]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/include/asm/book3s/64/pgtable.h
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / include / asm / book3s / 64 / pgtable.h
1 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
2 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3
4 #include <asm-generic/5level-fixup.h>
5
6 #ifndef __ASSEMBLY__
7 #include <linux/mmdebug.h>
8 #include <linux/bug.h>
9 #endif
10
11 /*
12 * Common bits between hash and Radix page table
13 */
14 #define _PAGE_BIT_SWAP_TYPE 0
15
16 #define _PAGE_RO 0
17 #define _PAGE_SHARED 0
18
19 #define _PAGE_EXEC 0x00001 /* execute permission */
20 #define _PAGE_WRITE 0x00002 /* write access allowed */
21 #define _PAGE_READ 0x00004 /* read access allowed */
22 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
23 #define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
24 #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */
25 #define _PAGE_SAO 0x00010 /* Strong access order */
26 #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */
27 #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */
28 #define _PAGE_DIRTY 0x00080 /* C: page changed */
29 #define _PAGE_ACCESSED 0x00100 /* R: page referenced */
30 /*
31 * Software bits
32 */
33 #define _RPAGE_SW0 0x2000000000000000UL
34 #define _RPAGE_SW1 0x00800
35 #define _RPAGE_SW2 0x00400
36 #define _RPAGE_SW3 0x00200
37 #define _RPAGE_RSV1 0x1000000000000000UL
38 #define _RPAGE_RSV2 0x0800000000000000UL
39 #define _RPAGE_RSV3 0x0400000000000000UL
40 #define _RPAGE_RSV4 0x0200000000000000UL
41
42 #define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */
43 #define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */
44
45 /*
46 * Top and bottom bits of RPN which can be used by hash
47 * translation mode, because we expect them to be zero
48 * otherwise.
49 */
50 #define _RPAGE_RPN0 0x01000
51 #define _RPAGE_RPN1 0x02000
52 #define _RPAGE_RPN44 0x0100000000000000UL
53 #define _RPAGE_RPN43 0x0080000000000000UL
54 #define _RPAGE_RPN42 0x0040000000000000UL
55 #define _RPAGE_RPN41 0x0020000000000000UL
56
57 /* Max physical address bit as per radix table */
58 #define _RPAGE_PA_MAX 57
59
60 /*
61 * Max physical address bit we will use for now.
62 *
63 * This is mostly a hardware limitation and for now Power9 has
64 * a 51 bit limit.
65 *
66 * This is different from the number of physical bit required to address
67 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
68 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
69 * number of sections we can support (SECTIONS_SHIFT).
70 *
71 * This is different from Radix page table limitation above and
72 * should always be less than that. The limit is done such that
73 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
74 * for hash linux page table specific bits.
75 *
76 * In order to be compatible with future hardware generations we keep
77 * some offsets and limit this for now to 53
78 */
79 #define _PAGE_PA_MAX 53
80
81 #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */
82 #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */
83 #define _PAGE_DEVMAP _RPAGE_SW1 /* software: ZONE_DEVICE page */
84 #define __HAVE_ARCH_PTE_DEVMAP
85
86 /*
87 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
88 * Instead of fixing all of them, add an alternate define which
89 * maps CI pte mapping.
90 */
91 #define _PAGE_NO_CACHE _PAGE_TOLERANT
92 /*
93 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
94 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
95 * and every thing below PAGE_SHIFT;
96 */
97 #define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
98 /*
99 * set of bits not changed in pmd_modify. Even though we have hash specific bits
100 * in here, on radix we expect them to be zero.
101 */
102 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
103 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
104 _PAGE_SOFT_DIRTY)
105 /*
106 * user access blocked by key
107 */
108 #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
109 #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ)
110 #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \
111 _PAGE_RW | _PAGE_EXEC)
112 /*
113 * No page size encoding in the linux PTE
114 */
115 #define _PAGE_PSIZE 0
116 /*
117 * _PAGE_CHG_MASK masks of bits that are to be preserved across
118 * pgprot changes
119 */
120 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
121 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \
122 _PAGE_SOFT_DIRTY)
123 /*
124 * Mask of bits returned by pte_pgprot()
125 */
126 #define PAGE_PROT_BITS (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
127 H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
128 _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_EXEC | \
129 _PAGE_SOFT_DIRTY)
130 /*
131 * We define 2 sets of base prot bits, one for basic pages (ie,
132 * cacheable kernel and user pages) and one for non cacheable
133 * pages. We always set _PAGE_COHERENT when SMP is enabled or
134 * the processor might need it for DMA coherency.
135 */
136 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
137 #define _PAGE_BASE (_PAGE_BASE_NC)
138
139 /* Permission masks used to generate the __P and __S table,
140 *
141 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
142 *
143 * Write permissions imply read permissions for now (we could make write-only
144 * pages on BookE but we don't bother for now). Execute permission control is
145 * possible on platforms that define _PAGE_EXEC
146 *
147 * Note due to the way vm flags are laid out, the bits are XWR
148 */
149 #define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
150 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW)
151 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
152 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ)
153 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
154 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ)
155 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
156
157 #define __P000 PAGE_NONE
158 #define __P001 PAGE_READONLY
159 #define __P010 PAGE_COPY
160 #define __P011 PAGE_COPY
161 #define __P100 PAGE_READONLY_X
162 #define __P101 PAGE_READONLY_X
163 #define __P110 PAGE_COPY_X
164 #define __P111 PAGE_COPY_X
165
166 #define __S000 PAGE_NONE
167 #define __S001 PAGE_READONLY
168 #define __S010 PAGE_SHARED
169 #define __S011 PAGE_SHARED
170 #define __S100 PAGE_READONLY_X
171 #define __S101 PAGE_READONLY_X
172 #define __S110 PAGE_SHARED_X
173 #define __S111 PAGE_SHARED_X
174
175 /* Permission masks used for kernel mappings */
176 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
177 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
178 _PAGE_TOLERANT)
179 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
180 _PAGE_NON_IDEMPOTENT)
181 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
182 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
183 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
184
185 /*
186 * Protection used for kernel text. We want the debuggers to be able to
187 * set breakpoints anywhere, so don't write protect the kernel text
188 * on platforms where such control is possible.
189 */
190 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
191 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
192 #define PAGE_KERNEL_TEXT PAGE_KERNEL_X
193 #else
194 #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
195 #endif
196
197 /* Make modules code happy. We don't set RO yet */
198 #define PAGE_KERNEL_EXEC PAGE_KERNEL_X
199 #define PAGE_AGP (PAGE_KERNEL_NC)
200
201 #ifndef __ASSEMBLY__
202 /*
203 * page table defines
204 */
205 extern unsigned long __pte_index_size;
206 extern unsigned long __pmd_index_size;
207 extern unsigned long __pud_index_size;
208 extern unsigned long __pgd_index_size;
209 extern unsigned long __pmd_cache_index;
210 #define PTE_INDEX_SIZE __pte_index_size
211 #define PMD_INDEX_SIZE __pmd_index_size
212 #define PUD_INDEX_SIZE __pud_index_size
213 #define PGD_INDEX_SIZE __pgd_index_size
214 #define PMD_CACHE_INDEX __pmd_cache_index
215 /*
216 * Because of use of pte fragments and THP, size of page table
217 * are not always derived out of index size above.
218 */
219 extern unsigned long __pte_table_size;
220 extern unsigned long __pmd_table_size;
221 extern unsigned long __pud_table_size;
222 extern unsigned long __pgd_table_size;
223 #define PTE_TABLE_SIZE __pte_table_size
224 #define PMD_TABLE_SIZE __pmd_table_size
225 #define PUD_TABLE_SIZE __pud_table_size
226 #define PGD_TABLE_SIZE __pgd_table_size
227
228 extern unsigned long __pmd_val_bits;
229 extern unsigned long __pud_val_bits;
230 extern unsigned long __pgd_val_bits;
231 #define PMD_VAL_BITS __pmd_val_bits
232 #define PUD_VAL_BITS __pud_val_bits
233 #define PGD_VAL_BITS __pgd_val_bits
234
235 extern unsigned long __pte_frag_nr;
236 #define PTE_FRAG_NR __pte_frag_nr
237 extern unsigned long __pte_frag_size_shift;
238 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
239 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
240
241 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
242 #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
243 #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
244 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
245
246 /* PMD_SHIFT determines what a second-level page table entry can map */
247 #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
248 #define PMD_SIZE (1UL << PMD_SHIFT)
249 #define PMD_MASK (~(PMD_SIZE-1))
250
251 /* PUD_SHIFT determines what a third-level page table entry can map */
252 #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
253 #define PUD_SIZE (1UL << PUD_SHIFT)
254 #define PUD_MASK (~(PUD_SIZE-1))
255
256 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
257 #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
258 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
259 #define PGDIR_MASK (~(PGDIR_SIZE-1))
260
261 /* Bits to mask out from a PMD to get to the PTE page */
262 #define PMD_MASKED_BITS 0xc0000000000000ffUL
263 /* Bits to mask out from a PUD to get to the PMD page */
264 #define PUD_MASKED_BITS 0xc0000000000000ffUL
265 /* Bits to mask out from a PGD to get to the PUD page */
266 #define PGD_MASKED_BITS 0xc0000000000000ffUL
267
268 extern unsigned long __vmalloc_start;
269 extern unsigned long __vmalloc_end;
270 #define VMALLOC_START __vmalloc_start
271 #define VMALLOC_END __vmalloc_end
272
273 extern unsigned long __kernel_virt_start;
274 extern unsigned long __kernel_virt_size;
275 #define KERN_VIRT_START __kernel_virt_start
276 #define KERN_VIRT_SIZE __kernel_virt_size
277 extern struct page *vmemmap;
278 extern unsigned long ioremap_bot;
279 extern unsigned long pci_io_base;
280 #endif /* __ASSEMBLY__ */
281
282 #include <asm/book3s/64/hash.h>
283 #include <asm/book3s/64/radix.h>
284
285 #ifdef CONFIG_PPC_64K_PAGES
286 #include <asm/book3s/64/pgtable-64k.h>
287 #else
288 #include <asm/book3s/64/pgtable-4k.h>
289 #endif
290
291 #include <asm/barrier.h>
292 /*
293 * The second half of the kernel virtual space is used for IO mappings,
294 * it's itself carved into the PIO region (ISA and PHB IO space) and
295 * the ioremap space
296 *
297 * ISA_IO_BASE = KERN_IO_START, 64K reserved area
298 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
299 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
300 */
301 #define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
302 #define FULL_IO_SIZE 0x80000000ul
303 #define ISA_IO_BASE (KERN_IO_START)
304 #define ISA_IO_END (KERN_IO_START + 0x10000ul)
305 #define PHB_IO_BASE (ISA_IO_END)
306 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
307 #define IOREMAP_BASE (PHB_IO_END)
308 #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE)
309
310 /* Advertise special mapping type for AGP */
311 #define HAVE_PAGE_AGP
312
313 /* Advertise support for _PAGE_SPECIAL */
314 #define __HAVE_ARCH_PTE_SPECIAL
315
316 #ifndef __ASSEMBLY__
317
318 /*
319 * This is the default implementation of various PTE accessors, it's
320 * used in all cases except Book3S with 64K pages where we have a
321 * concept of sub-pages
322 */
323 #ifndef __real_pte
324
325 #define __real_pte(e,p) ((real_pte_t){(e)})
326 #define __rpte_to_pte(r) ((r).pte)
327 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
328
329 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
330 do { \
331 index = 0; \
332 shift = mmu_psize_defs[psize].shift; \
333
334 #define pte_iterate_hashed_end() } while(0)
335
336 /*
337 * We expect this to be called only for user addresses or kernel virtual
338 * addresses other than the linear mapping.
339 */
340 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
341
342 #endif /* __real_pte */
343
344 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
345 pte_t *ptep, unsigned long clr,
346 unsigned long set, int huge)
347 {
348 if (radix_enabled())
349 return radix__pte_update(mm, addr, ptep, clr, set, huge);
350 return hash__pte_update(mm, addr, ptep, clr, set, huge);
351 }
352 /*
353 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
354 * We currently remove entries from the hashtable regardless of whether
355 * the entry was young or dirty.
356 *
357 * We should be more intelligent about this but for the moment we override
358 * these functions and force a tlb flush unconditionally
359 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
360 * function for both hash and radix.
361 */
362 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
363 unsigned long addr, pte_t *ptep)
364 {
365 unsigned long old;
366
367 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
368 return 0;
369 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
370 return (old & _PAGE_ACCESSED) != 0;
371 }
372
373 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
374 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
375 ({ \
376 int __r; \
377 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
378 __r; \
379 })
380
381 static inline int __pte_write(pte_t pte)
382 {
383 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
384 }
385
386 #ifdef CONFIG_NUMA_BALANCING
387 #define pte_savedwrite pte_savedwrite
388 static inline bool pte_savedwrite(pte_t pte)
389 {
390 /*
391 * Saved write ptes are prot none ptes that doesn't have
392 * privileged bit sit. We mark prot none as one which has
393 * present and pviliged bit set and RWX cleared. To mark
394 * protnone which used to have _PAGE_WRITE set we clear
395 * the privileged bit.
396 */
397 return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
398 }
399 #else
400 #define pte_savedwrite pte_savedwrite
401 static inline bool pte_savedwrite(pte_t pte)
402 {
403 return false;
404 }
405 #endif
406
407 static inline int pte_write(pte_t pte)
408 {
409 return __pte_write(pte) || pte_savedwrite(pte);
410 }
411
412 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
413 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
414 pte_t *ptep)
415 {
416 if (__pte_write(*ptep))
417 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
418 else if (unlikely(pte_savedwrite(*ptep)))
419 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
420 }
421
422 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
423 unsigned long addr, pte_t *ptep)
424 {
425 /*
426 * We should not find protnone for hugetlb, but this complete the
427 * interface.
428 */
429 if (__pte_write(*ptep))
430 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
431 else if (unlikely(pte_savedwrite(*ptep)))
432 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
433 }
434
435 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
436 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
437 unsigned long addr, pte_t *ptep)
438 {
439 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
440 return __pte(old);
441 }
442
443 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
444 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
445 unsigned long addr,
446 pte_t *ptep, int full)
447 {
448 if (full && radix_enabled()) {
449 /*
450 * Let's skip the DD1 style pte update here. We know that
451 * this is a full mm pte clear and hence can be sure there is
452 * no parallel set_pte.
453 */
454 return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
455 }
456 return ptep_get_and_clear(mm, addr, ptep);
457 }
458
459
460 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
461 pte_t * ptep)
462 {
463 pte_update(mm, addr, ptep, ~0UL, 0, 0);
464 }
465
466 static inline int pte_dirty(pte_t pte)
467 {
468 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
469 }
470
471 static inline int pte_young(pte_t pte)
472 {
473 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
474 }
475
476 static inline int pte_special(pte_t pte)
477 {
478 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
479 }
480
481 static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
482
483 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
484 static inline bool pte_soft_dirty(pte_t pte)
485 {
486 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
487 }
488
489 static inline pte_t pte_mksoft_dirty(pte_t pte)
490 {
491 return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
492 }
493
494 static inline pte_t pte_clear_soft_dirty(pte_t pte)
495 {
496 return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
497 }
498 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
499
500 #ifdef CONFIG_NUMA_BALANCING
501 static inline int pte_protnone(pte_t pte)
502 {
503 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
504 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
505 }
506
507 #define pte_mk_savedwrite pte_mk_savedwrite
508 static inline pte_t pte_mk_savedwrite(pte_t pte)
509 {
510 /*
511 * Used by Autonuma subsystem to preserve the write bit
512 * while marking the pte PROT_NONE. Only allow this
513 * on PROT_NONE pte
514 */
515 VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
516 cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
517 return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED);
518 }
519
520 #define pte_clear_savedwrite pte_clear_savedwrite
521 static inline pte_t pte_clear_savedwrite(pte_t pte)
522 {
523 /*
524 * Used by KSM subsystem to make a protnone pte readonly.
525 */
526 VM_BUG_ON(!pte_protnone(pte));
527 return __pte(pte_val(pte) | _PAGE_PRIVILEGED);
528 }
529 #else
530 #define pte_clear_savedwrite pte_clear_savedwrite
531 static inline pte_t pte_clear_savedwrite(pte_t pte)
532 {
533 VM_WARN_ON(1);
534 return __pte(pte_val(pte) & ~_PAGE_WRITE);
535 }
536 #endif /* CONFIG_NUMA_BALANCING */
537
538 static inline int pte_present(pte_t pte)
539 {
540 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
541 }
542 /*
543 * Conversion functions: convert a page and protection to a page entry,
544 * and a page entry and page directory to the page they refer to.
545 *
546 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
547 * long for now.
548 */
549 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
550 {
551 return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
552 pgprot_val(pgprot));
553 }
554
555 static inline unsigned long pte_pfn(pte_t pte)
556 {
557 return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
558 }
559
560 /* Generic modifiers for PTE bits */
561 static inline pte_t pte_wrprotect(pte_t pte)
562 {
563 if (unlikely(pte_savedwrite(pte)))
564 return pte_clear_savedwrite(pte);
565 return __pte(pte_val(pte) & ~_PAGE_WRITE);
566 }
567
568 static inline pte_t pte_mkclean(pte_t pte)
569 {
570 return __pte(pte_val(pte) & ~_PAGE_DIRTY);
571 }
572
573 static inline pte_t pte_mkold(pte_t pte)
574 {
575 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
576 }
577
578 static inline pte_t pte_mkwrite(pte_t pte)
579 {
580 /*
581 * write implies read, hence set both
582 */
583 return __pte(pte_val(pte) | _PAGE_RW);
584 }
585
586 static inline pte_t pte_mkdirty(pte_t pte)
587 {
588 return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
589 }
590
591 static inline pte_t pte_mkyoung(pte_t pte)
592 {
593 return __pte(pte_val(pte) | _PAGE_ACCESSED);
594 }
595
596 static inline pte_t pte_mkspecial(pte_t pte)
597 {
598 return __pte(pte_val(pte) | _PAGE_SPECIAL);
599 }
600
601 static inline pte_t pte_mkhuge(pte_t pte)
602 {
603 return pte;
604 }
605
606 static inline pte_t pte_mkdevmap(pte_t pte)
607 {
608 return __pte(pte_val(pte) | _PAGE_SPECIAL|_PAGE_DEVMAP);
609 }
610
611 static inline int pte_devmap(pte_t pte)
612 {
613 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DEVMAP));
614 }
615
616 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
617 {
618 /* FIXME!! check whether this need to be a conditional */
619 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
620 }
621
622 static inline bool pte_user(pte_t pte)
623 {
624 return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
625 }
626
627 /* Encode and de-code a swap entry */
628 #define MAX_SWAPFILES_CHECK() do { \
629 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
630 /* \
631 * Don't have overlapping bits with _PAGE_HPTEFLAGS \
632 * We filter HPTEFLAGS on set_pte. \
633 */ \
634 BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
635 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \
636 } while (0)
637 /*
638 * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
639 */
640 #define SWP_TYPE_BITS 5
641 #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
642 & ((1UL << SWP_TYPE_BITS) - 1))
643 #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
644 #define __swp_entry(type, offset) ((swp_entry_t) { \
645 ((type) << _PAGE_BIT_SWAP_TYPE) \
646 | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
647 /*
648 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
649 * swap type and offset we get from swap and convert that to pte to find a
650 * matching pte in linux page table.
651 * Clear bits not found in swap entries here.
652 */
653 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
654 #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE)
655
656 #ifdef CONFIG_MEM_SOFT_DIRTY
657 #define _PAGE_SWP_SOFT_DIRTY (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
658 #else
659 #define _PAGE_SWP_SOFT_DIRTY 0UL
660 #endif /* CONFIG_MEM_SOFT_DIRTY */
661
662 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
663 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
664 {
665 return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
666 }
667
668 static inline bool pte_swp_soft_dirty(pte_t pte)
669 {
670 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
671 }
672
673 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
674 {
675 return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
676 }
677 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
678
679 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
680 {
681 /*
682 * This check for _PAGE_RWX and _PAGE_PRESENT bits
683 */
684 if (access & ~ptev)
685 return false;
686 /*
687 * This check for access to privilege space
688 */
689 if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
690 return false;
691
692 return true;
693 }
694 /*
695 * Generic functions with hash/radix callbacks
696 */
697
698 static inline void __ptep_set_access_flags(struct mm_struct *mm,
699 pte_t *ptep, pte_t entry,
700 unsigned long address)
701 {
702 if (radix_enabled())
703 return radix__ptep_set_access_flags(mm, ptep, entry, address);
704 return hash__ptep_set_access_flags(ptep, entry);
705 }
706
707 #define __HAVE_ARCH_PTE_SAME
708 static inline int pte_same(pte_t pte_a, pte_t pte_b)
709 {
710 if (radix_enabled())
711 return radix__pte_same(pte_a, pte_b);
712 return hash__pte_same(pte_a, pte_b);
713 }
714
715 static inline int pte_none(pte_t pte)
716 {
717 if (radix_enabled())
718 return radix__pte_none(pte);
719 return hash__pte_none(pte);
720 }
721
722 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
723 pte_t *ptep, pte_t pte, int percpu)
724 {
725 if (radix_enabled())
726 return radix__set_pte_at(mm, addr, ptep, pte, percpu);
727 return hash__set_pte_at(mm, addr, ptep, pte, percpu);
728 }
729
730 #define _PAGE_CACHE_CTL (_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
731
732 #define pgprot_noncached pgprot_noncached
733 static inline pgprot_t pgprot_noncached(pgprot_t prot)
734 {
735 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
736 _PAGE_NON_IDEMPOTENT);
737 }
738
739 #define pgprot_noncached_wc pgprot_noncached_wc
740 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
741 {
742 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
743 _PAGE_TOLERANT);
744 }
745
746 #define pgprot_cached pgprot_cached
747 static inline pgprot_t pgprot_cached(pgprot_t prot)
748 {
749 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
750 }
751
752 #define pgprot_writecombine pgprot_writecombine
753 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
754 {
755 return pgprot_noncached_wc(prot);
756 }
757 /*
758 * check a pte mapping have cache inhibited property
759 */
760 static inline bool pte_ci(pte_t pte)
761 {
762 unsigned long pte_v = pte_val(pte);
763
764 if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
765 ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
766 return true;
767 return false;
768 }
769
770 static inline void pmd_set(pmd_t *pmdp, unsigned long val)
771 {
772 *pmdp = __pmd(val);
773 }
774
775 static inline void pmd_clear(pmd_t *pmdp)
776 {
777 *pmdp = __pmd(0);
778 }
779
780 static inline int pmd_none(pmd_t pmd)
781 {
782 return !pmd_raw(pmd);
783 }
784
785 static inline int pmd_present(pmd_t pmd)
786 {
787
788 return !pmd_none(pmd);
789 }
790
791 static inline int pmd_bad(pmd_t pmd)
792 {
793 if (radix_enabled())
794 return radix__pmd_bad(pmd);
795 return hash__pmd_bad(pmd);
796 }
797
798 static inline void pud_set(pud_t *pudp, unsigned long val)
799 {
800 *pudp = __pud(val);
801 }
802
803 static inline void pud_clear(pud_t *pudp)
804 {
805 *pudp = __pud(0);
806 }
807
808 static inline int pud_none(pud_t pud)
809 {
810 return !pud_raw(pud);
811 }
812
813 static inline int pud_present(pud_t pud)
814 {
815 return !pud_none(pud);
816 }
817
818 extern struct page *pud_page(pud_t pud);
819 extern struct page *pmd_page(pmd_t pmd);
820 static inline pte_t pud_pte(pud_t pud)
821 {
822 return __pte_raw(pud_raw(pud));
823 }
824
825 static inline pud_t pte_pud(pte_t pte)
826 {
827 return __pud_raw(pte_raw(pte));
828 }
829 #define pud_write(pud) pte_write(pud_pte(pud))
830
831 static inline int pud_bad(pud_t pud)
832 {
833 if (radix_enabled())
834 return radix__pud_bad(pud);
835 return hash__pud_bad(pud);
836 }
837
838
839 #define pgd_write(pgd) pte_write(pgd_pte(pgd))
840 static inline void pgd_set(pgd_t *pgdp, unsigned long val)
841 {
842 *pgdp = __pgd(val);
843 }
844
845 static inline void pgd_clear(pgd_t *pgdp)
846 {
847 *pgdp = __pgd(0);
848 }
849
850 static inline int pgd_none(pgd_t pgd)
851 {
852 return !pgd_raw(pgd);
853 }
854
855 static inline int pgd_present(pgd_t pgd)
856 {
857 return !pgd_none(pgd);
858 }
859
860 static inline pte_t pgd_pte(pgd_t pgd)
861 {
862 return __pte_raw(pgd_raw(pgd));
863 }
864
865 static inline pgd_t pte_pgd(pte_t pte)
866 {
867 return __pgd_raw(pte_raw(pte));
868 }
869
870 static inline int pgd_bad(pgd_t pgd)
871 {
872 if (radix_enabled())
873 return radix__pgd_bad(pgd);
874 return hash__pgd_bad(pgd);
875 }
876
877 extern struct page *pgd_page(pgd_t pgd);
878
879 /* Pointers in the page table tree are physical addresses */
880 #define __pgtable_ptr_val(ptr) __pa(ptr)
881
882 #define pmd_page_vaddr(pmd) __va(pmd_val(pmd) & ~PMD_MASKED_BITS)
883 #define pud_page_vaddr(pud) __va(pud_val(pud) & ~PUD_MASKED_BITS)
884 #define pgd_page_vaddr(pgd) __va(pgd_val(pgd) & ~PGD_MASKED_BITS)
885
886 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
887 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
888 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
889 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
890
891 /*
892 * Find an entry in a page-table-directory. We combine the address region
893 * (the high order N bits) and the pgd portion of the address.
894 */
895
896 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
897
898 #define pud_offset(pgdp, addr) \
899 (((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
900 #define pmd_offset(pudp,addr) \
901 (((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
902 #define pte_offset_kernel(dir,addr) \
903 (((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
904
905 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
906 #define pte_unmap(pte) do { } while(0)
907
908 /* to find an entry in a kernel page-table-directory */
909 /* This now only contains the vmalloc pages */
910 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
911
912 #define pte_ERROR(e) \
913 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
914 #define pmd_ERROR(e) \
915 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
916 #define pud_ERROR(e) \
917 pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
918 #define pgd_ERROR(e) \
919 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
920
921 static inline int map_kernel_page(unsigned long ea, unsigned long pa,
922 unsigned long flags)
923 {
924 if (radix_enabled()) {
925 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
926 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
927 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
928 #endif
929 return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
930 }
931 return hash__map_kernel_page(ea, pa, flags);
932 }
933
934 static inline int __meminit vmemmap_create_mapping(unsigned long start,
935 unsigned long page_size,
936 unsigned long phys)
937 {
938 if (radix_enabled())
939 return radix__vmemmap_create_mapping(start, page_size, phys);
940 return hash__vmemmap_create_mapping(start, page_size, phys);
941 }
942
943 #ifdef CONFIG_MEMORY_HOTPLUG
944 static inline void vmemmap_remove_mapping(unsigned long start,
945 unsigned long page_size)
946 {
947 if (radix_enabled())
948 return radix__vmemmap_remove_mapping(start, page_size);
949 return hash__vmemmap_remove_mapping(start, page_size);
950 }
951 #endif
952 struct page *realmode_pfn_to_page(unsigned long pfn);
953
954 static inline pte_t pmd_pte(pmd_t pmd)
955 {
956 return __pte_raw(pmd_raw(pmd));
957 }
958
959 static inline pmd_t pte_pmd(pte_t pte)
960 {
961 return __pmd_raw(pte_raw(pte));
962 }
963
964 static inline pte_t *pmdp_ptep(pmd_t *pmd)
965 {
966 return (pte_t *)pmd;
967 }
968 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
969 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
970 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
971 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
972 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
973 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
974 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
975 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
976 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
977 #define pmd_mk_savedwrite(pmd) pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
978 #define pmd_clear_savedwrite(pmd) pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
979
980 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
981 #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd))
982 #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
983 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
984 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
985
986 #ifdef CONFIG_NUMA_BALANCING
987 static inline int pmd_protnone(pmd_t pmd)
988 {
989 return pte_protnone(pmd_pte(pmd));
990 }
991 #endif /* CONFIG_NUMA_BALANCING */
992
993 #define __HAVE_ARCH_PMD_WRITE
994 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
995 #define __pmd_write(pmd) __pte_write(pmd_pte(pmd))
996 #define pmd_savedwrite(pmd) pte_savedwrite(pmd_pte(pmd))
997
998 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
999 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1000 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1001 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1002 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1003 pmd_t *pmdp, pmd_t pmd);
1004 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
1005 pmd_t *pmd);
1006 extern int hash__has_transparent_hugepage(void);
1007 static inline int has_transparent_hugepage(void)
1008 {
1009 if (radix_enabled())
1010 return radix__has_transparent_hugepage();
1011 return hash__has_transparent_hugepage();
1012 }
1013 #define has_transparent_hugepage has_transparent_hugepage
1014
1015 static inline unsigned long
1016 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1017 unsigned long clr, unsigned long set)
1018 {
1019 if (radix_enabled())
1020 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1021 return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1022 }
1023
1024 static inline int pmd_large(pmd_t pmd)
1025 {
1026 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1027 }
1028
1029 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1030 {
1031 return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1032 }
1033 /*
1034 * For radix we should always find H_PAGE_HASHPTE zero. Hence
1035 * the below will work for radix too
1036 */
1037 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1038 unsigned long addr, pmd_t *pmdp)
1039 {
1040 unsigned long old;
1041
1042 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1043 return 0;
1044 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1045 return ((old & _PAGE_ACCESSED) != 0);
1046 }
1047
1048 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1049 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1050 pmd_t *pmdp)
1051 {
1052 if (__pmd_write((*pmdp)))
1053 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1054 else if (unlikely(pmd_savedwrite(*pmdp)))
1055 pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1056 }
1057
1058 static inline int pmd_trans_huge(pmd_t pmd)
1059 {
1060 if (radix_enabled())
1061 return radix__pmd_trans_huge(pmd);
1062 return hash__pmd_trans_huge(pmd);
1063 }
1064
1065 #define __HAVE_ARCH_PMD_SAME
1066 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1067 {
1068 if (radix_enabled())
1069 return radix__pmd_same(pmd_a, pmd_b);
1070 return hash__pmd_same(pmd_a, pmd_b);
1071 }
1072
1073 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1074 {
1075 if (radix_enabled())
1076 return radix__pmd_mkhuge(pmd);
1077 return hash__pmd_mkhuge(pmd);
1078 }
1079
1080 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1081 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1082 unsigned long address, pmd_t *pmdp,
1083 pmd_t entry, int dirty);
1084
1085 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1086 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1087 unsigned long address, pmd_t *pmdp);
1088
1089 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1090 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1091 unsigned long addr, pmd_t *pmdp)
1092 {
1093 if (radix_enabled())
1094 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1095 return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1096 }
1097
1098 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1099 unsigned long address, pmd_t *pmdp)
1100 {
1101 if (radix_enabled())
1102 return radix__pmdp_collapse_flush(vma, address, pmdp);
1103 return hash__pmdp_collapse_flush(vma, address, pmdp);
1104 }
1105 #define pmdp_collapse_flush pmdp_collapse_flush
1106
1107 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1108 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1109 pmd_t *pmdp, pgtable_t pgtable)
1110 {
1111 if (radix_enabled())
1112 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1113 return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1114 }
1115
1116 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1117 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1118 pmd_t *pmdp)
1119 {
1120 if (radix_enabled())
1121 return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1122 return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1123 }
1124
1125 #define __HAVE_ARCH_PMDP_INVALIDATE
1126 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1127 pmd_t *pmdp);
1128
1129 #define __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
1130 static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
1131 unsigned long address, pmd_t *pmdp)
1132 {
1133 if (radix_enabled())
1134 return radix__pmdp_huge_split_prepare(vma, address, pmdp);
1135 return hash__pmdp_huge_split_prepare(vma, address, pmdp);
1136 }
1137
1138 #define pmd_move_must_withdraw pmd_move_must_withdraw
1139 struct spinlock;
1140 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1141 struct spinlock *old_pmd_ptl,
1142 struct vm_area_struct *vma)
1143 {
1144 if (radix_enabled())
1145 return false;
1146 /*
1147 * Archs like ppc64 use pgtable to store per pmd
1148 * specific information. So when we switch the pmd,
1149 * we should also withdraw and deposit the pgtable
1150 */
1151 return true;
1152 }
1153
1154
1155 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1156 static inline bool arch_needs_pgtable_deposit(void)
1157 {
1158 if (radix_enabled())
1159 return false;
1160 return true;
1161 }
1162
1163
1164 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1165 {
1166 return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
1167 }
1168
1169 static inline int pmd_devmap(pmd_t pmd)
1170 {
1171 return pte_devmap(pmd_pte(pmd));
1172 }
1173
1174 static inline int pud_devmap(pud_t pud)
1175 {
1176 return 0;
1177 }
1178
1179 static inline int pgd_devmap(pgd_t pgd)
1180 {
1181 return 0;
1182 }
1183 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1184
1185 static inline const int pud_pfn(pud_t pud)
1186 {
1187 /*
1188 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1189 * check so this should never be used. If it grows another user we
1190 * want to know about it.
1191 */
1192 BUILD_BUG();
1193 return 0;
1194 }
1195 #endif /* __ASSEMBLY__ */
1196 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */