]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/include/asm/book3s/64/radix.h
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / include / asm / book3s / 64 / radix.h
1 #ifndef _ASM_POWERPC_PGTABLE_RADIX_H
2 #define _ASM_POWERPC_PGTABLE_RADIX_H
3
4 #ifndef __ASSEMBLY__
5 #include <asm/cmpxchg.h>
6 #endif
7
8 #ifdef CONFIG_PPC_64K_PAGES
9 #include <asm/book3s/64/radix-64k.h>
10 #else
11 #include <asm/book3s/64/radix-4k.h>
12 #endif
13
14 /*
15 * For P9 DD1 only, we need to track whether the pte's huge.
16 */
17 #define R_PAGE_LARGE _RPAGE_RSV1
18
19
20 #ifndef __ASSEMBLY__
21 #include <asm/book3s/64/tlbflush-radix.h>
22 #include <asm/cpu_has_feature.h>
23 #endif
24
25 /* An empty PTE can still have a R or C writeback */
26 #define RADIX_PTE_NONE_MASK (_PAGE_DIRTY | _PAGE_ACCESSED)
27
28 /* Bits to set in a RPMD/RPUD/RPGD */
29 #define RADIX_PMD_VAL_BITS (0x8000000000000000UL | RADIX_PTE_INDEX_SIZE)
30 #define RADIX_PUD_VAL_BITS (0x8000000000000000UL | RADIX_PMD_INDEX_SIZE)
31 #define RADIX_PGD_VAL_BITS (0x8000000000000000UL | RADIX_PUD_INDEX_SIZE)
32
33 /* Don't have anything in the reserved bits and leaf bits */
34 #define RADIX_PMD_BAD_BITS 0x60000000000000e0UL
35 #define RADIX_PUD_BAD_BITS 0x60000000000000e0UL
36 #define RADIX_PGD_BAD_BITS 0x60000000000000e0UL
37
38 /*
39 * Size of EA range mapped by our pagetables.
40 */
41 #define RADIX_PGTABLE_EADDR_SIZE (RADIX_PTE_INDEX_SIZE + RADIX_PMD_INDEX_SIZE + \
42 RADIX_PUD_INDEX_SIZE + RADIX_PGD_INDEX_SIZE + PAGE_SHIFT)
43 #define RADIX_PGTABLE_RANGE (ASM_CONST(1) << RADIX_PGTABLE_EADDR_SIZE)
44
45 /*
46 * We support 52 bit address space, Use top bit for kernel
47 * virtual mapping. Also make sure kernel fit in the top
48 * quadrant.
49 *
50 * +------------------+
51 * +------------------+ Kernel virtual map (0xc008000000000000)
52 * | |
53 * | |
54 * | |
55 * 0b11......+------------------+ Kernel linear map (0xc....)
56 * | |
57 * | 2 quadrant |
58 * | |
59 * 0b10......+------------------+
60 * | |
61 * | 1 quadrant |
62 * | |
63 * 0b01......+------------------+
64 * | |
65 * | 0 quadrant |
66 * | |
67 * 0b00......+------------------+
68 *
69 *
70 * 3rd quadrant expanded:
71 * +------------------------------+
72 * | |
73 * | |
74 * | |
75 * +------------------------------+ Kernel IO map end (0xc010000000000000)
76 * | |
77 * | |
78 * | 1/2 of virtual map |
79 * | |
80 * | |
81 * +------------------------------+ Kernel IO map start
82 * | |
83 * | 1/4 of virtual map |
84 * | |
85 * +------------------------------+ Kernel vmemap start
86 * | |
87 * | 1/4 of virtual map |
88 * | |
89 * +------------------------------+ Kernel virt start (0xc008000000000000)
90 * | |
91 * | |
92 * | |
93 * +------------------------------+ Kernel linear (0xc.....)
94 */
95
96 #define RADIX_KERN_VIRT_START ASM_CONST(0xc008000000000000)
97 #define RADIX_KERN_VIRT_SIZE ASM_CONST(0x0008000000000000)
98
99 /*
100 * The vmalloc space starts at the beginning of that region, and
101 * occupies a quarter of it on radix config.
102 * (we keep a quarter for the virtual memmap)
103 */
104 #define RADIX_VMALLOC_START RADIX_KERN_VIRT_START
105 #define RADIX_VMALLOC_SIZE (RADIX_KERN_VIRT_SIZE >> 2)
106 #define RADIX_VMALLOC_END (RADIX_VMALLOC_START + RADIX_VMALLOC_SIZE)
107 /*
108 * Defines the address of the vmemap area, in its own region on
109 * hash table CPUs.
110 */
111 #define RADIX_VMEMMAP_BASE (RADIX_VMALLOC_END)
112
113 #ifndef __ASSEMBLY__
114 #define RADIX_PTE_TABLE_SIZE (sizeof(pte_t) << RADIX_PTE_INDEX_SIZE)
115 #define RADIX_PMD_TABLE_SIZE (sizeof(pmd_t) << RADIX_PMD_INDEX_SIZE)
116 #define RADIX_PUD_TABLE_SIZE (sizeof(pud_t) << RADIX_PUD_INDEX_SIZE)
117 #define RADIX_PGD_TABLE_SIZE (sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE)
118
119 #ifdef CONFIG_STRICT_KERNEL_RWX
120 extern void radix__mark_rodata_ro(void);
121 #endif
122
123 static inline unsigned long __radix_pte_update(pte_t *ptep, unsigned long clr,
124 unsigned long set)
125 {
126 pte_t pte;
127 unsigned long old_pte, new_pte;
128
129 do {
130 pte = READ_ONCE(*ptep);
131 old_pte = pte_val(pte);
132 new_pte = (old_pte | set) & ~clr;
133
134 } while (!pte_xchg(ptep, __pte(old_pte), __pte(new_pte)));
135
136 return old_pte;
137 }
138
139
140 static inline unsigned long radix__pte_update(struct mm_struct *mm,
141 unsigned long addr,
142 pte_t *ptep, unsigned long clr,
143 unsigned long set,
144 int huge)
145 {
146 unsigned long old_pte;
147
148 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
149
150 unsigned long new_pte;
151
152 old_pte = __radix_pte_update(ptep, ~0ul, 0);
153 /*
154 * new value of pte
155 */
156 new_pte = (old_pte | set) & ~clr;
157 radix__flush_tlb_pte_p9_dd1(old_pte, mm, addr);
158 if (new_pte)
159 __radix_pte_update(ptep, 0, new_pte);
160 } else
161 old_pte = __radix_pte_update(ptep, clr, set);
162 if (!huge)
163 assert_pte_locked(mm, addr);
164
165 return old_pte;
166 }
167
168 static inline pte_t radix__ptep_get_and_clear_full(struct mm_struct *mm,
169 unsigned long addr,
170 pte_t *ptep, int full)
171 {
172 unsigned long old_pte;
173
174 if (full) {
175 /*
176 * If we are trying to clear the pte, we can skip
177 * the DD1 pte update sequence and batch the tlb flush. The
178 * tlb flush batching is done by mmu gather code. We
179 * still keep the cmp_xchg update to make sure we get
180 * correct R/C bit which might be updated via Nest MMU.
181 */
182 old_pte = __radix_pte_update(ptep, ~0ul, 0);
183 } else
184 old_pte = radix__pte_update(mm, addr, ptep, ~0ul, 0, 0);
185
186 return __pte(old_pte);
187 }
188
189 /*
190 * Set the dirty and/or accessed bits atomically in a linux PTE, this
191 * function doesn't need to invalidate tlb.
192 */
193 static inline void radix__ptep_set_access_flags(struct mm_struct *mm,
194 pte_t *ptep, pte_t entry,
195 unsigned long address)
196 {
197
198 unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
199 _PAGE_RW | _PAGE_EXEC);
200
201 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
202
203 unsigned long old_pte, new_pte;
204
205 old_pte = __radix_pte_update(ptep, ~0, 0);
206 /*
207 * new value of pte
208 */
209 new_pte = old_pte | set;
210 radix__flush_tlb_pte_p9_dd1(old_pte, mm, address);
211 __radix_pte_update(ptep, 0, new_pte);
212 } else
213 __radix_pte_update(ptep, 0, set);
214 asm volatile("ptesync" : : : "memory");
215 }
216
217 static inline int radix__pte_same(pte_t pte_a, pte_t pte_b)
218 {
219 return ((pte_raw(pte_a) ^ pte_raw(pte_b)) == 0);
220 }
221
222 static inline int radix__pte_none(pte_t pte)
223 {
224 return (pte_val(pte) & ~RADIX_PTE_NONE_MASK) == 0;
225 }
226
227 static inline void radix__set_pte_at(struct mm_struct *mm, unsigned long addr,
228 pte_t *ptep, pte_t pte, int percpu)
229 {
230 *ptep = pte;
231 asm volatile("ptesync" : : : "memory");
232 }
233
234 static inline int radix__pmd_bad(pmd_t pmd)
235 {
236 return !!(pmd_val(pmd) & RADIX_PMD_BAD_BITS);
237 }
238
239 static inline int radix__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
240 {
241 return ((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) == 0);
242 }
243
244 static inline int radix__pud_bad(pud_t pud)
245 {
246 return !!(pud_val(pud) & RADIX_PUD_BAD_BITS);
247 }
248
249
250 static inline int radix__pgd_bad(pgd_t pgd)
251 {
252 return !!(pgd_val(pgd) & RADIX_PGD_BAD_BITS);
253 }
254
255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
256
257 static inline int radix__pmd_trans_huge(pmd_t pmd)
258 {
259 return (pmd_val(pmd) & (_PAGE_PTE | _PAGE_DEVMAP)) == _PAGE_PTE;
260 }
261
262 static inline pmd_t radix__pmd_mkhuge(pmd_t pmd)
263 {
264 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
265 return __pmd(pmd_val(pmd) | _PAGE_PTE | R_PAGE_LARGE);
266 return __pmd(pmd_val(pmd) | _PAGE_PTE);
267 }
268 static inline void radix__pmdp_huge_split_prepare(struct vm_area_struct *vma,
269 unsigned long address, pmd_t *pmdp)
270 {
271 /* Nothing to do for radix. */
272 return;
273 }
274
275 extern unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
276 pmd_t *pmdp, unsigned long clr,
277 unsigned long set);
278 extern pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma,
279 unsigned long address, pmd_t *pmdp);
280 extern void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
281 pgtable_t pgtable);
282 extern pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
283 extern pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
284 unsigned long addr, pmd_t *pmdp);
285 extern int radix__has_transparent_hugepage(void);
286 #endif
287
288 extern int __meminit radix__vmemmap_create_mapping(unsigned long start,
289 unsigned long page_size,
290 unsigned long phys);
291 extern void radix__vmemmap_remove_mapping(unsigned long start,
292 unsigned long page_size);
293
294 extern int radix__map_kernel_page(unsigned long ea, unsigned long pa,
295 pgprot_t flags, unsigned int psz);
296
297 static inline unsigned long radix__get_tree_size(void)
298 {
299 unsigned long rts_field;
300 /*
301 * We support 52 bits, hence:
302 * DD1 52-28 = 24, 0b11000
303 * Others 52-31 = 21, 0b10101
304 * RTS encoding details
305 * bits 0 - 3 of rts -> bits 6 - 8 unsigned long
306 * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
307 */
308 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
309 rts_field = (0x3UL << 61);
310 else {
311 rts_field = (0x5UL << 5); /* 6 - 8 bits */
312 rts_field |= (0x2UL << 61);
313 }
314 return rts_field;
315 }
316
317 #ifdef CONFIG_MEMORY_HOTPLUG
318 int radix__create_section_mapping(unsigned long start, unsigned long end);
319 int radix__remove_section_mapping(unsigned long start, unsigned long end);
320 #endif /* CONFIG_MEMORY_HOTPLUG */
321 #endif /* __ASSEMBLY__ */
322 #endif