PMD_SAME
1028 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1029 {
1030 if (radix_enabled())
1031 return radix__pmd_same(pmd_a, pmd_b);
1032 return hash__pmd_same(pmd_a, pmd_b);
1033 }
1034
1035 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1036 {
1037 if (radix_enabled())
1038 return radix__pmd_mkhuge(pmd);
1039 return hash__pmd_mkhuge(pmd);
1040 }
1041
1042 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1043 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1044 unsigned long address, pmd_t *pmdp,
1045 pmd_t entry, int dirty);
1046
1047 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1048 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1049 unsigned long address, pmd_t *pmdp);
1050
1051 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1052 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1053 unsigned long addr, pmd_t *pmdp)
1054 {
1055 if (radix_enabled())
1056 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1057 return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1058 }
1059
1060 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1061 unsigned long address, pmd_t *pmdp)
1062 {
1063 if (radix_enabled())
1064 return radix__pmdp_collapse_flush(vma, address, pmdp);
1065 return hash__pmdp_collapse_flush(vma, address, pmdp);
1066 }
1067 #define pmdp_collapse_flush pmdp_collapse_flush
1068
1069 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1070 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1071 pmd_t *pmdp, pgtable_t pgtable)
1072 {
1073 if (radix_enabled())
1074 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1075 return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1076 }
1077
1078 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1079 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1080 pmd_t *pmdp)
1081 {
1082 if (radix_enabled())
1083 return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1084 return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1085 }
1086
1087 #define __HAVE_ARCH_PMDP_INVALIDATE
1088 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1089 pmd_t *pmdp);
1090
1091 #define __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
1092 static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
1093 unsigned long address, pmd_t *pmdp)
1094 {
1095 if (radix_enabled())
1096 return radix__pmdp_huge_split_prepare(vma, address, pmdp);
1097 return hash__pmdp_huge_split_prepare(vma, address, pmdp);
1098 }
1099
1100 #define pmd_move_must_withdraw pmd_move_must_withdraw
1101 struct spinlock;
1102 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1103 struct spinlock *old_pmd_ptl,
1104 struct vm_area_struct *vma)
1105 {
1106 if (radix_enabled())
1107 return false;
1108 /*
1109 * Archs like ppc64 use pgtable to store per pmd
1110 * specific information. So when we switch the pmd,
1111 * we should also withdraw and deposit the pgtable
1112 */
1113 return true;
1114 }
1115
1116
1117 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1118 static inline bool arch_needs_pgtable_deposit(void)
1119 {
1120 if (radix_enabled())
1121 return false;
1122 return true;
1123 }
1124
1125 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1126 #endif /* __ASSEMBLY__ */
1127 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */