]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/include/asm/book3s/64/radix.h
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / include / asm / book3s / 64 / radix.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_PGTABLE_RADIX_H
3 #define _ASM_POWERPC_PGTABLE_RADIX_H
4
5 #ifndef __ASSEMBLY__
6 #include <asm/cmpxchg.h>
7 #endif
8
9 #ifdef CONFIG_PPC_64K_PAGES
10 #include <asm/book3s/64/radix-64k.h>
11 #else
12 #include <asm/book3s/64/radix-4k.h>
13 #endif
14
15 /*
16 * For P9 DD1 only, we need to track whether the pte's huge.
17 */
18 #define R_PAGE_LARGE _RPAGE_RSV1
19
20
21 #ifndef __ASSEMBLY__
22 #include <asm/book3s/64/tlbflush-radix.h>
23 #include <asm/cpu_has_feature.h>
24 #endif
25
26 /* An empty PTE can still have a R or C writeback */
27 #define RADIX_PTE_NONE_MASK (_PAGE_DIRTY | _PAGE_ACCESSED)
28
29 /* Bits to set in a RPMD/RPUD/RPGD */
30 #define RADIX_PMD_VAL_BITS (0x8000000000000000UL | RADIX_PTE_INDEX_SIZE)
31 #define RADIX_PUD_VAL_BITS (0x8000000000000000UL | RADIX_PMD_INDEX_SIZE)
32 #define RADIX_PGD_VAL_BITS (0x8000000000000000UL | RADIX_PUD_INDEX_SIZE)
33
34 /* Don't have anything in the reserved bits and leaf bits */
35 #define RADIX_PMD_BAD_BITS 0x60000000000000e0UL
36 #define RADIX_PUD_BAD_BITS 0x60000000000000e0UL
37 #define RADIX_PGD_BAD_BITS 0x60000000000000e0UL
38
39 /*
40 * Size of EA range mapped by our pagetables.
41 */
42 #define RADIX_PGTABLE_EADDR_SIZE (RADIX_PTE_INDEX_SIZE + RADIX_PMD_INDEX_SIZE + \
43 RADIX_PUD_INDEX_SIZE + RADIX_PGD_INDEX_SIZE + PAGE_SHIFT)
44 #define RADIX_PGTABLE_RANGE (ASM_CONST(1) << RADIX_PGTABLE_EADDR_SIZE)
45
46 /*
47 * We support 52 bit address space, Use top bit for kernel
48 * virtual mapping. Also make sure kernel fit in the top
49 * quadrant.
50 *
51 * +------------------+
52 * +------------------+ Kernel virtual map (0xc008000000000000)
53 * | |
54 * | |
55 * | |
56 * 0b11......+------------------+ Kernel linear map (0xc....)
57 * | |
58 * | 2 quadrant |
59 * | |
60 * 0b10......+------------------+
61 * | |
62 * | 1 quadrant |
63 * | |
64 * 0b01......+------------------+
65 * | |
66 * | 0 quadrant |
67 * | |
68 * 0b00......+------------------+
69 *
70 *
71 * 3rd quadrant expanded:
72 * +------------------------------+
73 * | |
74 * | |
75 * | |
76 * +------------------------------+ Kernel IO map end (0xc010000000000000)
77 * | |
78 * | |
79 * | 1/2 of virtual map |
80 * | |
81 * | |
82 * +------------------------------+ Kernel IO map start
83 * | |
84 * | 1/4 of virtual map |
85 * | |
86 * +------------------------------+ Kernel vmemap start
87 * | |
88 * | 1/4 of virtual map |
89 * | |
90 * +------------------------------+ Kernel virt start (0xc008000000000000)
91 * | |
92 * | |
93 * | |
94 * +------------------------------+ Kernel linear (0xc.....)
95 */
96
97 #define RADIX_KERN_VIRT_START ASM_CONST(0xc008000000000000)
98 #define RADIX_KERN_VIRT_SIZE ASM_CONST(0x0008000000000000)
99
100 /*
101 * The vmalloc space starts at the beginning of that region, and
102 * occupies a quarter of it on radix config.
103 * (we keep a quarter for the virtual memmap)
104 */
105 #define RADIX_VMALLOC_START RADIX_KERN_VIRT_START
106 #define RADIX_VMALLOC_SIZE (RADIX_KERN_VIRT_SIZE >> 2)
107 #define RADIX_VMALLOC_END (RADIX_VMALLOC_START + RADIX_VMALLOC_SIZE)
108 /*
109 * Defines the address of the vmemap area, in its own region on
110 * hash table CPUs.
111 */
112 #define RADIX_VMEMMAP_BASE (RADIX_VMALLOC_END)
113
114 #define RADIX_KERN_IO_START (RADIX_KERN_VIRT_START + (RADIX_KERN_VIRT_SIZE >> 1))
115
116 #ifndef __ASSEMBLY__
117 #define RADIX_PTE_TABLE_SIZE (sizeof(pte_t) << RADIX_PTE_INDEX_SIZE)
118 #define RADIX_PMD_TABLE_SIZE (sizeof(pmd_t) << RADIX_PMD_INDEX_SIZE)
119 #define RADIX_PUD_TABLE_SIZE (sizeof(pud_t) << RADIX_PUD_INDEX_SIZE)
120 #define RADIX_PGD_TABLE_SIZE (sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE)
121
122 #ifdef CONFIG_STRICT_KERNEL_RWX
123 extern void radix__mark_rodata_ro(void);
124 extern void radix__mark_initmem_nx(void);
125 #endif
126
127 static inline unsigned long __radix_pte_update(pte_t *ptep, unsigned long clr,
128 unsigned long set)
129 {
130 pte_t pte;
131 unsigned long old_pte, new_pte;
132
133 do {
134 pte = READ_ONCE(*ptep);
135 old_pte = pte_val(pte);
136 new_pte = (old_pte | set) & ~clr;
137
138 } while (!pte_xchg(ptep, __pte(old_pte), __pte(new_pte)));
139
140 return old_pte;
141 }
142
143
144 static inline unsigned long radix__pte_update(struct mm_struct *mm,
145 unsigned long addr,
146 pte_t *ptep, unsigned long clr,
147 unsigned long set,
148 int huge)
149 {
150 unsigned long old_pte;
151
152 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
153
154 unsigned long new_pte;
155
156 old_pte = __radix_pte_update(ptep, ~0ul, 0);
157 /*
158 * new value of pte
159 */
160 new_pte = (old_pte | set) & ~clr;
161 radix__flush_tlb_pte_p9_dd1(old_pte, mm, addr);
162 if (new_pte)
163 __radix_pte_update(ptep, 0, new_pte);
164 } else
165 old_pte = __radix_pte_update(ptep, clr, set);
166 if (!huge)
167 assert_pte_locked(mm, addr);
168
169 return old_pte;
170 }
171
172 static inline pte_t radix__ptep_get_and_clear_full(struct mm_struct *mm,
173 unsigned long addr,
174 pte_t *ptep, int full)
175 {
176 unsigned long old_pte;
177
178 if (full) {
179 /*
180 * If we are trying to clear the pte, we can skip
181 * the DD1 pte update sequence and batch the tlb flush. The
182 * tlb flush batching is done by mmu gather code. We
183 * still keep the cmp_xchg update to make sure we get
184 * correct R/C bit which might be updated via Nest MMU.
185 */
186 old_pte = __radix_pte_update(ptep, ~0ul, 0);
187 } else
188 old_pte = radix__pte_update(mm, addr, ptep, ~0ul, 0, 0);
189
190 return __pte(old_pte);
191 }
192
193 /*
194 * Set the dirty and/or accessed bits atomically in a linux PTE, this
195 * function doesn't need to invalidate tlb.
196 */
197 static inline void radix__ptep_set_access_flags(struct mm_struct *mm,
198 pte_t *ptep, pte_t entry,
199 unsigned long address)
200 {
201
202 unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
203 _PAGE_RW | _PAGE_EXEC);
204
205 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
206
207 unsigned long old_pte, new_pte;
208
209 old_pte = __radix_pte_update(ptep, ~0, 0);
210 /*
211 * new value of pte
212 */
213 new_pte = old_pte | set;
214 radix__flush_tlb_pte_p9_dd1(old_pte, mm, address);
215 __radix_pte_update(ptep, 0, new_pte);
216 } else
217 __radix_pte_update(ptep, 0, set);
218 asm volatile("ptesync" : : : "memory");
219 }
220
221 static inline int radix__pte_same(pte_t pte_a, pte_t pte_b)
222 {
223 return ((pte_raw(pte_a) ^ pte_raw(pte_b)) == 0);
224 }
225
226 static inline int radix__pte_none(pte_t pte)
227 {
228 return (pte_val(pte) & ~RADIX_PTE_NONE_MASK) == 0;
229 }
230
231 static inline void radix__set_pte_at(struct mm_struct *mm, unsigned long addr,
232 pte_t *ptep, pte_t pte, int percpu)
233 {
234 *ptep = pte;
235 asm volatile("ptesync" : : : "memory");
236 }
237
238 static inline int radix__pmd_bad(pmd_t pmd)
239 {
240 return !!(pmd_val(pmd) & RADIX_PMD_BAD_BITS);
241 }
242
243 static inline int radix__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
244 {
245 return ((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) == 0);
246 }
247
248 static inline int radix__pud_bad(pud_t pud)
249 {
250 return !!(pud_val(pud) & RADIX_PUD_BAD_BITS);
251 }
252
253
254 static inline int radix__pgd_bad(pgd_t pgd)
255 {
256 return !!(pgd_val(pgd) & RADIX_PGD_BAD_BITS);
257 }
258
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260
261 static inline int radix__pmd_trans_huge(pmd_t pmd)
262 {
263 return (pmd_val(pmd) & (_PAGE_PTE | _PAGE_DEVMAP)) == _PAGE_PTE;
264 }
265
266 static inline pmd_t radix__pmd_mkhuge(pmd_t pmd)
267 {
268 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
269 return __pmd(pmd_val(pmd) | _PAGE_PTE | R_PAGE_LARGE);
270 return __pmd(pmd_val(pmd) | _PAGE_PTE);
271 }
272 static inline void radix__pmdp_huge_split_prepare(struct vm_area_struct *vma,
273 unsigned long address, pmd_t *pmdp)
274 {
275 /* Nothing to do for radix. */
276 return;
277 }
278
279 extern unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
280 pmd_t *pmdp, unsigned long clr,
281 unsigned long set);
282 extern pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma,
283 unsigned long address, pmd_t *pmdp);
284 extern void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
285 pgtable_t pgtable);
286 extern pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
287 extern pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
288 unsigned long addr, pmd_t *pmdp);
289 extern int radix__has_transparent_hugepage(void);
290 #endif
291
292 extern int __meminit radix__vmemmap_create_mapping(unsigned long start,
293 unsigned long page_size,
294 unsigned long phys);
295 extern void radix__vmemmap_remove_mapping(unsigned long start,
296 unsigned long page_size);
297
298 extern int radix__map_kernel_page(unsigned long ea, unsigned long pa,
299 pgprot_t flags, unsigned int psz);
300
301 static inline unsigned long radix__get_tree_size(void)
302 {
303 unsigned long rts_field;
304 /*
305 * We support 52 bits, hence:
306 * DD1 52-28 = 24, 0b11000
307 * Others 52-31 = 21, 0b10101
308 * RTS encoding details
309 * bits 0 - 3 of rts -> bits 6 - 8 unsigned long
310 * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
311 */
312 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
313 rts_field = (0x3UL << 61);
314 else {
315 rts_field = (0x5UL << 5); /* 6 - 8 bits */
316 rts_field |= (0x2UL << 61);
317 }
318 return rts_field;
319 }
320
321 #ifdef CONFIG_MEMORY_HOTPLUG
322 int radix__create_section_mapping(unsigned long start, unsigned long end);
323 int radix__remove_section_mapping(unsigned long start, unsigned long end);
324 #endif /* CONFIG_MEMORY_HOTPLUG */
325 #endif /* __ASSEMBLY__ */
326 #endif